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Background: Gastric cancer (GC) is aggressive cancer with a poor prognosis. Previously
bulk transcriptome analysis was utilized to identify key genes correlated with the
development, progression and prognosis of GC. However, due to the complexity of
the genetic mutations, there is still an urgent need to recognize core genes in the regulatory
network of GC.

Methods: Gene expression profiles (GSE66229) were retrieved from the GEO database.
Weighted correlation network analysis (WGCNA) was employed to identify gene modules
mostly correlated with GC carcinogenesis. R package ‘DiffCorr’ was applied to identify
differentially correlated gene pairs in tumor and normal tissues. Cytoscape was adopted to
construct and visualize the gene regulatory network.

Results: A total of 15 modules were detected in WGCNA analysis, among which three
modules were significantly correlated with GC. Then genes in these modules were
analyzed separately by “DiffCorr”. Multiple differentially correlated gene pairs were
recognized and the network was visualized by the software Cytoscape. Moreover,
GEMIN5 and PFDN2, which were rarely discussed in GC, were identified as key genes
in the regulatory network and the differential expression was validated by real-time qPCR,
WB and IHC in cell lines and GC patient tissues.

Conclusions:Our research has shed light on the carcinogenesis mechanism by revealing
differentially correlated gene pairs during transition from normal to tumor. We believe the
application of this network-based algorithm holds great potential in inferring relationships
and detecting candidate biomarkers.
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INTRODUCTION

As an aggressive malignant tumor with poor prognosis and high mortality, gastric cancer (GC) is
responsible for over 1,000,000 new cases and an estimated 768,000 deaths in 2020, making it the fifth
in terms of incidence and fourth in terms of mortality worldwide (Sung et al., 2021). GC ranks second
and third in incidence and mortality in China, respectively (Chen et al., 2016). Despite traditional
treatments such as chemotherapy and surgery, GC leads to recurrences within 2 years after surgery
and poor long-term survival due to its early metastasis via the lymphatic system, blood, and
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peritoneum (Wu et al., 2003; D’Angelica et al., 2004). Genetic
mutations play a significant role in the carcinogenesis of GC aside
from environmental factors (Karimi et al., 2014). Studies have
shown that oncogenes and tumor-suppressor genes, including
E-cadherin, p16, and p53, can be used as biomarkers for
diagnosis, prediction of sensitivity to treatment, and prognosis
of GC (de Mello et al., 2021). Although GC molecular
pathogenesis has considerably evolved over the years, much
remains to be unraveled (Tan and Yeoh, 2015). Thus, it is
essential to detect new biomarkers with most regulatory
alterations in gene network to elucidate GC etiology, thereby
providing information for a targeted treatment.

At this time, various bioinformatic methods have been
developed based on gene expression data, which provide
effective tools for the comprehensive analysis of the gene
network in the pathogenesis of cancers (Zhang et al., 2018). In
recent years, a variety of papers have reported and studied new
biomarkers which possess a vital position in the gene network in
different cancers such as, hepatocellular carcinoma (Fang et al.,
2021), breast cancer (Yang et al., 2021), lung cancer (Chen et al.,
2021) and bladder cancer (Liao et al., 2021). Usually, novel
biomarkers were identified based on differentially expressed
genes analysis (DEA) between disease and healthy tissues or
status (Marco-Puche et al., 2019). However, what should be of

FIGURE 1 | Flow diagram of the study. Data processing, analysis, and validation was shown in the picture.
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concern is that the incidence of a disease is a combined effect of
multiple highly interactive genes. Correlation analysis is an
important approach for omics data and offers clues for gene
regulatory networks (Eisen et al., 1998). As complementary to
traditional analytical methods of gene expression data, it is
essential to look at the alternation of gene correlation, referred
to as “differential correlations”, in the pathogenesis of cancers (de
la Fuente, 2010).

For the first time, we constructed an in-silico network in GC
pathogenesis and identified two novel key genes based on the
theory of ‘differential correlation’. Firstly, we detected 15 co-
expressed genes modules by weighted gene co-expression
network analysis (WGCNA). Then, the differential correlations
of genes in the modules which were mostly correlated with GC
were calculated. Furthermore, a gene network was built and
functional analysis of key genes was carried out. Finally, the
expression patterns of GEMIN5 and PFDN2, the two novel
biomarkers in GC, were confirmed in the laboratory by RT-
qPCR, WB, and IHC.

MATERIALS AND METHODS

Data Collection and Preprocessing
The workflow of the data preparation, processing, analysis, and
validation is shown in Figure 1. The raw data of microarray
GSE66229 (tumor samples � 300, normal samples � 100) were
downloaded from the Gene Expression Omnibus database (GEO:
http://www.ncbi.nlm.nih.gov/geo/) and was further normalized
by Robust multi-array average (RMA) using the R package “affy”
(Gautier et al., 2004). The probes were concerted to gene symbols
according to the platform GPL570 (Affymetrix Human Genome
U133 Plus 2.0 Array). The Stomach adenocarcinoma (STAD)
RNA-seq read counts data along with survival information was
retrieved from The Cancer Genome Atlas database (TCGA,
https://portal.gdc.cancer.gov/). After excluding samples without
survival information, 387 samples were enrolled in this study. All
analyses were carried out by R version 4.1.0.

Construction of Weighted Gene
Co-Expression Network
Gene expression profiles from GSE66229 were used to construct
WGCNA using this package according to the protocol in R
software (Langfelder and Horvath, 2008). First, we used the
goodSamplesGenes (gsg) method to exclude samples with too
many missing entries and genes with zero variance. Next, a
similarity matrix between gene expression profiles was
constructed based on pairwise Pearson correlation, which was
converted to an adjacency matrix using a power adjacency
function. The power was chosen based on the scale-free
topology criterion according to the scale-free topology index
(R2) as 0.9 (Zhang and Horvath, 2005). Afterwards, the
adjacency matrix was transformed into a topological overlap
matrix (TOM) to detect modules (Langfelder et al., 2008).
Modules were cut using the Dynamic Tree-Cut algorithm
(Langfelder et al., 2008). We cut genes into modules by

(blockwiseModules) method with following parameters:
minModuleSize � 30, mergeCutHeight � 0.25, deepSplit � 2,
verbose � 3.

To extract co-expressed genes most related to GC
carcinogenesis for further analysis, the modules and
phenotypes were related by calculating the module eigengenes
(MES), which were the representatives of all genes in a module.
Modules with |ME|>0.5 were selected. In addition, we performed
a correlation between MM (module membership) and GS (gene
significance) in the selected modules, which reflected the overall
relationships of all genes in the module with the phenotype. We
focused on the modules which had a strong overall correlation
between MM and GS (r > 0.5).

Functional Enrichment of theModule Genes
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
analysis of the genes in the chosen module were performed using
the R package “clusterProfiler” (Yu et al., 2012). Only the KEGG
terms with FDR<0.05 were considered significant. After
construction of the network, we used STRING database
(https://cn.string-db.org/) to assist in researching relevant
papers and functional analysis of the key genes and their co-
expressed genes.

Differential Correlation Analysis
DiffCorr is an R package to analyze and visualize differential
correlations between two conditions in biological networks
(Fukushima, 2013). Briefly, the analytical process of DiffCorr
is divided in three steps. Firstly, different correlations were
calculated via Fisher’s z-test. The Pearson correlations of a
gene-pair under two conditions rA and rB were transformed
respectively into ZA and ZB by formula Z � 1

2 log
1+r
1−r.

Differences were subsequently calculated following the formula
Z � ZA−ZB������

1
nA−3+ 1

nB−3
√ , where nA and nB represented sample size under

each condition. The local false-discovery rate (fdr) was used for
controlling estimates. Secondly, eigen-molecule modules based
on the first principal component (PC) were identified. Using
these eigen-molecule modules, pair-wise differential correlations
between genes can be tested. Finally, scaling and clustering was
finished. Different pre-treatment methods, including auto-scaling
(unit-variance scaling), range scaling, Pareto scaling, vast scaling,
level scaling, and power transformation, were integrated with
downstream differential correlation analyses.

Construction and Visualization of the Gene
Network
The pair-wise differential correlation results and DEA were
integrated into Cytoscape software (version 3.7.1) to construct
gene network. Using R package “limma” (Ritchie et al., 2015),
DEA was used to decide whether genes were up-regulated or
down-regulated in GSE66229.

Survival Analysis of the Key Genes in the Network.
The gene expression level was parsed into two groups and

repeated for 91 times based on the cutoff value from 5 to 95
percent of its expression data. A repeated log-rank test based on
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each cutoff value was conducted, and a cutoff value with the
lowest p-value was selected for Kaplan-Meier analysis using R
package “survival” (HARRINGTON and FLEMING, 1982) and
“survminer” (https://CRAN.R-project.org/package�survminer).

Cell Lines and Cell Culture
The GC cell lines (BGC823, HGC27, MKN45, AGS, MGC803,
SGC7901) and the human normal mucosal epithelium cell line
GES-1 purchased from Chinese Academy of Sciences in Shanghai
were cultured in a humidified atmosphere with 5% CO2

supplemented with 10% Fetal Bovine Serum (FBS), 100 IU/ml
penicillin and 100 mg/ml streptomycin in a humidified
atmosphere with 5% CO2 at 37°C.

Patients and Tissues
Sixty-three pairs of GC tumor and corresponding adjacent
normal tissues were collected from Zhongnan Hospital of
Wuhan University. The patients had not experienced any
chemotherapy or radiotherapy. All samples were obtained with
informed patients’ consent before collection, and approved by the

Zhongnan Hospital of Wuhan University Ethics Committee.
Samples were snap-frozen and stored at−80°C until use in
real-time qPCR (RT-qPCR) and WB (western blot)
experiments. In addition, we conducted immunohistochemical
(IHC) staining of formalin-fixed paraffin-embedded GC patients
and normal control samples.

RNA Isolation and Quantitative
Real-Time PCR
Total RNA was extracted from GC cell lines and tissues using the
Trizol reagent (Invitrogen, United States) according to the
manufacturer’s protocol. RNA concentration was measured by
NanoDrop ultramicroscopy spectrophotometer 2000 (Thermo
Fisher Scientific, United States). 1 ug RNA was reverse
transcribed to cDNA using Primescript™ RT reagent kit
(Vazyme, China). Quantitation of mRNA expression levels were
performed on a Bio-Rad IQ5 Real-Time PCR instrument (Bio-Rad,
United States) using SYBR-Green PCR Master Mix (Vazyme,
China). The primer sequences are listed in Supplementary Table S1.

FIGURE 2 | Construction of weighted gene co-expression network (A) Cluster dendrogram displays the relationship between samples (B) The scale-free fit index
for soft-thresholding powers. Left: the relationship between the soft-threshold and scale-free R2. Right: the relationship between the soft-threshold and mean
connectivity. Different modules are labeled in different colors (C) Dendrogram of all genes clustered in GSE66229.
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Western Blot Analysis
Cells were lysed using RIPA buffer containing protease inhibitor
cocktail (Thermo Fisher Scientific, United States). The proteins
were separated utilizing 10% sodium dodecyl sulfate-
polyacrylamide gels and then transferred to a polyvinylidene
fluoride membrane (Millipore, United States). After 2 hours of
protein blocking with 5% non-fat milk, the membranes were
incubated with primary antibodies and HRP-conjugated
secondary antibodies. Proteins were detected using Bio-Rad
Image Lab software. Quantitation on western blots have been
performed using ImageJ software. The following primary

antibodies were used: anti-GEMIN5 (1:1,000, Abcam
ab201691), anti-PDFN2 (1:1,000, Abcam ab237534), anti-β-
actin (1:5,000, Abcam ab8226).

Immunohistochemistry
Formalin-fixed tissues were paraffin embedded and sectioned (5-
μm-thick sections). Antigen retrieval was performed by
microwave oven for 18 min in citrate buffe (Beyotime, China).
3% hydrogen peroxide (Merck, Germany) was used to block
endogenous peroxidase activity. Nonspecific staining was blocked
followed by incubation with antibodies to GEMIN5 (1:100,

FIGURE 3 | Identification of significant modules inWGCNA (A)Heatmap of the correlation betweenmodule eigengenes and disease status. Each cell contained the
correlation coefficients and p value. Red indicates positive correlations while blue indicates negative (B)–(E) Scatterplots of Gene Significance (GS) for disease vs Module
Membership (MM) in the pink (B), turquoise (C), purple (D) and blue (E)modules. There was a highly significant correlation between GS and MM in pink, purple and blue
module (F)–(H) KEGG pathway analysis in pink (F), turquoise (G) and blue (H) modules.
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Abcam ab201691) and PFDN2 (1:100, Abcam ab237534).
Immunostaining was performed using DAB according to the
manufacturer’s instructions.

RESULTS

Construction of Weighted Gene
Co-Expression Network
After excluding two abnormal samples, GSM1523817 and
GSM1523984 (Figure 2A), we performed WGCNA analysis
to detect clusters of genes most correlated with GC
carcinogenesis based on the expression profiles of the
remaining 398 samples in GSE66229. The power, a critical
parameter in the analysis, was chosen to be three to ensure a
scale-free network (R2 � 0.9, Figure 2B). A dendrogram of all
genes (n � 16,241) was clustered using the average linkage
method and Biweight midcorrelation (Bicor) method
(Figure 2C). A total of eighteen modules with widely

varied numbers of co-expressed genes were identified
through hierarchical clustering. The genes and their
attributed modules are listed in Supplementary Table S1.

Identification of Significant Modules in
WGCNA
The relationship between modules and GC was subsequently
explored (Figure 3A). Four modules presented a strong
relationship with correlation coefficients above 0.5, which were
the pink module (r � −0.62, p � 8e−43), the turquoise module (r �
0.77, p � 1e−80), the purple module (r � 0.52, p � 2e−29) and the
blue module (r � −0.57, p � 7e−36).

Next, to further screen modules with most genes associated
with GC, we performed a correlation analysis between GS and
MM (Figures 3B–E). The pinkmodule (r � 0.83, p � 7.3e−53), the
turquoise module (r � 0.87, p < 1e−200) and the blue module (r �
0.81, p < 1e−200) were chosen for further analysis, while the
purple module (r � 0.38, p � 5.9e−06) was excluded.

FIGURE 4 | Representations of the module network and differential co-expressions. Images of pink (A), turquoise (B) and blue (C) module networks including
cancerous and normal samples.
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Functional analysis of genes in the three modules was
performed by KEGG pathway analysis (Supplementary
Table S2). The top five significant pathways in the pink
module were mineral absorption, drug metabolism −
cytochrome P450, metabolism of xenobiotics by cytochrome
P450, gastric acid secretion and retinol metabolism
(Figure 3F). The top five significant pathways in the
turquoise module were cell cycle, spliceosome,
nucleocytoplasmic transport, ribosome biogenesis in
eukaryotes and p53 signaling pathway (Figure 3G). The top
five significant pathways in the blue module were focal
adhesion, proteoglycans in cancer, regulation of actin
cytoskeleton, axon guidance and tight junction (Figure 3H).

Calculation of Differential Correlations and
Visualization of the Gene Network
Genes in pink, turquoise and blue modules were chosen to
analyze their differential correlations separately. First, we used
(cluster.molecule) function to cluster genes based on their
expression profiles. One-correlation coefficient was adopted to
measure distance (the cutoff of the coefficient was 0.6) according
to the (cutree) function. Then (get.eigen.molecule) and
(get.eigen.molecule.graph) were applied to visualize this
process (Figure 4). Finally, the results of pair-wise differential
correlations were exported via (comp.2. cc.fdr) function
(Supplementary Table S3), and the top 10 significantly

differential coexpressions (FDR <0.05) in each module were
shown in Table 1.

The DiffCorr package also detected oppositely correlated
gene pairs where two molecules exhibit positive correlation in
one condition and negative correlation in the other condition,
which referred to as a “switching mechanism” (Kayano et al.,
2011). These switched gene pairs were of concern in the
pathogenesis of GC. As the correlation relationships of gene
pairs in each module were complicated, we select gene pairs
which had both at least moderately strong positive and
negative correlations (correlation r > 0.5) to construct a
gene network. In total, we obtained 52 oppositely correlated
gene pairs from pink module, 307 gene pairs from turquoise
module and five gene pairs from blue module (Supplementary
Table S4), and the gene network based on which was presented
in Figure 5 by cytoscape software.

Functional Analysis of Key Genes w ith
Differential Correlations
In the pink module, AKIP1 deserved more attention than other
genes (Figure 5A). In this module, AKIP1 appeared in most gene
pairs and linked to 19 other genes. AKIP1 was increased in GC
and its co-expressed genes were mostly decreased in GC.
Previously, AKIP1 has been reported to act as an oncogene in
GC by activating Slug-induced EMT and AKIP1 significantly
correlated with clinical metastasis and poor prognosis (Chen

TABLE 1 | Top 10 correlated gene pairs changed to the opposite direction in each module between normal and GC samples.

molecule_X molecule_Y r1 r2 Lfdr Module color

MARC-2 AKIP1 −0.6314071 0.7333939 1.96E-15 pink
MT1G AKIP1 −0.6576778 0.7285792 1.96E-15 pink
XYLT2 AKIP1 −0.4606301 0.7007189 1.96E-15 pink
AKR1C1 OGFOD1 −0.6987339 0.6827796 1.96E-15 pink
MT1E AKIP1 −0.6681788 0.6715482 1.96E-15 pink
KCNJ16 OGFOD1 −0.7569397 0.6696279 1.96E-15 pink
USP31 CLIC6 −0.5173597 0.6574277 1.96E-15 pink
NEDD4L DNM1L −0.6721752 0.6508082 1.96E-15 pink
SLC7A8 DNM1L −0.659538 0.6540433 1.96E-15 pink
SMIM14 AKIP1 −0.4792319 0.6367244 1.96E-15 pink
GEMIN4 TSR1 −0.4024842 0.8245598 2.83E-13 blue
AAR2 STAU1 −0.4362916 0.7703166 2.83E-13 blue
PFDN2 NUF2 −0.439736 0.7305703 2.83E-13 blue
PFDN2 KIF14 −0.4129973 0.7173457 2.83E-13 blue
PUF60 ATAD2 −0.4779598 0.7099839 2.83E-13 blue
LIG1 PRPF31 −0.4229943 0.7096661 2.83E-13 blue
RECQL4 C8orf33 −0.4263906 0.7094297 2.83E-13 blue
AAR2 RALGAPB −0.4108851 0.6992478 2.83E-13 blue
ILKAP DTYMK −0.4058326 0.6831076 2.83E-13 blue
NXT1 CSNK2A1 −0.4242544 0.6767982 2.83E-13 blue
SLC4A2 GPR155 0.7119232 −0.4382693 1.54E-14 turquoise
NARS TXNL1 −0.6924692 0.433835 1.54E-14 turquoise
MAN1A1 GPR155 −0.6713351 0.4305737 1.54E-14 turquoise
NARS DYM −0.6363036 0.4233434 1.54E-14 turquoise
ZNF385B ABCB1 −0.6213381 0.4234794 1.54E-14 turquoise
MPP1 GPR155 −0.680156 0.4836556 1.54E-14 turquoise
WWC1 GPR155 0.5676928 −0.4088423 1.54E-14 turquoise
IPPK GPR155 0.5706811 −0.4198478 1.54E-14 turquoise
SCG5 GPR155 −0.570117 0.449409 1.54E-14 turquoise
TYRP1 FZD4 −0.5218242 0.413089 1.54E-14 turquoise
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et al., 2019). By uploading AKIP1 and its co-expressed genes into
string database, we found that its co-expressed genes KCNJ15,
KCNJ16, GHRL and CCKBR were all involved in gastric acid
secretion (Rau et al., 2013). Thus, our research enhanced the
understanding of the role of AKIP1 in GC.

In the turquoise module, GEMIN5, PFDN2 and Sjogren
syndrome antigen B (SSB) were in the center part of the
network and possessed more edges than other genes
(Figure 5B). These three genes were all increased in GC.
Gem Nuclear Organelle Associated Protein 5 (GEMIN5), a
component of the spliceosomal complex, plays a crucial role
in mRNA splicing and can affect tumor cell motility (Lee
et al., 2008). However, it has not yet been studied in GC. Its
co-expressed genes SHMT2 and MTHFD2 are two
mitochondrial enzymes which take part in folate
metabolism and play critical roles in the gastrointestinal
cancer survival and proliferation (Konno et al., 2017),
which indicated that GEMIN5 might function as an

oncogene in GC by exerting impacts on folate embolism.
Hence, our study discovered for the first time, the critical role
of GEMIN5 in GC and provided information for further
function research.

As an autoimmune RNA-binding protein, SSB binds to the 3′
poly(U) terminus of nascent RNA polymerase III transcripts,
protecting them from exonuclease digestion and facilitating their
folding and maturation (Chambers et al., 1988). It has been
recently identified as a pre-miRNA-binding protein that
regulates miRNA processing in vitro, and was correlated with
dicer in human cancer transcriptome and prognosis (Liang et al.,
2013).

However, the role of SSB was still unclear in human cancers.
Thus, our network provided information for further
investigation.

PFDN2 belongs to the prefoldin subunits family which can
bind and stabilize newly synthesized polypeptides (Mo et al.,
2020). In GC, high mRNA expression of PFDN2 displayed poor

FIGURE 5 | Differentially co-expressed gene networks in the pink (A), turquoise (B) and blue (C)modules. Each node represented a gene, with lavender-filled color
denoting decreased genes and pink-filled color denoting increased genes in GC. The edge represented connection between two genes. The green edge represented
negative correlation and red positive correlation.
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OS(Yesseyeva et al., 2020). Its co-expressed genes TTK, CCNB2,
PLK1 were in the cell cycle pathway, indicating PFDN2 might
play an important role in GC via affecting cell cycle. Therefore,
our research firstly validated the differential expression of
PFDN2, and identified its co-expression genes in GC which
provided valuable information for further functional
mechanism explore.

In the blue module, GPR155 (G protein-coupled receptor
155) stood out in the network (Figure 5C). In GC, GPR155
transcription was suppressed in GC cell lines compared with a
nontumorigenic cell line, and low GPR155 mRNA level was an
independent biomarker of hematogenous metastasis (Shimizu
et al., 2017). Consistent in our study, the expression of GPR155
was downregulated in gastric cancer tissue of the ACRG
cohort.

Validation of Novel Key Genes of GC
In order to validate the two novel possible key genes, GEMIN5 and
PFDN2, we performed Kaplan-Meier analysis in TCGA-STAD
dataset. RT-qPCR, WB, and IHC experiments were used to
detect mRNA or protein expression in GC cell lines and patient
samples. The Kaplan-Meier analysis showed higher levels of
GEMIN5 and PFDN2 correlated with poor prognosis in GC
patients (Figures 6A,B). RT-qPCR results showed that the
mRNA expression level of GEMIN5 and PFDN2 were higher in
cancer cells of HGC27, BGC823, AGS, MGC803, SGC7901, and
MKN45 than in human normal mucosal epithelium cells GES-1
(Figures 6C, D).Also, the mRNA expression level of GEMIN5 and
PFDN2 were higher in GC tissues than in normal gastric tissues
(Figures 6E, F). The protein expression level of GEMIN5 and
PFDN2 were confirmed consistent with mRNA expression levels

FIGURE 6 | Validation of the key genes using TCGA-STAD data and laboratory experiments. Kaplan-Meier curve analysis of GEMIN5 (A) and PFDN2 (B) was
shown. Expression of GEMIN5 and PFDN2mRNA levels were validated by RT-qPCR in cell lines (C)–(D) and patient samples (E)–(F). Expression of GEMIN5 and PFDN2
protein levels were validated by western blot (G–I) and immunohistochemistry (J–K). Both mRNA and protein expression level of GEMIN5 and PFDN2 were higher in
tumor samples and cancer cell lines than in normal samples and nontumorigenic cell line.
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in the same cell lines and patient tissues by WB (Figures 6G–I) and
IHC (Figures 6J, K). In addition, we performed correlation analyses
between the mRNA expression level and clinicopathological
characteristics in our own patient samples (Table 2). High
GEMIN5 expression was significantly correlated to tumor size
(p � 0.031), T-stage (p � 0.009), lymphatic metastasis (p �
0.001), TNM stage (p � 0.002) and histological grade (p � 0.034).
High PFDN2 expression was significantly correlated to age (p �
0.027), T-stage (p � 0.047), TNM stage (p � 0.05). For the first time,
our experiments validated the elevated expression of GEMIN5 and
PFDN2 in GC cell lines and GC samples and assumed their critical
roles in the pathogenesis of GC.

DISCUSSION

Previous studies have revealed gene interaction networks in multiple
cancers based on their co-expression patterns (Liu et al., 2020;
Nangraj et al., 2020; Bo et al., 2021), but little is known about
differential correlations between disease status and health status,
which could be an instructive view to elucidate deep mechanisms of
pathogenesis of cancer. It is a growing direction in co-expression
analysis that researchers have begun to develop tools focused on
genes that are correlated under one condition but show little or no
correlation in another condition, including coXpress (Watson,
2006), DCGL (Yang et al., 2013), and DiffCorr (Fukushima,
2013; Yang et al., 2013). CoXpress is a simple method to identify
differentially co-expressed gene groups and should be used as first
step in the analysis of co-expression (Watson, 2006). DCGL selects
differentially regulated genes (DRGs) and differentially regulated
links (DRLs) according to the transcription factor (TF)-to-target

information (Yang et al., 2013). DiffCorr identifies pattern changes
between two experimental conditions in correlation networks and
can be used to detect biomarker candidates (Fukushima, 2013).

However, there is plenty of scope for this approach in cancer
research. In this study, for the first time, we constructed an in silico
gene network inGCbenefiting from the availability of large-scale data
and multiple algorithms to calculate differential correlations between
gene pairs. First , we used WGCNA as a gene filtration to detect
significant co-expressed genes modules and narrowed down the
range of suspects. Secondly, we used DiffCorr to identify
differentially co-expressed gene modules inside significant
modules. To identify the key genes in GC, we analyzed the
network focusing on biological functions. A recent study in plant
biology has used DiffCorr to identify a novel community of genes to
explain differences in leaf phenotypes which has no enriched GO
terms (Nakayama et al., 2021).We carried out our functional research
of our key genes by studying the co-expressed genes and referring to
previous researcheswith the help of STRINGdatabase. Candidate key
genes were validated using clinical information and laboratory
experiments. In addition, both candidate key genes and their
differentially co-expressed genes could be useful guidance for
further experimental investigations and eventually facilitating
diagnosis and treatment on GC patients.

The most significant gene in the pink module A-kinase-
interacting protein 1 (AKIP1) is a nuclear protein known to
interact with the catalytic subunit of PKA (PKAc) and a binding
partner of NF-kappaB p65 subunit (Gao et al., 2008). Due to its
function, AKIP1 has previously been reported to act as a potential
oncogenic protein in various cancers such as esophageal squamous
cell carcinoma (Lin et al., 2015), breast carcinoma (Mo et al., 2016),
non-small-cell lung cancer (Guo et al., 2017) and colorectal cancer

TABLE 2 | clinicopathological features and expression of PFDN2 and GEMIN5

Characteristics PFDN2 expression p Value GEMIN5 expression p Value

Low High Low High

Total cases 31 32 — 31 32 —

Gender
Male 22 23 — 22 23 —

Female 9 9 0.936 9 9 0.936
Age(years)
<60 12 10 — 15 7 —

≥60 19 22 0.535 16 25 0.027
Tumor size (cm)
<5 26 19 — 22 23 —

≥5 5 13 0.031 9 9 0.936
T-stage
T1/T2 10 2 — 9 3 —

T3/T4 21 30 0.009 22 29 0.047
Distant Metastasis
Yes 3 5 — 2 6 —

No 28 27 0.478 29 26 0.143
Lymphatic Metastasis
N0/N1 22 8 — 16 14 —

N2/N3 9 24 0.001 15 18 0.532
TNM stage
I/II 16 5 — 14 7 —

III/Ⅳ 15 27 0.002 17 25 0.05
Histological grade
Well/Moderate Dif 8 2 — 7 3 —

Poorly Dif 23 30 0.034 24 29 0.152
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(Jiang et al., 2018). Our research reconfirmed that it played an
important role in GC and enhanced understanding by revealing its
co-expressed genes.

The key gene GPR155 in the blue module has also been
extensively studied in cancers. In addition to its role as a
biomarker in GC, the downregulation of GPR155 was reported
as significantly associated with more aggressive HCC phenotypes
including high preoperative α-fetoprotein, poor differentiation,
serosal infiltration, vascular invasion, and advanced disease stage
(Umeda et al., 2017). The presence of GPR155 in multiple gene
pairs suggest it might be a crucial regulatory gene in GC and this
offers clues for carrying out its further research in cancers.

With regards to the turquoise module, we identified two novel
key genes GEMIN5 and PFDN2. It has been reported that GEMIN5
was the most differentially varied protein in breast cancer cell lines
after modulation of Nm23-H1, which is the first MSG to be
characterized (Lee et al., 2009). A recent study has found that
gain of PFDN2 somatic copy-number was associated with poor
survival in patients withmetastatic urothelial carcinoma treated with
platinum-based chemotherapy (Riester et al., 2014). However, the
significance of GEMIN5 and PFDN2 was hardly mentioned in GC.
Our network offered clues that they might possess significant
position in the pathogenesis of GC, because they linked to most
genes in the co-expressed genes module and might serve as key
regulators. In addition, we validated their differential expression in
mRNA and protein level in laboratory and analyzed their
correlations with clinicopathological features.

Conventional methods to identify key genes between disease and
health status require complex screening from a list of hundred
candidate genes, whereas in our research, we narrowed down the
range of suspects by WGCNA and DiffCorr and achieved effective
results. Our research is perspective and efficient in finding novel
biomarkers in cancers. However, only transcriptomics data was
enrolled in our analytical process, which covered only one single
layer of genome. In future studies, further researches should be
carried out on differential correlations integrating multidimensional
data such as proteomic data and single-cell sequencing data.
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