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Polyp-Size: A Precise Endoscopic 
Dataset for AI-Driven Polyp Sizing
Yiming Song1,7, Sijia Du2,7, Ruilan Wang3, Fei Liu4, Xiaolu Lin5, Jinnan Chen1, Zeyu Li1, 
Zhao Li1, Liuyi Yang1, Zhengjie Zhang2, Hao Yan6, Qingwei Zhang1,8 ✉, Dahong Qian2,8 ✉ & 
Xiaobo Li1,8 ✉

Colorectal cancer often arises from precancerous polyps, where accurate size assessment is vital for 
clinical decisions but challenged by subjective methods. While artificial intelligence (AI) has shown 
promise in improving the accuracy of polyp size estimation, its development depends on large, 
meticulously annotated datasets. We present Polyp-Size, a dataset of 42 high-resolution white-
light colonoscopy videos with polyp sizes precisely measured post-resection using vernier calipers to 
submillimeter precision. Unlike existing datasets primarily focused on polyp detection or segmentation, 
Polyp-Size offers validated size annotations, diverse polyp features (Paris classification, anatomical 
location and histological type), and standardized video formats, enabling robust AI models for size 
estimation. By making this resource publicly available, we aim to foster research collaboration and 
innovation in automated polyp measurement to ultimately improve clinical practice.

Background & Summary
Colorectal cancer (CRC) often stems from precancerous polyps1,2, and early removal of precancerous lesions via 
colonoscopy could significantly reduce its incidence and mortality3,4. Accurate polyp size measurement is criti-
cal for assessing malignancy risk and guiding clinical decisions such as selecting the appropriate resection tech-
nique and determining surveillance intervals5–10. In clinical practice, however, visual assessment-based polyp 
size estimation is often subjective and imprecise11. Reference objects with fixed dimensions, like open biopsy 
forceps, are infrequently positioned adjacent to the lesion for size measurement. Other methods, including 
post-resection measurements with linear probes or rulers, are infrequently employed due to their impracti-
cality11. Accurate polyp size estimation presents significant challenges for both endoscopists and pathologists. 
Inconsistent size estimation arises from the following factors11–13:

•	 Interobserver variability: Visual estimation by endoscopists often leads to significant overestimation or 
underestimation of polyp size due to subjective judgment.

•	 Endoscopic magnification and distortion: Wide-angle lenses at the endoscope tip magnify and distort the live 
view, leading to overestimation of polyp dimensions.

•	 Post-resection tissue shrinkage: Fixation processes cause tissue to shrink, reducing measured size and causing 
underestimation.

•	 Piecemeal removal: Incomplete or piecemeal excision of polyps results in underestimation of true size.
•	 Variability in measurement tools: Variability in tools introduces discrepancies in size measurements.

These inconsistencies can lead to overestimation, prompting unnecessary surveillance, or underestimation, 
delaying critical diagnoses and increasing the risk of progression to CRC14. These inconsistencies might impact 

1Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of 
Digestive Diseases, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2School of 
Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. 3Department of Gastroenterology, Armed 
Police Forces Hospital of Sichuan, Leshan, Sichuan Province, China. 4Departmant of Gastroenterology, Nine Division 
Hospital of Xinjiang Production and Construction Corps, Tacheng Xinjiang Uygur Autonomous Region, Tacheng, China. 
5Department of Digestive Endoscopy Center, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian 
Medical University, Fuzhou, Fujian, China. 6The Second Clinical Medical College, Harbin Medical University, Harbin, 
150081, China. 7These authors contributed equally: Yiming Song, Sijia Du. 8These authors jointly supervised this 
work: Qingwei Zhang, Dahong Qian, Xiaobo Li ✉e-mail: zhangqingweif@hotmail.com; dahong.qian@sjtu.edu.cn;  
lxb_1969@163.com

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-025-05251-x
mailto:zhangqingweif@hotmail.com
mailto:dahong.qian@sjtu.edu.cn
mailto:lxb_1969@163.com
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-025-05251-x&domain=pdf


2Scientific Data |          (2025) 12:918  | https://doi.org/10.1038/s41597-025-05251-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

treatment decisions and highlight the urgent need for standardized, reliable, and reproducible methods of polyp 
size estimation.

Advances in artificial intelligence (AI) have shown great promise in enhancing endoscopic polyp assessments 
through multiple distinct applications, including polyp detection, segmentation, classification, and characteriza-
tion15–17. AI systems for polyp detection focus on identifying the presence of lesions, increasing detection rates18–

24. Recent studies have also explored ways to improve their real-time applicability25,26. Separate AI approaches 
for polyp segmentation delineate polyp boundaries, creating accurate outlines of lesion areas that can improve 
dataset development and subsequent detection systems27,28. More recently, AI systems for polyp size estimation 
have been developed to address the specific challenge of dimensional measurement, outperforming traditional 
methods14,29,30. However, a robust AI system typically requires large amounts of accurately annotated data for 
model training, testing, and validation. Recent large-scale surveys of biomedical image analysis competitions 
have highlighted the importance of standardized datasets and evaluation frameworks in driving progress in this 
area31. One possible solution is the use of semi-automated annotation frameworks, which can reduce expert 
workload while maintaining annotation quality, particularly in endoscopic imaging tasks32. While many datasets 
focus on polyp segmentation and detection33–45, few provide real-world size measurements validated through 
direct post-resection measurements. As shown in Table 1, only three datasets contain polyp size information, 
yet both include size as secondary metadata with millimeter-level precision using undocumented measurement 
methods, and primarily target detection or classification tasks rather than addressing the unique computational 
challenges of size estimation.

To address this gap, we introduce the Polyp-Size dataset, the first of its kind featuring 42 high-resolution 
white-light endoscopic videos of polyps, each annotated with high-precision measurements (0.01 mm) using 
vernier calipers following a standardized post-resection protocol. This dataset captures polyps from multiple 
viewing angles and is supplemented with comprehensive clinical metadata including polyp Paris classification, 
anatomical locations, and pathological findings.

The primary goals of the Polyp-Size dataset are as follows:

•	 To establish a high-quality white-light endoscopic video collection with validated post-resection measure-
ments using vernier calipers as gold standard.

•	 To facilitate the development and evaluation of AI systems for accurate polyp size estimation.
•	 To promote research collaboration and advance AI-driven approaches in management of precancerous 

lesions.
•	 To promote standardization and efficiency in CRC prevention strategies globally through improved polyp 

measurement techniques.

This paper first introduces the research background and importance of polyp size estimation, then details the 
data acquisition, processing, and metadata collection, followed by a presentation of the data record organization, 
technical validation to assess dataset applicability, and finally discusses the dataset limitations and application 
prospects.

Methods
Fig. 1 illustrates the detailed workflow for constructing the Polyp-Size dataset. The process began with data 
acquisition at Renji Hospital, Shanghai, where colonoscopy videos were captured, and polyps were measured 
with precision following complete resection. Of the 64 initial recordings, 42 high-quality videos were selected 
by expert endoscopists. These recordings underwent a comprehensive standardization process, including the 
extraction of white-light endoscopy segments, removal of the left-side panel and peripheral margins, and format 
unification. The final dataset is accompanied by comprehensive metadata detailing polyp measurements and 
characteristics for each video segment.

Data source and collection.  The dataset originates from the Digestive Endoscopy Center of Renji Hospital, 
affiliated with Shanghai Jiao Tong University School of Medicine. Data were collected between November 7, 2023, 
and April 25, 2024, from 47 patients aged over 18.

Ethics approval and privacy protection.  All participants provided written informed consent prior to 
the colonoscopy procedure, informing them that videos of polyps identified during the procedure would be 
recorded for research purposes. Participants were also informed that following removal, polyps would be pre-
cisely measured and these measurement data would be included in the public dataset. Participants were assured 
that their personal information (such as name, ID, date, etc.) would be anonymized and that all collected data, 
including both video recordings and polyp measurements, would be publicly released after collection. The study 
adhered to the principles of the Declaration of Helsinki, and the data collection, annotation, and dissemination 
processes were approved by the Ethics Committee of Renji Hospital, with approval number KY2023-002-B. 
All personally identifiable information was removed to ensure patient anonymity and compliance with ethical 
standards.

Colonoscopy procedure protocol.  The procedures were performed under intravenous anesthesia using 
an Olympus endoscopy system (CV-290 main unit paired with CF-HQ290I/CF-H290I colonoscopes; Olympus 
Medical Corporation, Tokyo, Japan). Patients were positioned in the lateral decubitus position. The colonos-
cope was advanced to the terminal ileum and then slowly withdrawn, systematically examining the entire colon, 
including the terminal ileum, ileocecal valve, cecum, ascending colon, hepatic flexure, transverse colon, splenic 
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flexure, descending colon, sigmoid colon, rectum, and anal canal. Upon polyp detection, endoscopic video 
recordings were initiated to document the lesions in situ. Polypectomy with complete resection was performed 
according to standard clinical practice. Resected specimens were placed on sterile gauze, unfolded to maintain 
their original size, and trimmed to remove excess tissue. Each polyp was measured independently by three differ-
ent endoscopists who had received standardized training on digital vernier caliper use (accurate to 0.01 mm). For 
each polyp, the maximum diameter was recorded under natural, uncompressed conditions, and the largest of the 
three measurements was selected as the final value, consistent with clinical risk assessment practice. Interobserver 
reliability analysis demonstrated exceptional consistency (ICC = 0.987, 95% CI: 0.979-0.993), confirming the 
objectivity and precision of our measurement protocol. The specimens were then fixed in formalin for histopatho-
logical evaluation. While videos were initiated upon polyp detection, Boston Bowel Preparation Scale (BBPS) 
scores had already been assigned to each colonic segment during the standard withdrawal phase of colonoscopy 
and were documented to facilitate subsequent quality assessment of polyp videos. After completing the colonos-
copy, the videos were exported in MP4 format.

Dataset No. of polyps Core Dataset Elements Available link
Includes quantitative 
polyp size data (Yes/No) Application

CVC-ColonDB33 380 images 380 polyp images along with binary masks as 
ground truth

http://vi.cvc.uab.es/colon-
qa/cvccolondb/ No Polyp detection

CVC-ClinicDB34 612 images 612 images from 31 colonoscopy sequences
https://polyp.
grand-challenge.org/
CVCClinicDB/

No Polyp segmentation 
and detection

CVC-EndoScene Still35 912 images a combination of CVC-ColonDB and CVC-
ClinicDB. Not available now No Polyp segmentation

ASU-Mayo33 5,200 images
19,400 images with 5,200 polyps and 14,200 
without polyps, with binary masks as ground 
truth

https://polyp.grand-
challenge.org/AsuMayo/ No Polyp detection

Kvasir-Seg36 1,000 images 1,000 polyp images and its corresponding 
masks

https://datasets.simula.no/
kvasir-seg/ No

Polyp segmentation, 
detection, localization, 
and classification

PICCOLO37 3,433 images 3,433 images, 76 different lesions with 
corresponding clinical metadata

https://www.biobancovasco.
org/en/Sample-and-data-
catalog/Databases/PD178-
PICCOLO-EN.html

Yes Polyp classification

PolypGen38 3,762 images 6,282 images with 3,762 polyps and 2,520 
without polyps

https://www.synapse.org/
Synapse:syn26376615/
wiki/613312

No Polyp detection and 
segmentation

CP-CHILD39 1,400 images 9,500 images with 1,400 polyps and 8,100 
without polyps

https://figshare.com/
articles/dataset/CP-CHILD_
zip/12554042

No Polyp detection

PIBAdb40 31,400 images
45,400 images with 31,400 polyps and 14,000 
without polyps, each polyp images with 
corresponding histological report

https://www.iisgaliciasur.es/
home/biobanco/colorectal-
polyp-image-cohort-
pibadb/?lang=en

No Polyp classification

SUN Colonoscopy 
Video DB41 49,136 images 158,690 images with 49,136 polyps and 

109,554 without polyps http://sundatabase.org/ Yes Polyp detection

LDPolyp video DB42 405,284 images
160 annotated videos with 33,884 polyps 
and 6,382 without polyps, 103 unannotated 
videos with 371,400 polyps and 490,000 
without polyps

https://github.com/dashishi/
LDPolypVideo-Benchmark No Polyp detection

BKAI-IGH NeoPolyp 
DB40 1,000 images

The database has two versions. BKAI-IGH 
NeoPolyp-Small: 1200 images with neoplastic 
(red) and non-neoplastic (green); NeoPolyp-
Large: 7500 images, includes ‘undefined’ 
polyps (yellow).

https://www.kaggle.com/c/
bkai-igh-neopolyp/ No Polyp segmentation 

and identification

Endotest43 48,641 frames 253,754 images with 48,641 polyps and 
205,113 without polyps

https://www.ukw.de/
research/inexen/ai-for-
polyp-detection/

No Polyp detection

GLRC44 76 videos
76 videos with ground truth of 
histopathology, endoscopist inspection, and 
camera calibration

http://www.depeca.uah.es/
colonoscopy_dataset/ No Polyp classification 

and detection

ETIS-Larib45 196 images 196 images with 1 polyp each; 44 unique 
polyps from 34 sequences Not available now No Polyp detection

ERCPMP65 796 images and 
21 videos

796 images and 21 videos from 191 patients 
with colorectal polyps, with morphological 
and histopathological labels

https://databiox.com/ No
Polyp detection, 
classification and 
segmentation

REAL-Colon66 44 videos
44 videos with 113 histologically verified 
polyps, annotated frame-by-frame with 
corresponding clinical and size data

https://plus.figshare.com/
articles/media/REAL-
colon_dataset/22202866

Yes
Polyp detection, 
classification, and size 
estimation

Polyp-Size~ours 42 videos 42 videos with one polyp each, and accurate 
polyp size (in submillimeters)

https://doi.org/10.6084/
m9.figshare.28030115 Yes Polyp size estimation

Table 1.  Comprehensive overview of existing polyp datasets, detailing the number of images and videos, core 
dataset elements, access links, and intended applications.
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Video processing and standardization.  Videos were exported with only procedure time and colono-
scope model information retained in the left panel, excluding all patient identifiers. Video processing involved 
stringent quality control. For quality assurance purposes, two experienced endoscopists, each with over 10 years 
of experience, independently assessed the recordings based on predefined criteria:

•	 Polyp visualization maintained in standard white-light mode for at least 3 seconds.
•	 Adequate bowel preparation in the visualized segment (corresponding to a BBPS score ≥ 2 for the specific 

colonic segment).
•	 Absence of excessive glare, blurring, foam, or instability that would interfere with proper polyp assessment.
•	 Clear and complete visualization of the colonic polyps (entire polyp margin visible).

This assessment was conducted to select high-quality videos. Of the 64 recorded videos, the first endoscopist 
selected 44 videos meeting the quality criteria, while the second endoscopist selected 43 videos. Taking the inter-
section of these two independent assessments, the final dataset consisted of 42 videos meeting all these criteria, 
selected by both reviewers. The inter-observer agreement was excellent, with a Cohen’s Kappa coefficient of 0.89 
(p < 0.001), demonstrating high consistency in applying our quality criteria.

These recordings underwent a comprehensive standardization process: endoscopists extracted video seg-
ments in standard white-light endoscopy mode (excluding narrow-band imaging and near focus modes). Then 
the videos were saved frame-by-frame at a rate of 30 frames per second (fps) in image format. The frames were 
then processed by removing the left-side panel along with peripheral black margins to retain only the effective 
endoscopic field of view. The image size was standardized to a fixed dimension of 1000 × 1170 (height × width). 
The processed images were then sequentially reassembled into a video in chronological order with the same fps 
as the original video. Fig. 2 illustrates the detailed workflow of polyp video export, selection, and processing 
using a flowchart. The standardized videos had a cumulative duration of 410 seconds, averaging 9.76 seconds 
per video, with a frame rate of 30 frames per second. Fig. 3 shows representative polyp video frames and their 
corresponding measurements.

Fig. 1  Workflow illustrating the process for generating the Polyp-Size dataset.

https://doi.org/10.1038/s41597-025-05251-x
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Metadata collection and organization.  For each video in the final dataset, comprehensive metadata was 
systematically documented to support clinical research and AI model development. The metadata was organized 
into three main categories:

	 1.	 Patient information: Demographic data including gender and age.
	 2.	 Equipment specifications: Details about the endoscopic system used.
	 3.	 Clinical data: Polyp characteristics and measurements of each polyp, including:

•	 Polyp size: Measured using calibrated vernier calipers after resection, recorded in submillimeters.
•	 Paris classification: According to the morphological characteristics under white light endoscopy, the Euro-

pean Society of Gastrointestinal Endoscopy (ESGE) recommends that the gross morphology of colorectal 
polyps should be described using the Paris classification system46. In our study, the Paris classification was 
assigned by the operating endoscopist based on the endoscopic appearance of each lesion. To ensure con-
sistency and accuracy, a second experienced endoscopist was present throughout the procedure and inde-
pendently verified each classification in real time.

•	 Anatomical locations: Determined in real time during colonoscopy using standard endoscopic cues (e.g., 
mucosal patterns, luminal landmarks, and centimeter markings on the colonoscope shaft to estimate the 
distance from the anal verge). Anatomical segmentation was based on the ten-segment division method pro-
posed in the Endomapper dataset (ileum, ileocecal valve, cecum, ascending colon, hepatic flexure, transverse 
colon, splenic flexure, descending colon, sigmoid colon, and rectum)47. All labels were verified in real time by 
a second experienced endoscopist to ensure consistency.

•	 Histological characteristics: Determined through standardized pathological examination following formalin 
fixation. Polyps were classified into neoplastic and non-neoplastic categories according to established histo-
pathological criteria48.

•	 Neoplastic polyps included two main types.

First, Adenomatous Polyps, which were further subtyped based on the proportion of villous architecture into 
Tubular Adenoma, Tubulovillous Adenoma, and Villous Adenoma49.

Second, Serrated Lesions, which were classified according to the 2019 World Health Organization crite-
ria as Hyperplastic Polyp, Sessile Serrated Lesion (SSL), Traditional Serrated Adenoma (TSA), and Serrated 
Adenoma-Unclassified (SAU)48,50.

•	 Non-neoplastic polyps included Inflammatory Polyps and Hamartomatous Polyps48.

All histological labels were reviewed and validated by experienced gastrointestinal pathologists to ensure 
diagnostic accuracy and consistency.

For all critical assessment parameters (Paris classification, anatomical localization, and histopathological 
diagnosis), a dual-evaluator approach was implemented. Inter-observer agreement achieved 100% concordance 
across all three domains. Any initial discrepancies were resolved through expert consensus, ensuring robust data 
reliability and clinical validity.

Data Records
The Polyp-Size dataset is publicly accessible at Figshare51 and consists of two primary components, as illustrated 
in the hierarchical structure in Fig. 4.

•	 Video recordings: Colonoscopy videos provided in a compressed archive titled Polyp_Size_Videos.zip. Each 
video is in MP4 format and follows a standardized naming convention (e.g., Video 01.mp4 through Video 
42.mp4).

•	 Metadata file: A CSV file named Polyp_Size_Labels.csv containing detailed annotations for each video.

The metadata includes various fields organized by category (patient information, endoscopic equipment 
details, and clinical data), as detailed in Table 2. Each field in the metadata file has been carefully curated to 
ensure accuracy, consistency, and completeness. Table 3 provides representative examples from this metadata 
file, illustrating the diversity of polyp characteristics captured in the dataset. This comprehensive dataset sup-
ports the development and validation of AI-based systems for polyp size estimation and facilitates detailed 
analysis of polyp characteristics.

Technical Validation
Currently, there is no widely recognized method for polyp size regression. In polyp management, the 5 mm 
threshold serves as a crucial clinical marker: diminutive polyps (≤5 mm) have minimal cancer risk and can 
potentially be resected without histopathological examination, while polyps larger than 5 mm require histo-
logical examination due to higher neoplastic potential52–54. This dichotomization guides key decisions like 
“resect-and-discard” and surveillance intervals53. Notably, the image features required for polyp size regression 
and classification tasks share significant similarities, and widely used binary classification models can be lever-
aged to validate the dataset’s reliability. Given these considerations, we chose a polyp size classification task as a 
proxy for size regression to validate the dataset.

https://doi.org/10.1038/s41597-025-05251-x
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Firstly, we convert videos into image data at 15 fps and selected 3,858 images containing polyps to construct 
the training and validation datasets. The labels of the images indicate whether the size of the polyp in images is 
greater than 5 mm. Directly estimating the size of an object from a 2D image is an ill-posed problem. Therefore, 
we first obtain the metric depth maps of the images, which are fed into the classification network along with the 
processed images described above. Here we adopt the generalization metric depth estimation foundation model 
named ZoeN55. The predicted depth maps are visualized in Fig. 5. During training, the images and correspond-
ing depth maps are concatenated to obtain four-dimensional RGBD input.

We separately employed the ResNet5056, DenseNet16957, and Inception V358 for binary classification tasks, 
which are widely used in previous polyp classification work59–61 and are skilled in deep-level feature extraction. 
For accurate and reliable results, we carry out five-fold cross validation during training, the dataset split details 
are shown in Table 4.

Fig. 2  Workflow of video preprocessing and standardization.

https://doi.org/10.1038/s41597-025-05251-x
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The experiences were conducted using the PyTorch (version 1.12.1) framework in Python 3.7.12 and accel-
erated using an NVIDIA GeForce RTX 4090 GPU. Before training, the model is initialized with the pre-trained 
weights from ImageNet62. The input layer of the model is modified to 4 channels for RGB-D input and initialized 
using Kaiming normal method. We conducted five-fold validation following Tian et al.63. For each fold, the 
network is trained for 50 epochs with cross-entropy loss and is optimized by the Adam optimizer, with an initial 
learning rate set to 0.001 according to previous work64. The batch size is set to 64 to balance the GPU memory 
limits and gradient stability. All activation functions used in the method maintain the original settings of the 
network models to avoid special designs and modifications. To facilitate better convergence, an ExponentialLR 
learning rate schedule is employed, where the learning rate is multiplied by 0.9 after each epoch. Additionally, 
before inputting data into the network, we apply a ColorJitter transformation to the RGB images with a proba-
bility of 0.5. We concatenate the RGB images (W*H*3) and depth maps (W*H*1) along the channel dimension 
to form a combined tensor (W*H*4), then apply random horizontal and vertical flips to ensure consistent and 
aligned transformations.

For evaluation metrics, classic binary classification metrics, including accuracy, F1 score, precision, recall, 
specificity and the area under ROC curve (AUC) are computed. The final result is the average value from 
five-fold cross-validation. Furthermore, we have also included the accuracy and loss plots for each epoch dur-
ing training and validation as shown in Fig. 6, as well as ROC curves and detailed confusion matrices for each 
validation fold in Figs. 7, 8.

The results are shown in Table 5. All the different models can achieve an accuracy close to 0.65 when deter-
mining whether a polyp’s size exceeds 5 mm and the performance differences among the models are relatively 
small. This result is generally acceptable, suggesting that the models can basically distinguishing between polyps 

Fig. 3  Representative endoscopic images and corresponding physical measurements of colonic polyps from the 
Polyp-Size dataset. (a–c) Endoscopic views of three different polyps captured in the Polyp-Size video dataset. 
(d–f) Corresponding vernier caliper measurements of the resected specimens.

Fig. 4  Hierarchical structure of the Polyp-Size dataset, detailing its organization and components.

https://doi.org/10.1038/s41597-025-05251-x
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of different sizes, which to some extent supports the reliability of the dataset. However, the current adopted 
metric depth estimation network we used still exhibits significant errors. Additionally, classic image classifi-
cation networks such as ResNet50, DenseNet169, and Inception V3 are still insufficient in extracting image 
features. These factors have led to the current suboptimal results. We believe that the accuracy can be improved 
and the classification task can be extended to polyp size regression by designing more specialized metric depth 
estimation networks for endoscopic scenarios, incorporating more refined network architectures, and applying 
emerging techniques like 3D reconstruction.

Dataset Limitations
The Polyp-Size dataset provides a novel and practical resource for advancing colorectal polyp size measure-
ment; however, it has some limitations. First, while the sample size is the largest among comparable datasets, 
it remains relatively modest and would benefit from further expansion to better support AI model training 
and validation. Second, data collection was limited to a single center, which may constrain the dataset’s diver-
sity and generalizability. This single-center limitation could impact the AI models’ performance when applied 
to different populations or settings for several reasons: (1) The patient demographics at Renji Hospital may 
not fully represent global population diversity, with our cohort primarily consisting of East Asian individu-
als; (2) Institution-specific endoscopic techniques, equipment settings, and imaging protocols might influence 
image characteristics; and (3) Local clinical practices in polyp management could affect the spectrum of pol-
yps included in the dataset. Our preliminary analysis of polyp size distribution across demographic variables 
revealed notable patterns. Among patients over 60 years, 31.3% presented with polyps >5 mm, compared to 
42.3% in younger patients. Similarly, male patients had a higher proportion of polyps >5 mm (41.4%) than 
female patients (30.8%). While these differences did not reach statistical significance in our limited sample, 
they highlight potential demographic variations in polyp characteristics that a single-center dataset may not 
fully capture. These findings underscore the importance of developing multicenter datasets that include diverse 
populations to ensure AI models generalize effectively across different clinical settings and patient demograph-
ics. Additionally, in some cases, subjectivity in distinguishing polyp boundaries and subtle changes in polyp 
morphology or size due to retrieval through the endoscopic channel may introduce minor inaccuracies in size 
estimation. Besides, we adopted classification tasks using multiple widely-used models as a proxy for polyp size 
regression tasks to reliably demonstrate the dataset’s usability in the Technical Validation section. While classi-
fication performance correlates with size estimation capability, it does not directly measure regression accuracy 
and provide doctors with accurate polyp size. We look forward to future researchers proposing solid polyp size 
regression algorithms based on our proposed dataset to further overcome the limitations of polyp size classifica-
tion tasks, thereby providing physicians with accurate polyp size.

Despite these limitations, the Polyp-Size dataset provides a solid foundation for advancing intelligent polyp 
measurement technologies. Ongoing improvements in data collection and algorithmic refinement are expected 
to enhance its utility. We encourage researchers and clinical experts to utilize the dataset, offer constructive 
feedback, and contribute to its growth, supporting its continued development for colorectal cancer prevention 
and management.

In conclusion, the Polyp-Size dataset provides the first publicly available resource of high-precision polyp 
measurements, with key contributions including submillimeter-accurate vernier caliper validation, stand-
ardized endoscopic videos, comprehensive clinical metadata, and technical validation for size classification 
tasks. This resource addresses the critical challenge of subjective polyp sizing in clinical practice, potentially 
improving decision-making in surveillance planning and treatment selection. Future development will focus 

Category Field Name Description Range/Values

Basic Information

Video_ID A unique identifier linking each video to its 
corresponding metadata 01–42

Gender The gender of the patient Male/Female

Age The patient’s age at the time of the procedure 33–79 years

Equipment Information

Endoscope_Manufacturer The manufacturer of the equipment Olympus

System_Main_Unit The endoscope system processor model CV-290

Endoscope_Model The specific colonoscope models used CF-HQ290I, CF-H290I

Clinical Data

Polyp_Size The diameter of the resected polyp, measured 
physically with a vernier caliper 2.80-11.74 mm

Paris_Classification The morphological classification of the polyp Is, Ip, Isp, IIa

Anatomical_Location The polyp’s location within the colon Rectum, Sigmoid Colon, Descending 
Colon, Transverse Colon, etc

Histological Type The pathological classification Tubular Adenoma, Sessile Serrated 
Lesion (SSL), Hyperplastic Polyp, etc.

Table 2.  Comprehensive metadata fields in the Polyp-Size dataset including basic information, endoscopic 
equipment details, and clinical data.
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on multi-center data collection to enhance demographic and equipment diversity across different healthcare 
settings. We plan to integrate complementary imaging techniques such as narrow-band imaging (NBI) and 
magnifying endoscopy to improve visualization of polyp surface patterns. Additionally, we will develop special-
ized computational methods addressing endoscopic-specific challenges, including reflection handling and depth 
estimation algorithms optimized for the unique conditions of the gastrointestinal tract. Combining computer 
vision with clinical metadata could further enrich polyp characterization beyond size alone. Researchers inter-
ested in contributing to future iterations are encouraged to contact the corresponding authors with proposals for 
multi-center validation, algorithm development, or complementary data collection. Through this collaborative 

Video_ID Gender Age
Endoscope_
Manufacturer

System_
Main_Unit

Endoscope_
Model

Polyp_
Size

Paris_
Classification Anatomical_Location Histological_Type

04 Male 59 Olympus CV-290 CF-H290I 7.48 mm IIa Descending Colon Tubular Adenoma

06 Male 56 Olympus CV-290 CF-H290I 6.54 mm IIa Transverse Colon Sessile Serrated Lesion (SSL)

19 Female 66 Olympus CV-290 CF-HQ290I 3.59 mm Is Transverse Colon Hyperplastic Polyp

29 Female 79 Olympus CV-290 CF-HQ290I 9.31 mm Is Sigmoid Colon Tubulovillous Adenoma

32 Male 61 Olympus CV-290 CF-HQ290I 4.13 mm Is Sigmoid Colon Inflammatory Polyp

41 Male 60 Olympus CV-290 CF-HQ290I 5.17 mm IIa Ascending Colon Tubular Adenoma

Table 3.  Representative examples from the Polyp-Size dataset metadata (Polyp_Size_Labels.csv).

Fig. 5  Visualization of endoscopic images and their corresponding metric depth maps. (a–c) Representative 
endoscopic images of colonic polyps. (d–f) Depth maps generated by the ZoeN model, where brighter regions 
indicate greater distances from the camera. A scale bar represents relative depth progression from near (black) 
to far (white).

Fold
Number of patients 
in the training set

Number of images 
in the training set

Number of patients 
in the testing set

Number of images in 
the testing set

1 33 3190 9 668

2 33 2454 9 1404

3 34 3171 8 687

4 34 3245 8 613

5 34 3372 8 486

Table 4.  The dataset split details: the number of patients and images in the training set and the test set during 
the five-fold cross-validation.
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approach, the Polyp-Size dataset aims to advance precision medicine in colorectal cancer prevention by promot-
ing standardized, AI-assisted measurement techniques globally.

Fig. 6  The accuracy and loss plots for each epoch during training and validation for different models. (a) 
training loss plot. (b) validation loss plot. (c) validation accuracy plot.

Fig. 7  The ROC curves for different models. (a) ROC curves for Resnet50. (b) ROC curves for Densenet169. (c) 
ROC curves for Inception3. The red diagonal line represents AUC = 0.5, the blue curve means the mean ROC 
across all validation folds and the shaded gray region shows the standard deviation range.

Fig. 8  The confusion matrices of five folds for different models Class 0 means the polyp sizes ≤ 5 mm and 
Class 1 means the polyp sizes exceed 5 mm. (a) confusion matrices for Resnet50. (b) confusion matrices for 
Densenet169. (c) confusion matrices for Inception3.
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Code availability
To facilitate dataset utilization, the preprocessing code is available at https://github.com/Scarlett213/Polyp-
Size-Dataset. This code supports the conversion of video data into image datasets and splitting the data into 
training and validation sets. Detailed instructions for preprocessing and further customization are provided in 
the accompanying README.md file.
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