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Abstract

Background: Large scale bacterial sequencing has made the determination of genetic relationships within large
sequence collections of bacterial genomes derived from the same microbial species an increasingly common task.
Solutions to the problem have application to public health (for example, in the detection of possible disease
transmission), and as part of divide-and-conquer strategies selecting groups of similar isolates for computationally
intensive methods of phylogenetic inference using (for example) maximal likelihood methods. However, the
generation and maintenance of distance matrices is computationally intensive, and rapid methods of doing so are
needed to allow translation of microbial genomics into public health actions.

Results: We developed, tested and deployed three solutions. BugMat is a fast C++ application which generates
one-off in-memory distance matrices. FindNeighbour and FindNeighbour2 are server-side applications which build,
maintain, and persist either complete (for FindNeighbour) or sparse (for FindNeighbour2) distance matrices given a
set of sequences. FindNeighbour and BugMat use a variation model to accelerate computation, while
FindNeighbour2 uses reference-based compression. Performance metrics show scalability into tens of thousands of
sequences, with options for scaling further.

Conclusion: Three applications, each with distinct strengths and weaknesses, are available for distance-matrix
based analysis of large bacterial collections. Deployed as part of the Public Health England solution for M.
tuberculosis genomic processing, they will have wide applicability.
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Background
Whole genomic sequencing of bacteria is becoming very
common, generating large sequence collections [1].
There is a both a public health and scientific need for
tools which allow an understanding of the evolutionary
relationships between these isolates. Bacteria typically
have genomes of a few megabases; for example,
Mycobacterium tuberculosis has a genome size of about
4.4 × 106 bases [1]. Genome analysis has the potential to

radically improve the detection of M. tuberculosis trans-
mission [2] which is a national and global priority [3].
This is also true of multiple other organisms [4–7].
Therefore, there is a need to address the computational
challenges associated with rapid detection of close
relationships between sequences of the same bacterial
species, including M. tuberculosis and other pathogenic
bacterial species.
Quantification of core-genome single nucleotide

polymorphism (SNP) analysis is a common initial step in
relatedness estimation [2]. This step involves comparison
of sequencing reads mapped to each individual base, and
identifying a consensus base at each position. Filters are
applied designed to exclude variation of technical origin
(e.g. due to sequencing error or mismapping), marking
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such bases as uncertain (‘N’), and noting high-confidence
consensus base calls as one of A, C, T, or G [2].
In some cases, quantification of core-genome single

nucleotide polymorphisms is sufficient to generate
epidemiologically important information [2]; in others,
the technique is successful at identifying similar samples
(samples which are very recently diverged from each
other), but evolutionary inference as to the history of
deep branches may be incorrect due to missing data or
to recombination, and methods using maximal
likelihood (ML) with or without adjustment for recom-
bination to obtain to adjust estimates of divergence are
required, e.g. [7–9]. Such methods have high computa-
tional complexity making computation slow or unfeas-
ible for very large sequence sets, limiting their use in
near-real time estimation of relatedness [8, 9]. One solu-
tion to this problem, yielding information suitable for
public health purposes, involves focusing computation-
ally complex methods on much smaller sets of similar
isolates, as identified by core genome SNP estimation.
Here, we discuss requirements and strategies for identi-
fying such small sets of similar isolates.
In microbial genomic analyses, a large number of simi-

lar bacterial genomes undergo a common processing
pathway independent of each other, frequently involving
reference mapping in some form of high-performance
computing environment. Specimens leave the environ-
ment individually, so if a computational service is pro-
vided to receive the output from such mapping, the
service must support single specimen addition. It must
additionally be capable of rapid sequence addition: add-
ing individual results in an atomic, consistent, isolated
and durable manner via a transaction of short duration.
This is particularly important if the clients adding
bacterial sequences to the relatedness service use
synchronous connections to the relatedness monitoring
service. Finally, the relatedness service must be rapidly
queryable, so that computational processes consuming
relatedness information can deliver closely related
samples to interactive applications.
Here, we present three applications we have

developed to meet these requirements. BugMat is a fast,
scalable C++ application for building large distance
matrices. FindNeighbour is a server based tool for
maintaining, persisting and searching complete matri-
ces, built on top of BugMat. FindNeighbour2 uses
reference-based compression [10] and a database to im-
plement rapid sparse matrix maintenance. We illustrate
the use of these tools with real data from large-scale M.
tuberculosis, N. gonorrhoea and Salmonella enterica se-
quencing projects. We propose that our tools will have
wide application in the growing field of genomic public
health microbiology, and more generally for the analysis
of large sequence sets.

Implementation
Study of mapped data
Our applications are designed to operate on mapped
data, where at each base a single base call is present.
Thus, the relationship between two samples x and y can
be represented using the Hamming distance:

h x; yð Þ ¼
XN

i¼1

distance xi; yið Þ; i �sites

distance xi; yið Þ ¼ 0; xi ¼ yi
1; otherwise

�

where sites are the N sites in x and y.
If we had precomputed variant_sites, where.
variant_sites ϵ sites.
and represents those sites which differ between x

and y, then we would obtain the same distance by
only considering variant_sites, rather than all sites,
since the invariant sites do not contribute to the
Hamming distance.
We consider the problem as one requiring construc-

tion of matrix of pairwise distances D from a set of
samples Xt containing t elements x1 .. xt, such that the
element Di, j = h(xi, yi). We denote such a matrix as
D(Xt): for t = 3,

D Xtð Þ ¼
0 h x1; x2ð Þ h x1; x3ð Þ

h x2; x1ð Þ 0 h x2; x3ð Þ
h x3; x1ð Þ h x3; x2ð Þ 0

;

The diagonal is zero and the matrix is symmet-
rical, as h(x1, x2) = = h(x2, x1), so only half needs to
be stored:

D Xtð Þ ¼
0

h x2; x1ð Þ 0

h x3; x1ð Þ h x3; x2ð Þ 0

To construct this ab initio, the asymptotic matrix con-

struction time is O t t−1ð Þ
2

� �
. For large t, this (and memory

requirements) approximates O t
2
2

� �
.

Iterative addition of samples
In the use case we are considering, we do not know the
entire set of Xt samples when we start matrix construc-
tion, since samples are provided individually. Rather, we
are required to iteratively add samples, progressively
increasing matrix size in a series of t steps, where t is 1,
2, 3 and so on.
Thence, to add a fourth sample to the matrix above,

we are required to compute (t-1) matrix entries
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D Xtð Þ ¼

0

h x2; x1ð Þ 0

h x3; x1ð Þ h x3; x2ð Þ 0

h x4; x1ð Þ h x4; x2ð Þ h x4; x3ð Þ 0

Addition of a single sample thus scales linearly with t,
taking O(t-1) time. Nevertheless, a large number of
sequence positions still need to be analysed.

Optimisation of pairwise hamming distance computation
using a variation model
A potential optimisation concerns the computation of
pairwise Hamming distances between samples. Bacterial
genomes are typically about 5 × 106 nucleotides; the M.
tuberculosis reference strain using for mapping in this
work is 4.4 × 106 nucleotides. In common with many
other bacteria, M. tuberculosis has a strong population
structure, and comprises multiple ancient lineages which
differ from each other by about 2000 ancient SNPs [11].
Thus, if we wish to compute difference matrices between
M. tuberculosis genomes, the number of variant posi-
tions is expected to be much smaller than the genome
size, perhaps a few thousand SNPs only.
If we know that there is no variation at position i

between the t sequences to be analysed, there is no need
to perform pairwise comparisons between all t samples
at this site, a process with ~O(t2) complexity for large t.
Rather, we can assign a Hamming distance of 0 for all
invariant sites without pairwise evaluation. To allow this,
we include code to maintain a vector of variant sites in
the alignment, which we term the variation model. We
maintain the variation model in a datastructure contain-
ing counts of all bases at each position. This model,
which allows rapid assessment of whether sites are vari-
ant is updated on addition of each sample if and only if
the position is not currently variant, since positions
cannot become invariant as further samples are added.
Pseudocode for this operation is in Additional file 1.
The asymptotic time for addition of a single sample to

the variation model is O(1), and allows large (~ 1000 ×)
speedup in the subsequent expensive pairwise distance
computation since most sites are invariant. Storage of
the matrix allows addition of samples to a collection of t
samples with a cost of O(t-1), rather than ~ O(t2) for
complete matrix recomputation.

Reference based compression
There is an alternative formulation of the problem. In
this, the mapped sequence S is represented a series of
sets SA, SC, SG, ST containing positions of non-reference
A, C, G and T bases, and SN containing the positions of
uncallable bases. This is an implementation of reference

based compression [10], but importantly one in which
the compression strategy aids in the computation of the
Hamming distance d between two sequences R and S
using set operations:

d ¼
X

b∈ A;C;T ;Gf g

j Sb−RNð ÞΔ Rb−SNð Þj

Since Python has an interface to highly optimised C++
set operations, we elected to code the implementation in
Python 3.

Presentation
We present two solutions using the matrix-based
approach, and one using the set-based approach.
BugMat is a C++ command line executable, tested on
both Linux (using gcc) and Windows (using MinGW),
which performs rapid one-off distance matrix construc-
tion using a two phase computation, firstly building an
index of variant bases in the sequences, and subse-
quently performing multi-threaded computation of pair-
wise distances between every sample pair with shared
memory to store all data.
The second is FindNeighbour, a server application,

built with the python web.py framework, and accessed
using a XMLRPC API. Internally, it comprises two com-
ponents. Firstly, an OpenMP parallelised C++ applica-
tion derived from BugMat maintains an in-memory
distance matrix derived from mapped genomic data.
Secondly, a database allows storage and querying of arbi-
trary meta-data about the sequence. FindNeighbour uses
this database internally to store quality information
about the sequence, such as the number of bases called
in the sequence (i.e. bases called as A, C, T, G), and
timing information related to server activity. This is at
present implemented using an on-disc relational
database via an object relational mapper. Additionally,
FindNeighbour performs automated matrix persistence
to disk, and recovers stored matrices from disk on
server restarts.
Design of BugMat/Findneighbour software includes a

series of technical optimisations supporting the imple-
mentation of the variation model described above.
Firstly, we have chosen to code to core of our software
in C++, which can be compiled using gcc with the O3
and funroll-loops optimisations flags. We have elected to
minimise disc access overhead by reading sequences into
shared memory, which imposes a memory cost but
allows fast, dynamic read/write using the unorder-
ed_map data type, which is faster than the C++
standard library’s map type. Finally, we have paralle-
lised pairwise comparisons using the openmp library,
based on a fork-join paradigm.
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The third application is FindNeighbour2. This com-
presses the sequences supplied to it, and stores them
both in RAM and on disc following reference-based
compression. On addition of a sample, it is compared
with all other samples and matches below a customis-
able threshold are written to a database. Otherwise, the
implementation is similar to FindNeighbour.
For both applications, identical API methods allow:

� addition of samples, comprising an identifier and a
fasta sequence;

� testing whether an identifier is present;
� determining distance between a pair of samples;
� determining neighbours of one sample or all

samples, given a sequence quality threshold.

Table 1 summarises the similarities and differences
between these technologies.

Results and discussion
We initially tested the performance of both the BugMat
and FindNeighbour tools using real data comprising
mapped data from bacterial sequencing projects.

Matrix based methods
We tested the command-line BugMat executable using
data set A (M. tuberculosis, Table 2). The initial variant
model construction step is computationally inexpensive
(Fig. 1), and allows subsequent fast pairwise distance
matrix construction using only variant positions. With
more than 100 sequences, time for matrix construction
dominates runtime; with fewer samples, about half the
runtime involves reading and writing file output (Fig. 1).
With 100 samples, BugMat computed a distance matrix
in fewer than 4 s using 16 cores. Four hundred samples
took 70 s, and 4000 sequences took about 3 h seconds,

with the latter requiring 20GB of RAM. This tool forms
part of a production pipeline, and is used to strip out
invariant sites prior to maximal likelihood tree
generation for up to 500 related isolates.
BugMat has various restrictions. Firstly, unlike

sophisticated software capable of performing large-scale
sequence alignment and distance matrix generation [12],
it relies on pre-aligned sequences. It splits the workload
across cores, but does not support distribution of work
across multiple computational nodes [12]. Secondly, it is
presently restricted to CPU-based architectures support-
ing OpenMP, including the emerging Intel Xeon Phi [13]
architecture; however, similar sharding of tasks across
multiple computational cores can be achieved using
graphical processing units and CUDA. Thirdly, by design
it builds matrices in memory. This imposes limits on
matrix size which could be avoided introducing a disc-
based storage capability, albeit at large performance cost.
Finally, it builds matrices ab initio; it does not allow
their updating, and has high rebuild times for large
sample numbers.
This last limitation is restrictive for public health

applications in which ongoing comparison of isolates
with a databank is required. FindNeighbour ad-
dresses this. Using the same test set as for BugMat,
the time to add new samples to FindNeighbour is
directly proportional to the number of previous
samples present, as is expected from the internal soft-
ware architecture (Fig. 2a). Server response times
recovering neighbours within 20 single nucleotide
variations of a sequence averaged 50 msec with 4000
samples stored. The application is very stable, and a
production instance with over 21,500 samples on a
128GB RAM server (110GB RAM used) is operational
as part of a Public Health England initiative to
sequence all TB in England. Importantly, however, as

Table 1 Comparison of three solutions

Implementation BugMat FindNeighbour1 FindNeighbour2

Presentation Command Line Server application Server application

Technology In-memory matrix In-memory matrix In-memory reference based sequences

Can add samples No Yes Yes

Role in production environment Remove invariant sites before
maximal likelihood tree generation

Store pairwise distances
between samples

Store significant pairwise distances between samples

Stores all pairwise distances Yes Yes No (customisable)

Uses database for sequence
metadata storage

No Yes Yes

Uses database for pairwise
distance storage

No No Yes

Requires reference
sequence specified

No No Yes

Implementation C++ Python, C++ Python

Comparison of three solutions. A comparison of the approaches taken by three solutions (BugMat, Findneighbour, Findneighbour2) is shown
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with BugMat, memory requirements increase quadrat-
ically, and this limits further scalability.
One approach to this is to deploy multiple FindNeigh-

bour instances as part of a map-reduce paradigm for the
analysis of very large numbers of sequences; the map
step depends on sequence features (Fig. 2b). Each of
groups derived from the map operation can be proc-
essed by independent FindNeighbour instances, perhaps
deployed on the same server. As an example, we have
shown that a published method of subdividing M.
tuberculosis based on ancestry [14] into 63 subgroups,
can be readily accommodated with about 4× speed-up in
the storage of 4000 samples and marked reductions in
the amount of memory required (Fig. 2c). This map
process will precede reduction, in which the responses
of the relevant FindNeighbour instance are returned to
the client. However, quadratic memory requirements will
still limit scalability.
A second approach, which is not necessarily mutually

exclusive, is to move away from technologies which have
quadratic memory requirements. FindNeighbour2

implements such, using reference based compression of
mapped sequence data, producing linear memory
requirements with rising sequence numbers. In Table 2,
we summarise the performance of this technology on a
series of test datasets, with various different clinically
relevant cutoffs.
Enhancements to FindNeighbour2 are planned. A

prototype randomly assigns sequences to a series of
FindNeighbour2 instances, each running with a single
thread; one instance stores each new sequence.
Organism-specific algorithms assigning an organism ‘to
the right compartment’ for analysis are not attempted, as
these require validation; rather, a new-against-all-existing
comparison is performed, sharded across the instances.
This has the advantage that true matches are guaranteed
to be found, something which may be essential, in view
of the clinical importance of identification of close
neighbours for initiating public health action. However,
as numbers of samples grow, the requirement to
perform a new-against-all comparison may become rate
limiting. If it does so, then approximate nearest

Table 2 Data sets used for testing findNeighbour performance

Dataset Sites called Links less than SNP stored Memory usage Mean time to add one sample

A: M. tuberculosis, n = 15,985 mapped to
NC_000962

329,714 sites excluded 20 23.5G 2.23 s

B: Neisseria gonorrhoea, n = 2455 mapped to
NC_011035

All sites included 500 19.3G 2.95 s

C: Salmonella enterica, n = 5380 mapped to
AM933172

51,897 sites excluded 20 7.4G 1.77 s

Data sets studied and FindNeighbour2 performance
The data sets studied, which can be downloaded at https://ora.ox.ac.uk/objects/uuid:82ce6500-fa71-496a-8ba5-ba822b6cbb50 are described. Also shown are
performance characteristics of Findneighbour2 operating on them using the hardware in Additional file 2

a b

Fig. 1 Performance of the BugMat application. The relationship between number of sequences processed, numbers of cores assigned to BugMat, and (a)
memory usage and (b) various stages of sequence processing. Testing was performed a Ubuntu 14 VM instance with 16 cores, Intel Xeon E5-2680v2
processors at 2.8GHz, and 128GB RAM hosted within Genome England Ltd. Similar results were obtained using the specification in Additional file 2
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neighbour matching could be deployed, using each
variant locus as a dimension in a multi-dimensional
clustering algorithm; algorithms exist which allow highly
efficient selective searching of such data using k-d
forests or k-means search trees [15].
In 2015, there were about 3 million cases of TB

confirmed by culture globally [16]. Even if only 5% of
these are sequenced annually, the generation of 1 M

bacterial sequences will be achieved in the next decade.
With a comparison rate of 15,000 sequences/s/core, and
an in-memory footprint of about 2 MB/sequence, we
project that we could store these in about 2 TB of RAM,
either on a single server, or in a distributed manner. If
80 computational cores were available, the time to search
for neighbours among these would approximate 1–2 s. The
commercial cost of a single server with suitable hardware is
at present about GBP 50,000, making the approach we
describe using reference based compression a candidate for
tracking of TB relatedness in large, international datasets, if
reference based mapping approaches are used.

Conclusions
The FindNeighbour tools are, to our knowledge, first-in-
class applications allowing progressive addition of mapped
sequence data to a sequence store, thence allowing rapid
identification of neighbours based on SNP distance data
derived from reference mapping. These tools make no
assumptions about organism phylogeny in their operation.
Therefore, we believe these tools will have applicability to
a range of applications in bacterial genomics.

Availability and requirements
For project home pages, please see section below. Oper-
ating systems and languages used are shown inTable.
The software is released under LGPL licence.

Additional files

Additional file 1: Pseudocode for maintaining a variation model.
(PDF 271 kb)

Additional file 2: Environment used for FindNeighbour and Bugmat
performance testing. (PDF 272 kb)
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