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Abstract: Van der Waals heterostructures offer an additional degree of freedom to tailor the electronic
structure of two-dimensional materials, especially for the band-gap tuning that leads to various appli-
cations such as thermoelectric and optoelectronic conversions. In general, the electronic gap of a given
system can be accurately predicted by using first-principles calculations, which is, however, restricted
to a small unit cell. Here, we adopt a machine-learning algorithm to propose a physically intuitive
descriptor by which the band gap of any heterostructures can be readily obtained, using group III, IV,
and V elements as examples of the constituent atoms. The strong predictive power of our approach is
demonstrated by high Pearson correlation coefficient for both the training (292 entries) and testing
data (33 entries). By utilizing such a descriptor, which contains only four fundamental properties
of the constituent atoms, we have rapidly predicted the gaps of 7140 possible heterostructures that
agree well with first-principles results for randomly selected candidates.

Keywords: machine learning; van der Waals heterostructures; band gap; high-throughput screening

1. Introduction

With the rapid and successful development in the study of two-dimensional (2D)
materials [1–5], there has been a growing interest in the van der Waals heterostructures
(vdWHs) due to their unique structures and rich physical properties [6–8]. Analogous to
building with Legos, a vdWH can be viewed as stacking different 2D systems on top of
each other. In fact, the weak interlayer interaction permits the superposition of virtually
any given pair of 2D materials, such as graphene/phosphorene [9], silicene/graphene [10],
phosphorene/SnX2 (X = S, Se) [11], graphene/hexagonal boron nitride [12], WSe2/Bi2Te3 [13],
and so on. On the experimental side, the vdWHs can be prepared by using either bottom-up
or top-down approaches [14–16]. The former makes use of successive deposition techniques,
while the latter requires the fabrication of individual layers first and subsequent peeling off
and assembly [7].

The emergence of vdWHs offers additional degree of freedom to tailor the electronic
structure of 2D materials [17,18], especially for the band-gap tuning that leads to various
applications such as thermoelectric [19,20] and optoelectronic conversions [21,22]. In
general, the electronic band gap of a given vdWH can be predicted by using first-principles
calculations [23–25]. Although the conventional local density approximation (LDA) [26] or
generalized gradient approximation (GGA) [27] are relatively computationally efficient,
they suffer from obvious band-gap underestimation. Accurate calculations require state-of-
the-art techniques, such as the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional [28] or the
GW approximation of many-body effects [29]. However, both of them are computationally
expensive and, thus, are restricted to small systems. As an alternative, the machine learning
(ML) method has recently attracted considerable attention for band-gap prediction, which
can efficiently manage a huge search space at an extremely low cost [30–37]. For example,
by choosing 28 primary atomic properties as input features, Pilania et al. [30] obtained

Nanomaterials 2022, 12, 2301. https://doi.org/10.3390/nano12132301 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12132301
https://doi.org/10.3390/nano12132301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-5801-7217
https://doi.org/10.3390/nano12132301
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12132301?type=check_update&version=2


Nanomaterials 2022, 12, 2301 2 of 9

a kernel ridge regression (KRR) model to predict the band gaps of 1378 unique double
perovskites, where the Pearson correlation coefficient can be as high as 97%. On top of
the 136 compositional properties of inorganic solids, Zhuo et al. [31] proposed a support
vector regression (SVR) model for gap prediction and found a small root mean square error
(RMSE) of 0.45 eV. In addition, by leveraging 42 initial elemental features of chalcogenides,
Wang et al. [33] developed a stacked ensemble learning (SEL)-gap model with a coefficient
of determination (R2) value of 90%. It should be noted that the above-mentioned ML
models usually contain a large number of input features, which is actually not beneficial for
the high-throughput discovery of desired systems. Moreover, most of these models appear
as black boxes, so a direct understanding of the underlying physics is quite necessary.

In this work, using group III, IV, and V elements as prototypical examples of con-
stituent atoms, we adopt the SISSO (Sure Independence Screening and Sparsifying Opera-
tor) method [38,39] to propose a physically intuitive three-dimensional (3D) descriptor, by
which the band gap of any vdWHs can be readily obtained. The strong predictive power
of our descriptor is demonstrated by the good agreement between the SISSO-predicted
gaps (Eg,pre) and those calculated using accurate HSE functional (Eg,cal), either inside or
beyond the training data. As the input features only contain four fundamental properties
of the constituent atoms, the 3D descriptor is very beneficial for the accelerated discovery
of vdWHs with the desired band gaps.

2. Methodology

To obtain reliable training data for ML, we have calculated the band gaps of 325 vdWHs
by using first-principles pseudopotential method, as implemented in the Vienna ab-initio
simulation package (VASP) [40]. The hybrid functional within the HSE scheme [28] is
adopted to overcome the gap underestimation in standard density functional theory (DFT),
and the vdW interaction is considered by using the DFT-D3 exchange functional [41]. The
plane-wave cutoff energy is set as 450 eV, and a 19 × 19 × 1 Monkhorst-Pack k-mesh is
sampled in the Brillouin zone. The energy convergence threshold is 10−6 eV, and the relaxed
structure is determined until the residual force on each atom is less than 0.01 eV Å−1.

Based on the 325 samples in the training data, we adopt the SISSO approach [38,39]
to obtain an optimized descriptor for predicting the band gap. Here, the input features
include only four fundamental properties of constituent atoms, i.e., the atomic number
Z, the Pauling electronegativity χ, the number of valence electrons VE, and the atomic
radius r. A combination of algebraic operations is then recursively performed to extend
the feature space, as defined by H(m) ≡

{
I,+,−, ×, /, exp, log, | − |, √ , −1, 2, 3

}
.

Here, m means dimensional analysis, so that only meaningful combinations are allowed.
By equipping the feature space with nonlinear operators in H(m), the intrinsically lin-
ear relation between observables and descriptor in the compressed sensing formalism is
made nonlinear. At each iteration, H(m) operates on all possible combinations, and over
1010 features are constructed up to a complexity cutoff of 3. Such huge size can be effec-
tively reduced by combining the sure independence screening (SIS) with the sparsifying
operators (SO). Here, the SIS scores each feature with a metric and keeps only the top
ranked. The subset extracted by the SIS is set to 80,000. After dimensionality reduction, the
SO is used to pinpoint the optimal descriptor, which turns out to be physically interpretable.
It should be mentioned that the SISSO algorithm demonstrates obvious advantages com-
pared with other established ML approaches that suffer from huge and highly correlated
feature spaces.

3. Results and Discussion

In the present work, we focus on the vdWH, which is composed of two graphene-like
monolayers via vdW interactions along the out-of-plane direction. As illustrated in Figure 1,
the system can be labeled by a nominal formula of AB/CD, where the A and B represent
the two nonequivalent atoms in the upper layer, and the C and D represent those in the
lower layer. Among these four atoms, the Pauling electronegativity of the A (C) atom is
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smaller than that of the B (D) atom by default. Considering the fact that vdWH permits
the superposition of virtually any given pair of 2D materials [6], here we randomly select
26 graphene-like structures [42–45] as the constituent monolayers, including group V (N,
P, As, Sb), group IV-IV (SiC, SiGe, SnSi, GeC, SnGe, SnC), and group III-V (BN, BP, BAs,
BSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb). For simplicity,
only the conventional AA stacking pattern is considered, and the twist angle is 0◦, which
can in principle create C2

26 = 325 different vdWHs (including 22 binary, 132 ternary, and
171 quaternary systems). Note that the vdW thickness is determined by minimizing the
total energies of these heterostructures, where the vdW functional is explicitly considered
in the DFT calculations. Besides, the stability and possible existence of 325 vdW heterostruc-
tures has been demonstrated in previously published work [43]. As there are only four
atoms in the primitive cell, it is computationally ready to obtain the electronic band gaps of
all these vdWHs from first-principles calculations, even with the high-level HSE scheme.
The results are summarized in Table S1 of the Supplementary Materials, which will be used
as the original dataset for SISSO training.
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Figure 1. The crystal structure of AB/CD vdWH, where A, B, C, and D represent group III (B, Al, Ga,
In, and Ta), group IV (C, Si, Ge, Sn, and Pb), and group V elements (N, P, As, Sb, and Bi).

For any ML approaches, the selection of input features plays a crucial role in deriving
the optimal model. In principle, one can adopt those related to the investigated system or
the constituent atoms. Here, we consider the latter, since it can be readily obtained and
is very beneficial for the high-throughput screening of the desired candidates. Among
the 58 fundamental properties of the constituent atoms [46], we find that choosing the
atomic number Z, the Pauling electronegativity χ, the number of valence electrons VE,
and the atomic radius r could pinpoint an optimal descriptor that enables the accurate
prediction of the band gap of the vdWHs. Table 1 lists these four kinds of input features
for several constituent atoms from groups III, IV, and V. It should be mentioned that the
325 entries in the original dataset are randomly divided into 292 for effective training and
33 for real-time testing. Consequently, the SISSO-identified descriptor for gap prediction is
given in a 3D form:

Eg, pre = 0.85× D1 − 25.32× D2 − 0.0003× D3 − 1.45 (1)

where D1, D2, and D3 are defined as:

D1 =
(VEA + VEC)(χB × χD)

(rA + rC)(χA × χC)
(2)

D2 =

∣∣∣∣ 1
VEB(rA + rD)

− 1
VED(rB + rC)

∣∣∣∣ (3)

D3 =
|ZA − ZD|+|ZB − ZC|

(χB
3 + χD

3)
(4)
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Table 1. The input features used for SISSO training, which includes the atomic number (Z), the
Pauling electronegativity (χ, in units of eV), the number of valence electrons (VE), and the atomic
radius (r, in units of Å) for group III (B, Al, Ga, In, and Ta), group IV (C, Si, Ge, Sn, and Pb), and
group V elements (N, P, As, Sb, and Bi).

Elements Z χ VE r

B 5 2.04 3 0.95
Al 13 1.61 3 1.43
Ga 31 1.81 3 1.4
In 49 1.78 3 1.66
Tl 81 1.62 3 1.73
C 6 2.55 4 0.86
Si 14 1.98 4 1.34
Ge 32 2.01 4 1.4
Sn 50 1.96 4 1.58
Pb 82 2.33 4 1.75
N 7 3.04 5 0.8
P 15 2.19 5 1.3

As 33 2.18 5 1.5
Sb 51 2.05 5 1.6
Bi 83 2.02 5 1.7

Figure 2 shows the intuitive linear correlation between the SISSO-predicted gaps
(Eg, pre) and those calculated by using HSE scheme (Eg, cal). It is obvious that both the
training (Figure 2a) and testing data (Figure 2b) are evenly distributed around the dashed
line with slope one, suggesting the higher prediction accuracy of our SISSO descriptor.
Indeed, the Pearson correlation coefficient is found to be 94% and 92% for the training and
testing sets, respectively.
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In addition to the strong predictive power discussed above, we should emphasize that
the SISSO-derived descriptor is physically interpretable. Here, we focus on the first term
(0.85 × D1) of Equation (1), since it plays a major role [39] in the gap prediction. For the
convenience of discussion, we rewrite Equation (2) as:

D1 =
(VEA + VEC)

(rA + rC)
× (χB × χD)

(χA × χC)
(5)
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That is, the SISSO-predicted gap is proportional to (VEA+VEC)
(rA+rC)

and (χB×χD)
(χA×χC)

. For the
(VEA+VEC)
(rA+rC)

term, if the A and C atoms are located in the same row of the periodic table,
the number of valence electrons (VEA + VEC) increases, while the atomic radius (rA + rC)
decreases with the increasing atomic number. As a consequence, the (VEA+VEC)

(rA+rC)
term

increases, which leads to a larger band gap. This is reasonable since a decreased atomic
radius (rA + rC) usually corresponds to a smaller bond length (or stronger bond strength),
which would enhance band splitting, so a larger band gap can be expected. On the other
hand, if the A and C atoms are in the same column of the periodic table, the number of
valence electrons (VEA + VEC) keeps constant, while the atomic radius (rA + rC) increases
with increasing atomic number. That is, we find a decreased (VEA+VEC)

(rA+rC)
and, thus, a smaller

band gap, which can be understood by the same reason discussed above. For the (χB×χD)
(χA×χC)

term, since the Pauling electronegativities of the B and D atoms (anion-like) are relatively
larger compared with those of the A and C atoms (cation-like), the significant difference
between them would give rise to a larger band gap. Such a finding is consistent with the
general belief that the band gap of an inorganic compound is approximately proportional
to the electronegativity difference between the anions and cations [47,48].

Beyond the original dataset of 325 vdWHs, we have employed the SISSO-derived
descriptor to predict the band gaps of a vast number of possible AB/CD heterostructures.
Using group III, IV, and V elements as examples, it is assumed that A, B, C, and D can
be chosen from 15 atoms: B, Al, Ga, In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, and Bi. As
illustrated in Figure 3a, we can obtain a total of 7140 possible vdWHs, which includes
315 binary (calculated by 3× C2

15), 2730 ternary (6× C3
15 = 2730), and 4095 quaternary

systems (3× C4
15 = 4095). By leveraging the 3D descriptor given in Equation (1), we can

quickly predict the band gaps (Eg, pre) of all these 7140 vdWHs (including 325 entries in
the original dataset). Figure 3b illustrates the distribution of Eg, pre, where we see that
most investigated heterostructures have smaller band gaps in the range of 0–1 eV. Besides,
there are 786 systems exhibiting intermediate gaps from 1 to 3 eV, and 23 systems with
gaps exceeding 3 eV. To further verify the predictive power of our 3D descriptor, we have
calculated the band gaps of six vdWHs (BP/BiN, BSb/AsP, GeP/PP, SiAs/NN, AlC/AlAs,
GeN/NN) by using an accurate first-principles approach (HSE scheme). Note that these
vdWHs are randomly selected from Figure 3 and do not belong to the original dataset.
As can be seen from Table 2, the band gaps obtained from the first-principles calculation
(Eg, cal) almost coincide with those predicted from the 3D descriptor (Eg, pre). Once again,
such an observation confirms the strong reliability of our SISSO approach, although only
four fundamental properties of the constituent atoms are involved in the derived descriptor.

Nanomaterials 2022, 12, x 6 of 9 
 

 
Figure 3. (a) Schematic illustration of 7140 AB/CD vdWHs, which includes 315 binary, 2730 ternary, and 
4095 quaternary systems. (b) Distribution of 7140 vdWHs according to their SISSO-predicted band gaps. 

Table 2. Comparisons of the SISSO-predicted band gaps and those calculated by first-principles 
(HSE scheme), for six randomly selected vdWHs beyond the original dataset. 

vdWHs g, preE  (eV) g, calE  (eV) 

BP/BiN 0.35 0.38 
BSb/AsP 0.89 0.84 
GeP/PP 1.45 1.43 

SiAs/NN 1.94 1.88 
AlC/AlAs 2.10 2.09 
GeN/NN 2.53 2.45 

Before concluding our work, we should mention that the high-throughput results 
shown in Figure 3 also provide a very useful diagram to screen 2D functional materials 
with the desired band gap for potential applications, such as thermoelectric and optoelec-
tronic conversions. Here, we focus on the thermoelectric materials that usually require a 
smaller gap (0–1 eV) to realize a relatively larger power factor. Among the 6331 possible 
candidates in Figure 3b, we choose the BSb/AsP vdWH as a checking example, where the 
SISSO-predicted gap is found to be 0.89 eV. Figure 4a plots the band structure of the 
BSb/AsP vdWH, as obtained from the first-principles calculations. We see that the con-
duction-band minimum (CBM) and the valence-band maximum (VBM) are both located 
at the K point, which gives a direct gap of 0.84 eV (HSE value) and is very close to the 
SISSO prediction. Based on the band structure, we can readily evaluate the Seebeck coef-
ficient ( S ) by using the Boltzmann transport theory [49]. Note that S  describes the ratio 
of voltage difference to the temperature gradient imposed on a given system and plays an 
important role in determining the thermoelectric-conversion efficiency that is usually 
evaluated by the dimensionless figure-of-merit 2ZT S∝ . Figure 4b shows the Seebeck 
coefficient of the BSb/AsP vdWH as a function of carrier concentration, where the result 
is the same along the armchair and zigzag directions. Remarkably, we observe that the S  
value at a typical-carrier concentration of 1019 cm–3 can reach 486 μV/K and 501 μV/K for 
the n- and p-type systems, respectively. Such values are significantly larger than those of 
state-of-the-art thermoelectric materials, suggesting a very promising thermoelectric per-
formance by our vdWHs. If the carrier concentration is increased to 5 × 1019 and 1 × 1020 cm–3, 
we can, respectively, obtain an S  value of ~300 μV/K and ~200 μV/K for both n- and p-type 
vdWHs, which are still comparable to those of many good thermoelectric materials. 

Figure 3. (a) Schematic illustration of 7140 AB/CD vdWHs, which includes 315 binary, 2730 ternary,
and 4095 quaternary systems. (b) Distribution of 7140 vdWHs according to their SISSO-predicted
band gaps.



Nanomaterials 2022, 12, 2301 6 of 9

Table 2. Comparisons of the SISSO-predicted band gaps and those calculated by first-principles (HSE
scheme), for six randomly selected vdWHs beyond the original dataset.

vdWHs Eg, pre (eV) Eg, cal (eV)

BP/BiN 0.35 0.38
BSb/AsP 0.89 0.84
GeP/PP 1.45 1.43

SiAs/NN 1.94 1.88
AlC/AlAs 2.10 2.09
GeN/NN 2.53 2.45

Before concluding our work, we should mention that the high-throughput results
shown in Figure 3 also provide a very useful diagram to screen 2D functional materials with
the desired band gap for potential applications, such as thermoelectric and optoelectronic
conversions. Here, we focus on the thermoelectric materials that usually require a smaller
gap (0–1 eV) to realize a relatively larger power factor. Among the 6331 possible candidates
in Figure 3b, we choose the BSb/AsP vdWH as a checking example, where the SISSO-
predicted gap is found to be 0.89 eV. Figure 4a plots the band structure of the BSb/AsP
vdWH, as obtained from the first-principles calculations. We see that the conduction-
band minimum (CBM) and the valence-band maximum (VBM) are both located at the
K point, which gives a direct gap of 0.84 eV (HSE value) and is very close to the SISSO
prediction. Based on the band structure, we can readily evaluate the Seebeck coefficient (S)
by using the Boltzmann transport theory [49]. Note that S describes the ratio of voltage
difference to the temperature gradient imposed on a given system and plays an important
role in determining the thermoelectric-conversion efficiency that is usually evaluated by
the dimensionless figure-of-merit ZT ∝ S2. Figure 4b shows the Seebeck coefficient of
the BSb/AsP vdWH as a function of carrier concentration, where the result is the same
along the armchair and zigzag directions. Remarkably, we observe that the S value at a
typical-carrier concentration of 1019 cm−3 can reach 486 µV/K and 501 µV/K for the n- and
p-type systems, respectively. Such values are significantly larger than those of state-of-the-
art thermoelectric materials, suggesting a very promising thermoelectric performance by
our vdWHs. If the carrier concentration is increased to 5 × 1019 and 1 × 1020 cm−3, we
can, respectively, obtain an S value of ~300 µV/K and ~200 µV/K for both n- and p-type
vdWHs, which are still comparable to those of many good thermoelectric materials.

Nanomaterials 2022, 12, x 7 of 9 
 

 
Figure 4. (a) The energy band structure, and (b) the Seebeck coefficient of the screened BSb/AsP vdWH. 

4. Summary 
In conclusion, our work offers a high-throughput solution to the fundamentally im-

portant issue of band-gap prediction, using the vdWHs as a prototypical class of exam-
ples. Unlike many ML algorithms, where the derived model usually appears as a black 
box, the SISSO approach employed in the present work can pinpoint a physically intuitive 
3D descriptor that requires only four fundamental properties of the constituent atoms as 
input features. By leveraging such a simple-yet-efficient data-driven descriptor, one can 
deal with a huge search space (even for those systems with constituent atoms beyond Ta-
ble 1) to screen promising candidates with the desired electronic band gap for potential appli-
cations, such as thermoelectric and optoelectronic conversions. It should be also noted that the 
SISSO approach established here can be adopted to predict the optical gap and entire band 
structure of vdWHs, as long as the corresponding training set is available. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Table S1: the band gaps calculated by first-principles (HSE scheme) for 325 
vdWHs. 

Author Contributions:  Conceptualization, R.H. and H.L.; methodology, R.H. and H.L.; software, 
R.H. and H.Y.; validation, R.H., W.L. and S.H.; formal analysis, R.H. and W.L.; investigation, R.H., 
W.L., H.Y. and S.H.; resources, R.H. and H.L.; data curation, R.H.; writing—original draft prepara-
tion, R.H.; writing—review and editing, R.H. and H.L.; visualization, R.H.; supervision, H.L.; pro-
ject administration, H.L.; funding acquisition, H.L. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: This research was funded by the financial support from the National Natural Science 
Foundation of China (Grant Nos. 62074114 and 51772220). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. 

Acknowledgments: The numerical calculations in this work have been done on the platform in the 
Supercomputing Center of Wuhan University. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field 

effect in atomically thin carbon films. Science 2004, 306, 666. 
2. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451. 

Figure 4. (a) The energy band structure, and (b) the Seebeck coefficient of the screened BSb/
AsP vdWH.

4. Summary

In conclusion, our work offers a high-throughput solution to the fundamentally im-
portant issue of band-gap prediction, using the vdWHs as a prototypical class of examples.



Nanomaterials 2022, 12, 2301 7 of 9

Unlike many ML algorithms, where the derived model usually appears as a black box,
the SISSO approach employed in the present work can pinpoint a physically intuitive 3D
descriptor that requires only four fundamental properties of the constituent atoms as input
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