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Abstract: With the rapid spreading of in-vehicle information systems such as smartphones, navi-
gation systems, and radios, the number of traffic accidents caused by driver distractions shows an
increasing trend. Timely identification and warning are deemed to be crucial for distracted driving
and the establishment of driver assistance systems is of great value. However, almost all research
on the recognition of the driver’s distracted actions using computer vision methods neglected the
importance of temporal information for action recognition. This paper proposes a hybrid deep
learning model for recognizing the actions of distracted drivers. Specifically, we used OpenPose to
obtain skeleton information of the human body and then constructed the vector angle and modulus
ratio of the human body structure as features to describe the driver’s actions, thereby realizing the
fusion of deep network features and artificial features, which improve the information density of
spatial features. The K-means clustering algorithm was used to preselect the original frames, and the
method of inter-frame comparison was used to obtain the final keyframe sequence by comparing
the Euclidean distance between manually constructed vectors representing frames and the vector
representing the cluster center. Finally, we constructed a two-layer long short-term memory neural
network to obtain more effective spatiotemporal features, and one softmax layer to identify the
distracted driver’s action. The experimental results based on the collected dataset prove the effec-
tiveness of this framework, and it can provide a theoretical basis for the establishment of vehicle
distraction warning systems.

Keywords: driver distraction; OpenPose; LSTM; keyframe sequences; action recognition; nested
cross-validation

1. Introduction

According to data published by the World Health Organization (WHO), approximately
1.2 million people die in traffic accidents worldwide every year [1]. According to the
National Highway Traffic Safety Administration (NHTSA), approximately 20% of traffic
accidents and 80% of almost impending traffic accidents are caused by driver distraction,
which emerges as a key factor in serious and fatal accidents [2]. In 2018 alone, driver
distraction claimed the lives of 2841 people in the USA [3]. Therefore, investigating the
cause of distracted driving and reducing the number of distraction-affected traffic accidents
remains an imperative issue.

According to related research [4], there are two main reasons for driver distraction:
(i) internal reasons: fatigue driving, drunk driving, and drug driving, that is, the mental
states of the driver are not suitable for driving. Methods that focus on detecting driver
distraction due to internal reasons are mainly divided into physiological parameter-based
methods [5,6] and naturalistic driving data-based methods [7,8]; (ii) external reasons: the
driver has external interference, such as calling, texting, and talking with passengers, and
other secondary tasks that interfere with the driver driving in the proper mental condition.
Computer vision methods are used to identify driver distraction caused by external reasons,
which have two advantages that can put them into practical application. First, compared
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to the physiological parameter-based methods, it is a non-intrusive technique of obtaining
data, which can ensure that the drivers are not affected by the measuring instruments.
Second, compared to the naturalistic driving data-based methods, it can warn the drivers
after they have performed distracted actions, instead of warning them after the vehicle’s
behavior has already become abnormal.

Against this contextual backdrop, we focus on driver distraction caused by external
causes, that is, we choose to use computer vision methods to detect actions of distracted
drivers. Driver action recognition (DAR) is a branch of human action recognition (HAR).
In the HAR field, the two major aspects in developing deep networks for action recognition
are the convolution process and temporal modeling [9,10]. Moreover, dealing with the
temporal dimension is a challenging issue. The current mainstream solutions include
three major categories: two-stream convolutional networks [11], three-dimensional con-
volutional networks (3D-ConvNets) [12], and fusion of convolution neural networks and
long short-term memory [13] (CNN-LSTM). Table 1 gives a brief introduction of the archi-
tectures with advantages and disadvantages. Because CNN-LSTM architecture has high
accuracy and fast speed, it was selected as the basic architecture of this research. However,
simply completing the architecture selection is not enough, because HAR systems are
not automatically useful under DAR constraints. The limited in-vehicle space where the
actions are executed and the parallel execution of different in-vehicle actions with driving
tasks drastically challenge the HAR techniques [14]. Therefore, the problem that needs to
be solved urgently at this stage is how to extract efficient temporal and spatial features of
the driver’s actions, to effectively identify the different actions of the drivers.

Table 1. Comparison of mainstream architectures in the field of HAR.

Architecture Introduction Precision Speed

Two-stream [11] The dense optical flow is calculated for every two frames in the video sequence.
Then the CNN model is trained on image and dense optical flow respectively. high slow

3D-ConvNet [12] Temporal and spatial features of the video sequence are extracted by a 3D
convolution kernel. The motion of the video stream can therefore be captured. low fast

CNN-LSTM [13] The CNN-LSTM architecture can be understood as the series structure in the
circuit, which can extract spatial and temporal information from a video sequence. high fast

In this paper, a hybrid deep learning model is proposed to recognize the actions of
distracted drivers. This model uses the OpenPose skeleton extraction algorithm, essentially
a CNN model, to obtain the skeleton information of the human body (including bone
maps and the joint point position information) by processing every frame captured by
monitoring. Then, the action description features (ADFs) are constructed by using the joint
point. Based on this, the ADF vectors are composed of the vector angles and the modulus
ratio of each frame, which are used as the input of the K-means clustering algorithm to
preselect the original frames. Then the keyframe sequences are obtained by using inter-
frame comparison (IFC). Finally, the ADF vectors representing the keyframe sequences are
fed into the LSTM, which then outputs the recognition results. The model we proposed
improves recognition accuracy through a combination of the following three processes:
(i) combines OpenPose and LSTM as the basic architecture guarantees the extraction of
spatiotemporal features; (ii) constructs ADFs, which realizes the fusion of deep network
features and artificial features. The proposed ADFs improve the information density of
spatial features and, to a certain extent, eliminate the influence of individual differences
and changes in shooting distance; (iii) uses K-means clustering algorithm and IFC to extract
keyframe sequences, which can reduce the interference of similarity of actions of distracted
drivers and action speed on recognition.

There are three major contributions of this paper.

• We propose a novel model, which avoids the use of complex devices (i.e., wearable
sensors [15,16] and depth cameras [14]) and only needs 2D cameras in vehicles.
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• A highly efficient method is introduced to handcraft an effective spatial feature based
on the joint points (i.e., deep neural features) derived from OpenPose.

• The introduction of temporal features extracted by the K-means clustering algo-
rithm, IFC, and LSTM networks, which makes up for the current deficiencies in
the DAR field.

The outline of this paper is as follows. Related works and the current state of researches
are reviewed in Section 2. Section 3 elaborates on the data collection process. In Section 4,
our model with four modules is described in detail. The experimental results and analysis
are presented in Section 5. Additionally, this paper will be finalized with conclusions and a
forward-looking emphasis in Section 6.

2. Literature Review

The main focus of our research is to extract efficient spatiotemporal features from
driver action sequences so as to improve the accuracy and robustness of driver distracted
action recognition. Therefore, we summarize and review from three aspects: the application
of the computer vision method in the DAR field, the spatiotemporal features acquisition
based on skeleton data, and the current status of keyframes extraction.

Many researchers have applied computer vision methods to the field of DAR. Li et al. [17]
situate and detect the driver’s right ear and right hand using You Only Look Once (YOLO)
and take the coordinates of regions of interest (ROIs) as input, and a multi-layer perceptron
is designed to infer the driver’s status from the ROIs. Huang et al. [18] present a hybrid
CNN framework (HCF) combining Xception, Inception V3, and ResNet50 to detect the
actions of distracted drivers, which can improve the accuracy of the driving activity de-
tection system. Baheti et al. [19] propose a new architecture named mobileVGG based
on depth-wise separable convolutions for detecting and classifying the driver distraction,
which greatly reduces the parameters compared with other CNN models. Mase et al. [20]
introduce a novel method using CNNs and stacked bidirectional long short-term memory
networks (BiLSTM) to capture the spectral-spatial features of the images, where BiL-
STM is used to handle the sequence of filtered channels, that is, the output of CNNs
(i.e., 8 ∗ 8 feature maps with 2048 channels). Omerustaoglu et al. [21] integrate the predic-
tion results of the vision-based CNN and the sensor-based LSTM model into the final model
to obtain the driver’s distracted motion detection results, which improves the accuracy and
generalization ability of the system. For the chaotic driving scene, Jegham et al. [14] use an
RGB-Depth camera to capture RGB images and propose a novel soft spatial attention-based
network. It can be summarized that, in the field of DAR, most researchers only focus on
the combination and improvement of the CNN model, striving to improve the accuracy
or speed of the static detection model, but ignore the importance of temporal information.
Although, as the research further develops, the architecture of CNN-LSTM has begun to be
used by some researchers to recognize driver’s distracted actions, it still needs additional
equipment such as sensors and depth cameras.

With the rapid development of pose estimation techniques, action recognition based
on skeleton data is a research hotspot. Skeleton data is the characteristic information of
the joint points obtained from the action sequence, including relative track, position, and
so on. Wu et al. [22] extract the meaningful temporal features of sub-actions from the
three-dimensional skeleton data by a multiscale wavelet transform, which can improve
the robustness of action recognition. Zuo et al. [23] propose two new graph convolution
methods: the partial-image convolution network and full-image convolution network
to learn the part scale spatiotemporal features and full-scale skeleton spatiotemporal
features. Then the two features are combined to obtain more effective skeleton features.
For improving the performance of action recognition, Ahad et al. [24] regard 3D bone joints
as kinematic sensors based on the three-dimensional linear joint position and the angle
between the bone segments and propose the linear joint position feature and the angular
joint position feature. Ma et al. [25] use the distances and angles between the joint points
as spatial features to input to the deep graph convolutional network (DGCN) and LSTM,
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which can complete action recognition of basketball players. Connecting the lines between
the same joints in adjacent frames, Tasnim et al. [26] propose a 3D spatiotemporal image
formation technology of skeletal joints by capturing spatial information and temporal
changes for action discrimination. Above all, previous studies have processed the acquired
skeleton data to different degrees to concentrate the information of the action sequence,
which can make the model capture relatively more information for training. The above
review also shows that the fusion of heterogeneous features, namely handcrafted and
deep neural features, can improve the robustness of action recognition by analyzing action
sequences from different aspects of expert views and data-driven model views, respectively.

Many studies have shown that using only a few keyframes instead of a complete
sequence of frames can perform action recognition tasks more effectively and summarize
the video [27–32]. Kim et al. [33] prove that the keyframe extraction enables fast and robust
gesture recognition regardless of motion speed. Wang et al. [34] extract an energy feature,
combining kinetic energy and potential energy, from 3D video sequences to represent
human actions and employ a support vector machine (SVM) to recognize human actions
on the EFs of selected keyframes. Tang et al. [35] combine image density clustering and
entropy and use keyframes in gesture videos for further feature extraction to improve
recognition efficiency. Yasin et al. [36] extract the keyframes that contribute to the action
performance from the motion sequence of the 3D frame to eliminate redundant frames
and summarize the motion sequence while retaining the original motion semantics. It
can be seen that the keyframes should be representative of the video content, diverse to
reduce the redundancy, and should be able to cope with the impact of movement speed
on recognition.

To summarize, in the field of DAR, most researchers only focus on combining deep
learning models to try to extract spatial features with higher information density, ignoring
the importance of temporal information. The method proposed in this paper not only
introduces a spatial feature extraction method distinguishing from the existing techniques
but also extracts the temporal features of the driver’s distracted action. To the best of the
authors’ knowledge, the methods of obtaining the spatiotemporal features based on RGB
video sequences had yet, to date, to be fully researched. The model embedding feature
construction method based on bone information and keyframe sequences technique fills
the gaps in the DAR field, which can eliminate the influences of individual differences and
movement speed.

3. Data Collection

The literature shows that the driver’s distracted actions mainly include eating, drink-
ing, manipulating dashboard controls, watching a smartphone screen, talking on a phone
or with passengers, and grooming [37]. Therefore, in this study, the above seven actions
are selected as the distracted actions to be recognized. The State Farm Distracted Driver
Detection dataset published on Kaggle [38] and the American University in Cairo (AUC)
Distracted Driver Dataset [39] are the most frequently used datasets in the related studies.
However, they cannot meet our needs because of the following two reasons. First, the im-
ages in the dataset extracted from the same video are almost identical to each other. Second,
there is no timestamp information or sequence information about the images [21,39,40].
Therefore, we created a new dataset. In order to make our data collection reasonable,
the custom dataset is collected by mimicking the State Farm dataset (e.g., the camera
perspective, distance, and the scenarios).

Figure 1 and Table 2 show the examples of the custom dataset, which contains 8 types
of actions performed by 5 females and 10 males of various heights and body shapes.
While the vehicle was moving, we collected 30 frame-per-second videos, and each video is
controlled at 3 s, so that the length of each action sequence is 90 frames. It is worth noting
that performers must demonstrate actions C0, C3, C4, C5, and C6 twice at different speeds,
and demonstrate actions C1, C2, and C7 three times each, thus forming a custom dataset
containing 285 action sequences. That means we collected about 25,650 data points with
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timestamp information. A mobile phone, which was placed in the upper right corner of
the vehicle, was used to collect video sequences. This location was chosen by us because a
similar placement was used in the State Farm dataset.

Figure 1. Some sample frames of distracted actions from the custom dataset.

Table 2. Actions of the drivers.

NO Action

C0 Safe driving
C1 Eating while driving
C2 Drinking while driving
C3 Manipulating dashboard controls
C4 Texting with the right hand
C5 Taking on a phone with the right hand
C6 Talking with passengers
C7 Doing makeup while driving

4. Methodology

The architecture of our proposed model, as shown in Figure 2, consists of a list
of modules: the module of human body poses estimation (Module I), the module of
data processing and feature construction (Module II), the module of keyframe sequences
extraction (Module III), and the module of action recognition (Module IV).

4.1. Module I

We chose the OpenPose algorithm [41], first proposed by the Perceptual-Computing-
Lab of Carnegie Mellon University, as a technique of detecting human joint points because
of its high accuracy. After several generations of updating and optimization, as shown in
the bottom left of Figure 2, the latest OpenPose algorithm reduces the computation amount
by half compared with the original structure, but the accuracy almost remains unchanged,
which is suitable for obtaining skeleton data. This algorithm was first applied to the COCO
key challenges, greatly surpassing the previous results [42]. The reason why we also
choose the COCO model is its characteristics of generating 18 joint points to provide a good
trade-off between a detailed representation of the human pose and complexity. Table 3
shows the 18 joint points saved in each frame of OpenPose. Figure 3 demonstrates the
18 joint points of the human body. The data of each joint point includes the abscissa value
and the ordinate value in the Cartesian coordinate system and the confidence.
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Figure 2. The architecture of our proposed model.

Table 3. Eighteen joint points of the human body.

No. Joint Point NO. Joint Point

0 Nose 9 Knee Right
1 Shoulder Center 10 Ankle Right
2 Shoulder Right 11 Hip Left
3 Elbow Right 12 Knee Left
4 Wrist Right 13 Ankle Left
5 Shoulder Left 14 Eye Right
6 Elbow Left 15 Eye Left
7 Wrist Left 16 Ear Right
8 Hip Right 17 Ear Left

Figure 3. Eighteen joint points of the human body.

However, applying the OpenPose algorithm may be difficult in the following cases.
First, as shown in Figure 4, multiple human skeletons appear in a frame. Second, body
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occlusion can lead to localization error and false negatives. Therefore, we set up the data
processing unit in Module II, which handled the above cases properly.

Figure 4. Misidentification cases.

4.2. Module II

This module is mainly divided into two parts, namely data processing and feature
construction. First, we process the collected coordinate data of the joint points. Second, in
order to improve the information density of spatial features and make our proposed model
have better characteristic performance, we construct the vector angle and vector modulus
ratio based on the processed joint point coordinates as in the ADFs.

4.2.1. Data Processing

Objects or pedestrians are sometimes mistaken for human skeletons by OpenPose,
causing multiple human skeleton information to be stored in the json file. To cope with this
phenomenon, we compared a large amount of data and found that the skeleton information
with the highest confidence is displayed on the first line of the json file. In other words,
the skeleton information is sorted by confidence, which reaches the threshold but has the
lowest confidence is arranged at the end of the file. Since the focus of the video is on the
driver, it is clear that the driver’s skeleton is the most obvious and the confidence is the
highest. Therefore, the first human skeleton information in the file is always retained.

Since the driver’s distracted action only includes the upper body, we deleted the
joint point data numbered 9, 10, 12, and 13 in Table 3 and all confidence values to avoid
the interference of irrelevant data. Because the shooting angle of the dataset has caused
a large loss of the performer’s left ear joint points, as shown in Figure 4, the joint point
data numbered 17 were also deleted. Some of the existing methods for dealing with
missing joint points are as follows: (i) handle the missing data by model. For example,
in Xgboost [43] and Light GBM [44], the model skips the missing values and calculates
directly; (ii) a statistical method that replaces the missing value with the mean, median,
and plural [45]; (iii) the valuation of missing data using the Kalman filter [46], currently the
most reliable method. In our experiment, the missing values can be well supplemented by
statistical methods because there are few missing points. In order to make the coordinates of
missed joint points in frames be completed, the detailed procedure of the mean-coordinate
supplement method (MCSM) we proposed is as follows. We divide the joint points into
two categories: (i) fixed joint points, that is, the joint point where the position remains
unchanged, as shown in Figure 3 as 1, 8, 11, and (ii) changing joint points, that is, 0, 2, 3, 4,
5, 6, 7, 14, 15, and 16 in Figure 3. The movements are mainly reflected by these joint points
related to the arm and head. The processing methods are as follows:

(i) Fixed joint points: We take the average of all unmissed joint point coordinate data to
replace the joint point coordinates of all video frames. The formula is as follows:
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 xj =
∑ xm

j
M

yj =
∑ ym

j
M

(1)

where, j represents the fixed joint points, m is the frame without missing j joint point
data, M is the number of frames without missing j joint point data, and xj and yj are the
coordinate values that replace the abscissa and ordinate of the j joint point in each frame.

(ii) Changing joint points: There are three possible scenarios. First, single data is missing.
The missing coordinate of the frame is represented by the average value of the data of
the K frames before and after it, and the formula is as follows:

xi
j =

K
∑

k=1
xi−k

j +xi+k
j

2K

yi
j =

K
∑

k=1
yi−k

j +yi+k
j

2K

(2)

where, j represents the changing joint point, i is the frame with missing j joint point, and xi
j

and yi
j are the coordinate values that replace the abscissa and ordinate of the j joint point in

the frame i. Experiments on non-missing joint points show that the average value of the
two frames before and after the data is optimal, that is, K = 2.

Second, consecutive data is missing. Formula (3) shows the supplementary method
of i to i + n − 1 frames which continuously misses n frames. Third, if the joint point
data for the first frame of the action sequences are lost, the mean of all unmissed joint
point coordinate data is taken and supplemented to the first frame. From then on, we can
continue to process the data using the above two processing methods.

xi
j =

xi−1
j +xi+n

j
2

xi+1
j =

xi
j+xi+n

j
2

. . . . . .

xi+(n−1)
j =

xi+(n−2)
j +xi+n

j
2

(3)

The data after the above processing is stored in the following format. (i) Each frame of
data occupies a separate row, arranged in chronological order, with 2-row indexes, which
are the person and the action of the row of data. (ii) Each row contains 28 columns of data,
which are the coordinate values of the abscissa and ordinate of the above-mentioned 10
changing points and 3 fixed points in a rectangular coordinate system.

4.2.2. Feature Construction

If the processed 13 joint-points coordinate data are directly used for subsequent
operations, the generalization ability of the model is low. Based on the coordinate data
of the joint points, we artificially construct the ADFs, that is, the vector angle and the
modulus ratio of the human body structure to achieve a more effective feature descriptor
for action recognition [47]. Furthermore, through the analysis of the characteristics of the
driver’s actions, two auxiliary points, an improvement for specific application scenarios,
are creatively proposed to assist in the construction of ADFs. The detailed process is as
follows:

Stage 1. Acquisition of structure vector. The calculation method is to subtract the
coordinates of two joint points in the same frame, the formula is as follows:

lj1,j2 =
(
xj1, yj1

)
−
(

xj2, yj2
)

(4)
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where,
(

xj1, yj1
)

and
(
xj2, yj2

)
is the coordinate of the j1 and j2 joint points, and lj1,j2 is the

structure vector composed by the j1 and j2 joint points.
This paper constructs 19 structure vectors for the subsequent calculation of vector

angle and vector modulus ratio, as shown in Figure 5. The innovative point of this paper is
the creation of point E (the midpoint of fixed points 8 and 11) and the point O (the center
of gravity of the triangle formed by fixed points 1, 8, and 11). The creation of point E is
helpful for the subsequent calculation of the modulus ratio, and the creation of point O is
helpful for a better description of upper limb movements. Taking the joint point 3 (right
elbow) in Figure 5 as an example, the construction of the structure vectors l2,3, l3,4 and lo,3
can well describe the movements related to the right elbow.

Figure 5. The human body structure vectors (the solid and dashed lines denote human skeleton and
non-skeleton respectively, the blue line represents the human body structure vectors) (a,b).

Stage 2. Acquisition of vector angle. The angle value between the vectors is calculated
using the law of cosines. The calculation formula of the vector angle is:

θα =
〈
lj1,j0, lj1,j2

〉
= arccos

lj1,j0 · lj1,j2
| lj1,j0 || lj1,j2 |

, α ∈ {0, · · · , 13} (5)

where, lj1,j0 · lj1,j2 =
(

xj0 − xj1
)(

xj2 − xj1
)

+
(
yj0 − yj1

)(
yj2 − yj1

)
,∣∣lj1,j0

∣∣ = √(xj0 − xj1
)2

+
(
yj0 − yj1

)2 and θα is the angle between vectors lj1,j0 and lj1,j2 .
This paper constructs 13 vector angles, as shown in Figure 6. Additionally, taking

the number 3 (right elbow) joint point as an example, θ3 is the angle between the upper
arm and the forearm in Figure 6a, which can be used to measure the swing angle of the
forearm relative to the upper arm. θ9 and θ10 in Figure 6b respectively represent the angular
relationship of the right elbow joint with respect to the right shoulder, right wrist, and
point O. The unique position of the joint point can be determined by the above three
vector angles.

Stage 3. Acquisition of vector modulus ratio. In order to avoid large errors in the
recognition of driver action due to individual differences, this paper does not use the
absolute distance between the joints but chooses the relative distance, that is, the vector
modulus ratio. In our paper, a total of eight vector modulus ratios have been constructed,
as shown in Table 4. Equation (6) gives a calculation example of the vector modulus ratios
r1 and r7:

r1 = rO,2 =
| lO,2 |
| lE,1 |

, r7 = r4,0 =
| l4,0 |
| lE,1 |

(6)
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Table 4. Vector module ratio.

Abbreviation Modulus Ratio Abbreviation Modulus Ratio

r1 rO,2 r5 rO,6
r2 rO,3 r6 rO,7
r3 rO,4 r7 r4,0
r4 rO,5 r8 r7,0

Figure 6. Vector angle of human body structure (a,b).

The distance between the midpoint E and the joint point 1 can be almost constant
during driving, and it can well reflect the body shape of different humans. Therefore lE,1 is
selected as the base vector to calculate the vector modulus ratio, which can eliminate the
individual differences between different drivers.

In this paper, 13 vector angles and 8 vector modulus ratios of human body structure
are constructed as the features of the driver’s actions, totaling 21 ADFs.

4.3. Module III

In this section, we propose a module based on the K-means clustering algorithm [48]
and IFC. The vectors composed of the ADFs are used as the input of the K-means clus-
tering algorithm. The number of keyframes to be extracted is determined by artificially
setting the number of clusters. Then we compare the differences between the vectors
representing frames and the vectors representing the cluster centers to obtain the final
vectors representing the keyframe sequences.

The detailed process is: (i) to obtain keyframes. The most informative frames are
extracted and the pose redundancy is removed, which can effectively compress and refine
driver actions; (ii) to obtain keyframe sequences. The extracted keyframes are sorted
according to the order of occurrence, which not only ensures that the extracted keyframe
sequences have efficient spatiotemporal information but also reduces the number of ADF
vectors sent to Module IV. Through this module, the accuracy of the model for action
recognition can be improved.

Step 1: The K-means clustering algorithm is used to obtain keyframes. The basic
principle of the algorithm is to group similar objects into the same cluster, and group
dissimilar objects into different clusters. We take the value composition vector of the
ADFs, that is, the vector angle feature value and the vector modulus ratio feature value,
constructed in each frame as the input of the K-means clustering algorithm. We assume
that the complete sequence of action is

{
x(1) , x(2),· · · ,x(N)

}
, x(i)εR21, where N is the

total number of frames in the action sequence, i is a frame in the sequence, x(i) is a
21-dimensional vector composed of the values of the 21 ADFs in the frame i, and R(21) is
a collection of vectors composed of vectors in each frame in a complete sequence. In this
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paper, ADF-vectors representing frames are clustered into K(K ≤ N) clusters. The detailed
process is as follows:

(1) Randomly select a K cluster centroid, and mark it as ujεRN , j = 1, 2, · · · , K;
(2) Calculate the minimum D of the distance Dij from each sample x(i) to each centroid

uj, and classify the samples into the cluster j corresponding to the minimum distance,
that is:

D = argmin
N

∑
i=1

K

∑
j=1
‖ x(i) − uj ‖2 (7)

(3) After the division, for each cluster j, recalculate the centroid:

uj =

N
∑

i=1
rijx(i)

N
∑

i=1
rij

(8)

where, rij indicates whether the vector x(i) is classified into the cluster j, if it belongs to
cluster j, then rij = 1, otherwise rij = 0.

(4) Repeat (2) and (3) until the cluster center remains unchanged, then the algorithm
ends. Through the above process, K cluster centers which can be used as pre-selected
keyframes are extracted, and each center is a 21-dimensional vector.

Step 2: Since the cluster center does not necessarily coincide with the ADF vectors
completely, and does not have a time sequence, the IFC is used to further obtain the
keyframe sequences. The detailed method is as follows:

uj =
(

α1j , α2j , · · · , α13j , β1j , β2j , · · · , β8j

)
, j ∈ (1, 2, · · · , K) (9)

where, uj represents the vector of the cluster center of the cluster j, K is the number of
keyframes to be extracted in an action sequence, α1j , α2j , . . . , α13j are the vector angle
values, and β1j , β2j , . . . , β8j are the modulus ratio values.

The ADF vector representing a frame in an action sequence is expressed as follows:

xi =
(
θ1i , θ2i , · · · , θ13i , r1i , r2i , · · · , r8i

)
, i ∈ (1, 2, · · · , N) (10)

where, xi is the ADF vector of the frame i, N is the total number of frames in the action
sequence, θ1i , θ2i , . . . , θ13i are the vector angle values, and r1i , r2i , . . . , r8i are the modulus
ratio values of the frame i.

By solving the minimum Euclidean distance C between the uj and xi, we determine
the correspondence between the cluster centers and the action sequence frames, which is
expressed as follows:

C = Min
(
uj, xi

)
=

√(
α1j − θ1i

)2
+ · · ·+

(
α13j − θ13i

)2
+
(

β1j − r1i

)2
+ · · ·+

(
β8j − r8i

)2 (11)

In order to ensure that the extracted keyframes are consistent with the frames in
the action sequences, it is necessary to mark the corresponding frame with the smallest
distance as a keyframe, save the index of the frames, and finally sort by index to obtain the
final keyframe sequence. Due to the small change of some actions, the ADF vectors of the
frames are similar, which will cause the problem of inconsistency between the sequence of
the extracted keyframes and the sequence in the video, but the recognition effect will not
be affected.
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4.4. Module IV

An LSTM network is used to process the output results of Module III to extract the
spatiotemporal features, and then transfer them to the softmax layer to output the action
recognition results. The internal structure of the typical deep neural network with LSTM
is a one-dimensional vector [49]. Figure 7 displays a basal LSTM neuron. Within LSTM
models, there exist three gates to control and update the cell’s state: (1) inputs, (2) forget,
and (3) output. The memory cell in each gate consists of a sigmoid neural net layer and a
pointwise multiplication operation.

Figure 7. The basic structure of LSTM unit models.

For time step t, the cell state can be updated by using the following equations:

it = σ(Wxixt + Whiht−1 + bi)

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
ot = σ(Wxoxt + Whoht−1 + bo)
c̃t = tanh(Wxcxt + Whcht−1 + bc)
ct = ft ⊗ ct−1 + it ⊗ c̃t
ht = ot ⊗ tanh(ct)

(12)

where, σ stands for activate function sigmoid defined as σ(x) = (1 + e−x)
−1, it, ft, ot

respectively stand for the outputs of the “input”, “forget”, and “output” gates. ct represents
the long-term memory state of the cell at time t, c̃t denotes the candidate state value of ct.
ht, and xt are the final output and initial input at time t. Wxi, Whi, Wx f , Wxo, Who, Wxc, Whc,
bi, b f , bo, and bc stand for the coefficient matrix and offset vector.

In the proposed model presented in Figure 2, a two-layer LSTM network is constructed
to learn the ADF vectors of the keyframe sequence, so as to obtain the spatiotemporal
features of the video sequences. In Figure 2, { f1 , f2, · · · , fn} are the ADF vectors that are
constructed by Module II representing a keyframe sequence. Thus, from an input sequence
{ f1 , f2, · · · , fn}, the memory cells in the two LSTM layers will produce a representation
sequence {m1 , m2, · · · , mn}. Finally, the feature vector mn at the last moment feeds into
the softmax layer so that the driver distracted action can be identified.

5. Experiment

The hardware facility used in this study is a self-assembled desktop computer equipped
with 3.2 GHz Intel i5-6500 CPU, 8 GB RAM, x-64 based processor, and NVIDIA GeForce
GT1030 GPU, which sources from Beijing, China. All programs in this study were operated
in Spyder 4.1.4. based on the Windows 10 operating system. The code was mainly im-
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plemented in Python language, and the network construction is based on the TensorFlow
deep learning framework.

5.1. Selection of Hyper-Parameters

An important step in using the K-means clustering algorithm is to artificially deter-
mine the K value, which determines the number of keyframes to be extracted. Therefore,
it is necessary to ensure that the extracted keyframes are not only representative but also
to avoid data redundancy. Because the selection of hyper-parameters and the estimation
of model performance need to be done on the same dataset, the traditional K-fold cross-
validation is likely to cause an optimistic evaluation of model performance, because nested
cross-validation techniques can overcome common problems related to overfitting and data
bias when confined by limited data size. Moreover, it can also optimize hyper-parameters
and provide an unbiased estimate of algorithmic generalization performance simulta-
neously [50]. So we chose the nested cross-validation technique instead of traditional
K-fold cross-validation to optimize the parameters K and the parameters of LSTM in this
research [50,51]. The nested cross-validation technique consists of inner cross-validation
(CV) loops, which are used to optimize the hyper-parameters and the outer CV loop, which
is applied to measure the generalization performance using the optimal hyper-parameter
values of unseen test data.

The process for the nested cross-validation technique is shown in Figure 8. Our
dataset is randomly split into five non-overlapping groups in the outer loop. In each
group, two dissected subsets are called training sets and test sets respectively, and test
sets are dedicated to model evaluation. In each iteration of the internal CV loop, the input
training set is repeatedly split into validation and inner training sets using the threefold
CV method. What is remarkable is that we divided samples of the dataset into five parts or
three parts by action performers instead of randomly dividing. Table 5 shows the range of
hyper-parameters. The selected values of three hyper-parameters to be optimized were
combined to form various combinations. the inner training folds are used to derive different
models by manually adjusting the hyper-parameters, while the validation set is used to
estimate the performance of the model. The hyper-parameter corresponding to the highest
classification accuracy of the inner CV loop is selected as the optimal hyper-parameter to
train the external CV loop.

Figure 8. The flowchart of the fivefold nested CV.
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Table 5. The range of values for the hyper-parameters.

Hyper-Parameter Value

K 6/8/10/12/14
Hidden layer Units 32/64/128

Learning Rate 0.01/0.001/0.0001

The optimal hyper-parameter settings are shown in Table 6. We suspect that the se-
lected keyframes are too few, resulting in the model’s acquired spatiotemporal information
is not enough to perform similar actions. The selection of too many keyframes causes
some non-keyframes to have a negative effect on recognition, that is, similar front-to-back
correlations between different types of action sequences will interfere with recognition.

Table 6. The optimal hyper-parameter settings.

Module III and IV Parameter Value

K-means clustering algorithm K 10

LSTM networks

Number of Hidden Layers 2
Hidden layer Units 32/64

Batch Size 10
Epochs 100

Learning Rate 0.001
Optimizer Adam

Loss Function Sparse_categorical_crossentropy
Validation Frequency 1

We qualitatively assessed whether the keyframe sequences we extracted can represent
the complete action sequences. As shown in Figure 9, the distracting action completed by
the performer of drinking water has a total of 90 original frames, and 10 keyframes are
extracted, which have most of the information about the action. From this, we can conclude
that the use of a few information frames from a portion of the action sequence is sufficient
to accurately recognize the action.

Figure 9. Qualitative results for our proposed keyframe sequences extraction method.
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5.2. Experimental Comparisons

In this section, we will evaluate the effectiveness of the proposed model from the
following two perspectives.

(1) Comparison of different module combinations. We carry out different types of
module combination experiments and perform a comparison with accuracy to reflect
the effectiveness of our proposed Module II, Module III, and Module IV, respectively:
(i) Combination of Module I and Module IV, including data processing, without feature
construction and keyframe sequence selection. (ii) Combination of Module I, Module II
and Module IV, and (iii) combination of Module I, Module III, and Module IV. It is noted
that we apply Module II and Module III for separate experiments to prove the effectiveness
of the fusion of these two modules for action recognition. (iv) The four-module framework
proposed in this article. (v) Module IV was replaced with a support vector machine (SVM)
algorithm. The SVM algorithm is used for comparison experiments, mainly because it is
a machine learning algorithm that is often used in classification models and is between
simple algorithms and neural network algorithms with excellent performance. Based on
the structural risk minimization theory, SVM determines a hyperplane by finding several
support vectors and divides the samples into two categories, so it was originally used to
solve the binary classification problem. When faced with a multi-classification problem,
it is indispensable to build a multi-classifier, among which common methods include the
one-to-many method and one-to-one method. The parameter settings of the SVM used in
the experiment are shown in Table 7. It is worth noting that the feature vectors representing
keyframes are fed into the SVM separately.

Table 7. Parameter setting of the SVM.

Kernel Function Construction Method of Multi-Class
Classifier Number of SVM

Gauss kernel One to one 28

What we need to do is to find the optimal parameters of the LSTM to get the most
objective assessment of Module II and Module III’s performance, rather than controlling
these parameters to be consistent across the four models. Therefore, on the premise that
the LSTM network is used to extract temporal information, the parameter settings of the
LSTM network in the four comparative experiments (experiment (i)–(iv)) are inconsistent,
as shown in Table 8.

Table 8. Parameter of LSTM networks in experiments (i)–(iv).

Experiment Hidden Layer Units LSTM Layers Params Total Params

(i) 64/128 25,856/98,816 125,704
(ii) 32/64 6912/24,832 32,264
(iii) 64/128 25,856/98,816 125,704
(iv) 32/64 6912/24,832 32,264

Table 9 summarizes the detailed data and results of the comparison of different module
combinations. It can be seen from the experimental results that Module II and Module III
increase the accuracy rate from 82% to 90.25% and 86.75% respectively, and the combination
of the two modules increases the accuracy rate by 92.13%. By using the combination of
Module II and Module III, instead of using only one of the feature processing methods, it is
very intuitive to greatly increase the robustness of the detection. In addition, the proposed
method of feature processing can well eliminate the impact of individual differences of
different drivers and experimental distance changes on the recognition accuracy, and the
improvement of accuracy also proves the correctness and effectiveness of the method.
Through the comparison of experiment (iv) and experiment (v), using LSTM is better than
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SVM. This result proves that spatiotemporal features contain more information expression
than single spatial features, which is conducive to action recognition.

Table 9. Comparison of methods on self-made datasets. The results are presented in the order of
experiments (i–v), and the result of using the completed architecture we proposed in Figure 2 is
shown in bold text. Note: joint points (JP), module ratio (MR), vector angle (VA), keyframe sequences
(KFS), keyframes (KF). For more details, see Sections 4.2 and 4.3.

Experiment Approach Features Accuracy

(i) Module I+ IV JP 82%
(ii) Module I+ II+ IV MR+ VA 90.25%
(iii) Module I+ III+ IV JP+ KFS 86.75%
(iv) Module I+ II+ III+ IV MR+ VA+ KFS 92.13%
(v) (Module I+ II+ III)+ SVM MR+ VA+ KF 77.02%

(2) Comparison with the state-of-the-art methods. In the field of DAR, most studies
still focus on improvements of the CNN model, which means we cannot fairly compare our
approach with them. We set up five comparative experiments with traditional CNN-LSTM.
In the experiments, we apply transfer learning [52] to save computing resources and avoid
local optimization problems. Transfer learning requires a pre-trained network that has
been trained for some tasks. In transfer learning, we do not need to modify the hidden
weights of the pre-trained network, which are just used to extract the features of the new
task. A typical transfer learning technique is to append a new fully connected network
to the end of the pre-trained network. In the literature [18,21,53,54], fine-tuned VGG16
and Inception V3 have been successfully applied to solve various problems. Therefore, we
selected these two pre-trained CNN models which were trained for image classification in a
subset of ImageNet. This subset, published in the ImageNet Large-Scale Visual Recognition
Challenge, consists of approximately 1000 different categories and 1.2 million images. We
use the Keras implementations of Inception V3 and VGG16 models for transfer learning,
which consists of 11 blocks/311 layers and 5 blocks/19 layers, respectively. The model
details are shown in Table 10. In addition to these blocks, there is a final block that divides
the training set into 1000 classes at the end of each model by the fully connected and
softmax layers. Because driver actions are divided into eight classes in this study, much
smaller than those of the pre-trained model, it is necessary to fine-tune the network to fit
our dataset. Therefore, the last block of the pre-trained network is replaced by the final
block we designed ourselves, as shown in Table 11.

After determining the structure of the CNN network, we combined the fine-tuned
CNN with the self-made LSTM forming two CNN-LSTM network models. The CNN
models are applied to each frame of the video sequences to obtain the class probability
estimates, which are fed into LSTM as image spatial information. The structure of LSTM
is shown in Table 12. Two different models were eventually identified, which were CNN-
LSTM models.

After determining the model, the self-made dataset was used for training. Firstly, the
self-made dataset was divided into 80% training and 20% testing, and then the training set
was divided into 70% training and 30% validation, which is used for hyper-parameter opti-
mization. In this process, the Adam optimizer [55], which aims to learn the problem faster
by adapting or optimizing the learning rate, was used for model training for 40 epochs.
The results of the experiments are shown in Table 13. It can be seen that the model we
proposed is more competitive by comparing the accuracy of VGG16-LSTM and Inception
V3-LSTM. The results also prove that handcrafted features derived from OpenPose are
more representative than automatically generated features from CNN.
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Table 10. VGG16 and Inception V3 networks.

CNN Model Block(s) Layer(s)

VGG16

0 0
1 4
2 7
3 11
4 15
5 19

Inception V3

0 0
1 41
2 64
3 87
4 101
5 133
6 165
7 197
8 229
9 249
10 280
11 311

Table 11. The final block.

Block Layer(s)

Final block

Flatten
Full connected-1024 with ReLU

Batch normalization
Dropout (0.5)

Fully connected-8 with softmax

Table 12. LSTM model constructed for CNN-LSTM.

LSTM Models Layers

Input (90 frames × 8 Class probabilities)
LSTM-32

Dropout (0.3)
Dense-8 with softmax

Table 13. Comparison of methods on the custom dataset.

CNN Model Operation Features LSTM Model Accuracy

VGG16 Transfer
learning

Deep neural features
√

75.94%
Inception V3

√
79.58%

OpenPose Construct ADFs
Handcrafted features
based on deep neural

features

√
92.13%

The average recognition accuracy of the model we proposed was 92.13%, which can
meet the needs of practical applications. In order to fully verify the classification effect
of the framework, we show the confusion matrix of the best model in Figure 10. As can
be seen from the figure, there is still some confusion about similar actions, such as eating
and drinking, driving safely, and talking to passengers, the reason being that these two
actions are too similar. However, for the most common and more traffic accident-prone
movements such as making phone calls, texting, and makeup [56], the model we propose
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achieves high-precision recognition. Besides, misidentifying eating as drinking and vice
versa has little effect on our model’s warnings about distractions. In the future, better
feature representation will be needed to distinguish between the misidentification of safe
driving and talking to passengers. In addition, the processing time of our proposed method
is 3.48 s when the server GPU acceleration is strong enough. In real life, distractions such
as making phone calls and texting tend to last more than 10 s, and the real cause of traffic
accidents is usually a long period of continuous action [9]. Compared with the duration of
these actions, the processing time of the model we proposed is negligible to meet the needs
of practical application.

Figure 10. Confusion matrix by our proposed model.

6. Conclusions and Feature Works

This paper proposes a method of driver distraction recognition based on RGB video,
which emphasizes the importance of temporal features and fills the gap in the DAR field.
The hybrid deep learning model we proposed does not only rely on spatial features but
also extracts efficient spatiotemporal features from the driver’s action sequence to improve
the accuracy and robustness of the driver’s distracted action recognition. The realization
of this framework mainly relies on three methods (i) computer vision method, namely
CNN-LSTM architecture is used as the basic framework, (ii) feature construction based on
joint points, and (iii) keyframe sequence extraction. The improved feature construction
method we proposed can weaken individual differences and improve the generalization
ability of the model when the relative distance between the driver and the camera changes,
or there are differences in height, weight, and body proportions between different drivers.
The extracted keyframes enhance the process by providing information that is free from
redundancy but carries the most relevant details about the action that exists in the motion.
Finally, for thorough and detailed performance evaluations of every module and the model,
we designed two sets of comparative experiments. The first group of experiments has
compared the influence of different module combinations on distracted action recognition.
The results show that the model we proposed has higher recognition accuracy than other
module combinations. In this group of experiments, the comparisons of Module II and
Module III for separate experiments and the combination of these two modules prove the
effectiveness of the modules for action recognition. The second group of experiments was
designed to compare our methods with the state-of-the-art methods. We have conducted
sufficient experiments based on a custom dataset and our proposed method comparatively
produced very competitive results.

Due to the constraint effect of the dataset itself on the neural network, the increase in
the number of datasets is helpful for the feature extraction and generalization capabilities
of the model. Although a high-quality video dataset was collected, a more diverse dataset
is required to cover more scenarios and more kinds of drivers (e.g., different races and
body shapes), which is the focus of future work. On the technical side, in the future, our
approach can be applied from the following two aspects:

• Complement the method we proposed with existing methods for detecting driver who
is fatigued, drunk, or sleeping to achieve a complete driver distraction monitoring system.
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• The approach proposed in this paper can be combined with other intelligent meth-
ods, such as the trajectory prediction method [57] and interpretable decision-making
method [58], to build a complete intelligent system to support autonomous vehi-
cles, which can assist in detecting whether the driver can take over vehicle control
under emergencies.
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