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Abstract

The continual emergence of new pathogens and the increased spread of antibiotic resis-

tance in bacterial populations remind us that microbes are living entities that evolve at rates

that impact public health interventions. Following the historical thread of the works of Pas-

teur and Darwin shows how reconciling clinical microbiology, ecology, and evolution can be

instrumental to understanding pathology, developing new therapies, and prolonging the effi-

ciency of existing ones.

What did the son of a tanner, born in the French region of Jura in 1822, have in common with

the son of a Shropshire doctor born 13 years earlier? Both men went on to play founding roles

in two major fields of biology, which are only now converging some 150 years later, with

important implications for our understanding of the relationship between infectious diseases,

their hosts, and the environment.

The life and contributions of these two scientists may seem radically different at first (Fig

1): while Charles Darwin worked mostly alone (despite a large network of correspondents),

gathered field data to support his theories, wrote books, and did relatively few experiments,

Louis Pasteur led an ’army’ of research assistants who performed a wide array of experiments,

wrote research articles, and typically addressed applied problems of industrial or public health

interest. In addition to having different research methods, they had contrasting religious out-

looks; Pasteur was known for his devout personality, while Darwin described himself as

’agnostic’ late in his life. However, both researchers shared the singular ability of being able to

make sense of seemingly independent observations. Both also had a profound impact on medi-

cine during their life, without being themselves medical doctors.

In a famous essay, molecular geneticist Joshua Lederberg lamented the lack of interaction

between the work of the French microbiologist and the English naturalist [1]. Anecdotally, Sir

James Paget mentions in his Memoirs and Letters (1902, p. 407) that Pasteur and Darwin both

attended the International Medical Congress in London in 1881 but did not exchange words.

Despite this lack of dialogue, it did not take long for microbiologists to recognize that microbes

are ideal organisms to test and apply evolutionary theories [2, 3]. In fact, and contrary to a still

common belief [4], not only did Darwin write about microorganisms, he even thought about

how to integrate them into his theory [5]. His interest in the germ theory of disease transpired
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in a private correspondence with botanist Ferdinand Cohn, in which he admitted that ’if ever

the origin of any infectious disease could be proved, it would be the greatest triumph to sci-

ence’ (p. 234 in [6]).

During Darwin’s later years and not long after his death, medical doctors in Britain brought

his ideas to bear on issues such as the nature and change of infectious diseases [7]. In France,

the early disciples of Pasteur (the ’Pastorians’), often depicted as Lamarckian, promoted con-

cepts of selection and variation inspired by Darwinian evolutionism [8]. Historian of science

Andrew Mendelsohn even describes the laboratories of Pasteur and Koch as ’the earliest place

of sustained experimental cellular-level in vitro research on phenomena understood as biologi-

cal variations and evolutionary mechanisms’ [9]. In retrospect, this underlying interest in varia-

tion, heredity, and (possibly) evolutionary phenomena is coherent with Pasteur’s hiring of the

Russian evolutionary-minded immunologist Élie Metchnikoff, according to whom ’the science

of microbes has benefited from the application of the theory of evolution, and has made a fair

return by supplying the Darwinian theory with a striking confirmation’ [10]. Furthermore,

although he did not cite the work of Darwin itself, Metchnikoff’s student Charles Nicolle, direc-

tor of the Pasteur Institute in Tunis for 30 years, proposed a distinctive view of the ’birth, life,

and death of infectious diseases’ based on the notion of ’mutation’ in microorganisms and the

assumption that human and animal populations can act as ’reservoirs’ for the emergence of new

infections [11]. The idea of harnessing ecology and evolution to control infectious diseases can

therefore be traced to the work of Pasteur and Darwin, even though evolutionary biology and

medical microbiology have profoundly changed, both theoretically and empirically, since then.

Emergence of new threats

Evolutionary biology can help us understand emerging infectious diseases, as perhaps already

foreseen by Pasteur [9, 12]. Drawing on his empirical work demonstrating how, after several

passages in new hosts, the virulence of a microbial strain can increase for these hosts and

decrease for the original host, he ventured that ’by this method new virulences and new conta-

gions can be created’. This is how, he claimed further, ’smallpox, syphilis, plague, yellow fever

appeared across the ages’ [12]. These statements echoing Darwin’s theories, which at the time

were upheld by atheists and by proponents of spontaneous generation [13, 14], are all the

more remarkable that they came from a man who wanted to keep science and metaphysics

apart [15].

Fig 1. Charles Darwin the naturalist and Louis Pasteur the microbiologist. Charles Darwin’s painting is from

George Richmond in the late 1830s after his return from his voyage on HMS Beagle, and the painting of Louis Pasteur

in his laboratory is from Albert Edelfelt in 1885 (Museé d’Orsay, Paris, France).

https://doi.org/10.1371/journal.pbio.2003815.g001
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This proximity between the study of disease emergence and Darwin’s views has increased

with the advent of microbial phylogenies. The only illustration in On the Origin of Species
strongly resembles a phylogeny. Nowadays, thanks to DNA sequencing and computer sci-

ences, it is commonplace to use genetic sequences from populations of microbes infecting one

or several individuals to infer phylogenies. These may contain key epidemiological informa-

tion if the way infectious diseases spread leaves footprints in their genomes, as postulated by

the field of phylodynamics [16]. For instance, analysing avian influenza virus genomes has

revealed the importance of environmental transmission in the life cycle of the virus [17]. In the

case of seasonal human influenza, algorithms can integrate existing sequence data to make pre-

dictions on the most likely epitopes to emerge in the near future [18].

The 2014 to 2016 Ebola epidemics in West Africa marked a quantitative shift in sequencing

with the publication of full virus genomes sampled from 78 infections within the first months

of the outbreak [19]. Overall, more than one thousand complete genomes have already been

analysed, thus providing us with a detailed view of the spread of the epidemics between coun-

tries [19, 20]. The early beginnings of this sequencing era could be observed during the 2009

H1N1 influenza pandemics [21]: in the case of the Ebola epidemics, phylodynamics

approaches enabled researchers to go further and to infer key epidemiological parameters such

as the basic reproduction ratio (R0) or infection duration [22, 23].

Emergence often involves adaptation to new hosts. Pasteur argued that attenuated forms of

virulent parasites already exist in populations and that their ’virulence can be progressively

reinforced’ if the environmental conditions are adequate [9, 12]. The Chikungunya virus out-

break that occurred in La Réunion Island in 2005 to 2006 illustrates how such ’reinforcement’

may occur. At the end of 2005, there was a first limited outbreak that caused a few thousand

cases. In 2006, it was followed by a huge outbreak with hundreds of thousands of cases. The

main reason for the size difference was that in 2006, most viruses bore a key mutation in posi-

tion 226 of the E1 protein, which greatly increased the vectorial capacity of Aedes albopictus
(tiger) mosquitoes [24], which are known for their anthropophilic behaviour. The ability to

use this new vector in addition to the historical one Ae. aegypti explains the second outbreak.

The evolutionary rescue framework offers an even more dynamical picture [25]: the virus pop-

ulation that emerged at the end of 2005 was bound to go extinct rapidly, but the evolutionary

event (the substitution in position 226) allowed it to persist and generate a major outbreak. By

combining epidemiology and evolution, it is possible to quantify the probability of occurrence

of such a major outbreak (Fig 2A) [26]. Ten years later, a similar process might have been at

work during the Ebola epidemics in West Africa [27, 28] and during the Zika epidemics in the

Americas, where a mutation that enhances the virus’s infectivity for Ae. aegypti was fixated

into its genome [29].

Virulence evolution

Microbial virulence is an essential concept of 19th-century bacteriological sciences [9]. Com-

parative pathologist Theobald Smith was among the first to formalize how virulence might

evolve in the field. His theory, although more complex than usually presented [31], is that

highly virulent strains would be counterselected because killing their host is detrimental to

their epidemiological fitness [32]. Smith’s contributions led to new ways of looking at hosts

and parasites that ran parallel to the more conventional and dominant ’magic bullet’ narrative

in the 20th century, which postulates that we will always find a drug to selectively kill any

microbe [33]. After Smith, medical scientists such as Charles Nicolle, Karl F. Meyer, Frank

Macfarlane Burnet, René Dubos, or Frank Fenner promoted the study of the natural history of

infectious diseases. Understanding and controlling epidemics, they argued, was not reducible
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to tracking pathogenic germs in their remotest ’nook and crany’, to quote Robert Koch—a

practice embodied by the ’microbe hunter’ tradition in bacteriology [34].

Although hugely influential, Smith’s claim that parasites would always become avirulent

given enough time did not go unchallenged. In the early 1980s, building on important

advances in evolutionary theory recognizing that selection can operate simultaneously at mul-

tiple levels [35], evolutionary epidemiologists argued that virulence—usually measured

through the host’s parasite-induced mortality rate—can be adaptive if trade-offs are involved

[36, 37]. Some of the clearest support for the trade-off hypothesis in a human disease comes

from HIV-1 [38]. HIV virulence is classically measured in the absence of treatment as the

inverse of the time to AIDS. Therefore, by definition, HIV virulence decreases infection dura-

tion. Increased virulence, however, also comes with increased probability of transmission per

sexual contact. The trade-off originates from these two opposite forces: milder viruses cause

longer but poorly contagious infections, whereas virulent viruses cause short but contagious

infections. Mechanistically, this relationship has been shown to be mediated by HIV set-point

viral load, which is correlated with both virulence and transmission. Furthermore, this virus

load has been shown to be at least partly controlled by the virus’s genetics [39, 40]. Observed

evolutionary dynamics are consistent with the existence of such a trade-off [38]. Of course,

explanatory hypotheses of field data are rarely mutually exclusive, and HIV virulence could

also be due to maladaptation or to other selective forces such as multiple infections. More gen-

erally, when epidemiological fitness components other than transmission rate and infection

duration are considered, establishing the adaptive nature of virulence is challenging [41].

A direct epidemiological consequence of this trade-off is that population dynamics feed-

backs can generate a transient advantage for virulent strains early in epidemics [30]. This

short-term effect was shown in vitro by generating an outbreak in a bacterial population with a

mixture of virulent and nonvirulent phages. The initial 1:1 ratio first increases to 100:1 before

decreasing to 10:1 in favour of the virulent phage [42]. Field data on the spread of pathogenic

bacteria in North American house finch also support this theoretical prediction [43]. This ini-

tial peak in virulence makes emerging infectious diseases even more dangerous in the short

term (not to mention that the lack of immunity in the host population can amplify this

increased virulence).

Fig 2. Combining the epidemiology and evolution of infectious diseases. (A) Evolutionary rescue of a parasite population via mutation, (B) representation of the SI

epidemiological model, and (C) virulence evolution in response to different types of interventions. In panel A, the resident strain (in black) cannot generate a large

outbreak (its R0 < 1), but it can still persist long enough for a mutation event to occur that can lead to a well-adapted mutant (in red) [26]. In panel C, the predictions

are obtained using the Price equation formalism and the assumptions from Fig 2 in [30]. The colour of the curves corresponds to the arrows in panel B (black is the

untreated case). Even in absence of treatment, the virulence evolves in the short term because its initial value is far from its optimal value. The virulence-blocking

treatment (in yellow) leads to the highest increase virulence, whereas the treatment-blocking (in green) first favours less virulent strains. Increasing host recovery rate

(in grey) also increases virulence. SI, Susceptible-Infected.

https://doi.org/10.1371/journal.pbio.2003815.g002
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The trade-off also has ethical implications because any public health intervention that

affects parasite transmission may impact virulence evolution (see Box 1 on vaccination).

Often, what is best for an individual in terms of antiparasitic treatment may be at odds with

what is best for the population, as in the case of antibiotic resistance [44]. In such a case, evolu-

tionary biologists can help clinical microbiologists and epidemiologists because they have a

tradition of studying processes at different scales [35].

Box 1. Vaccination: When resistance meets virulence

Pasteur’s privileged way of fighting infectious diseases was vaccination. Although this

can impact the relation between a host population and its parasites, the evolutionary

effects of vaccination are less predictable and often less apparent than the effects of using

antimicrobial drugs [45].

One of these effects is vaccine escape, which describes infections caused by a parasite

variant that has a different epitope (antigenic determinant) than the one targeted by the

vaccine. This process is similar to drug resistance and has been described in the case of

hepatitis B virus, Bordetella pertussis, and Streptococcus penumoniae [46].

In addition to this ’evasion’ scenario, an ’escalation’ scenario is possible [47] in which

the parasite variant that successfully spreads among vaccinated hosts is more virulent

than parasites that go extinct. From a molecular point of view, this can be caused by epi-

tope changes (in which case there is both evasion and escalation) or by an increase in the

replication rate.

Vaccines can interfere with the parasite’s life cycle in several ways (Fig 2B), and evolu-

tionary theory predicts that the mode of action impacts the nature of the fittest strain

[48] (Fig 2C). This was shown experimentally using the rodent malaria parasite Plasmo-
dium chabaudi in mice: a replication-blocking vaccine led to the evolution of higher lev-

els of virulence during serial passage experiments [49]. In theory, interventions that only

reduce infection virulence, thereby turning infected hosts into healthy carriers, are the

most dangerous ones in the long term [48]. Recent studies have found that using viru-

lence-blocking vaccines against Marek Disease Virus (MDV), an avian herpesvirus and a

major threat to the poultry industry, support these predictions. Until recently, the evi-

dence was mainly correlational [50], but experiments now show that vaccinating chicks

can lead to the emergence of more virulent strains otherwise unable of generating any

secondary case and spreading into the population [51].

Vaccination is a case in point about how bringing evolutionary ecology and clinical

microbiology closer to one another could open new perspectives. Whereas the latter

tends to focus on molecular and cellular interactions leading to evasion and escalation,

the former studies the effects of vaccination at the host population level, thus making a

number of simplifying assumptions (for instance, in classical models, a vaccine cannot

act in multiple ways, e.g., decreasing both infectivity and replication, and parasites can-

not have multiple traits evolve such as virulence and escape). Increased realism about

the mode of action of vaccines and the evolutionary response of parasites will require a

closer dialogue between distinct domains within the biomedical sciences.
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Resistance evolution

In 2000, the frequency of S. pneumoniae resistant to penicillins (J01C β-lactam antibacterials)

was shown to strongly correlate with the amount of antibiotics from this class prescribed per

inhabitant in European countries [52]. Although the strength of the correlation came as a sur-

prise, the problem itself was not new. The observation of resistant bacterial strains was con-

comitant with the introduction of antibiotics in the mid-1940s [53]. The ensuing decades,

which were characterized by large-scale use of antibiotics in medical and nonmedical contexts,

facilitated the emergence of resistant and super-resistant bacteria. Warnings from Fleming in

his Nobel lecture in 1945 and later from ecologically minded medical scientists such as Dubos

and Burnet on the consequences of resistant microorganisms selected by the use of antibiotics

remained largely unheard [53]. Metaphorically, Dubos described doctors faced with the prob-

lem of infectious diseases as ’gardeners whose work never ends’ and argued that ’students of

disease must always be on the lookout for new problems of infection’ [54]. Ecological perspec-

tives on disease were never absent in 20th-century biomedical science, but until the 1980s and

the outbreak of the AIDS pandemic, they did not attract as much attention as the discovery of

new drugs, the eradication of a particular disease like smallpox, or the identification of new

pathogens did [55]. The prospect of an ’empty pipeline’, the resurgence of resistance world-

wide, the failure of eradication programmes, and changes in natural environment as well as

greater awareness that microbes are evolutionary agents provided a wider space for ’ecological

reasoning in medicine’ [33].

Parasite virulence has been under scrutiny by clinical microbiologists since Pasteur [56],

but it has also been a central trait for evolutionary biologists [41, 57]. Some exceptions not-

withstanding [58, 59], this is not the case for antibiotic resistance. Evolutionary biology studies

investigating how to best combine antibiotics [60] or alternate between them [61] are recent

compared to the time since these practices have been attempted in the medical field [62]. In

epidemiology, ecological theory has provided methodological insights. For instance, using a

Bayesian analysis of prevalence data from Cuba, Venezuela, and Estonia, a research team has

estimated the fitness cost paid by resistant strains of Mycobacterium tuberculosis [63]. Based on

datasets from the United States and Ireland, it has also been argued that larger hospital sizes

favour the spread of antibiotic resistance, one interpretation being that a network of small hos-

pitals maximises the risk of stochastic extinctions of newly emerged resistant variants [64].

The renewed focus on the evolution of drug resistance has led evolutionary biologists to chal-

lenge Paul Ehlrich’s dogma for treating infections (’Frapper for et frapper vite’, or ’Hit early and

hit hard’ in English [65]). As illustrated in Fig 3, it may sometimes be preferable to use lower

doses to contain an infection instead of attempting to eliminate it [66]. Although provocative

and challenging from a clinical point of view, similar ’watch and wait’ strategies are already rou-

tinely implemented to treat chronic lymphocytic leukemia [67]. Evolutionary biology can offer

a conceptual framework to guide these practices because choosing the optimal strategy is some-

times counterintuitive. For instance, one of the few early mathematical models from the 1990s

showed that rotating between different antibiotics at the population level selected for higher lev-

els of resistance than treating part of the population with different antibiotics [59], thus warning

against the consequences of an empirical ’trial and error’ approach.

Seeding evolutionary theories

Evolutionary biology currently has a marginal place within medicine. There is even a signifi-

cant tendency to avoid the ’e-word’ in the biomedical literature when referring to antimicro-

bial resistance [69]. Yet in the 19th century, medical sciences were as enthusiastic for Darwin’s
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ideas [70] as they were initially hostile to Pasteur’s [71]. This support, often implicit, progres-

sively came to a halt in the 20th century for at least two reasons. First, the intellectual proximity

between evolution, eugenics, and medicine, most clearly articulated in Karl Pearson’s 1912

address (’Darwinism, medical progress, and eugenics’) and in George Draper’s constitutional

medicine [72], made scientists wary of implementing evolutionary approaches in medicine, par-

ticularly after World War II. Experimentation on human subjects in Nazi Germany revulsed

public opinion worldwide and ended eugenic policies, at least in the public discourse [73]. Sec-

ond, the major reform in US medical education along the lines promoted by Abraham Flexner

in his 1910 influential report contributed to insulating evolutionary thinking. At the time, evo-

lutionary biology was still largely viewed as an observational science and no longer had a place

within the new configuration of medical knowledge and training organized around specialities

and characterized by experimentation [74]. In addition to this ban from medical curricula,

some prominent evolutionists of the Modern Synthesis such as Theodosius Dobzhansky [75]

and Ernst Mayr [76] typically evinced little interest in the evolution of microorganisms.

For some medical bacteriologists in the interwar period, however, the nature of microbial

species in relation to virulence and variability raised fundamental problems that were often

depicted in evolutionary terms. Changes in microbial colonies (from smooth to rough, or vice-

versa), as described by Fred Griffith in the 1920s, for instance, compelled bacteriologists to

investigate ’heritability’, ’mutation’, or ’adaptation’ of these traits. The study of changes in

bacterial species, Griffith argued, was important for epidemiology because it ’may some day

provide an explanation why a ubiquitous and apparently harmless organism may suddenly

Fig 3. How high drug doses can lead to selection of preexisting drug-resistant mutants via ’competitive release’. Charts show the within-host

growth rate of drug-susceptible (in cyan) and -resistant (in red) bacteria populations at three time points using a high (top) or a low (bottom) drug dose.

Population sizes and the fraction of resistant bacteria are shown between the bars. Note that depending on the fitness landscape, there might not always

exist a dose that prevents the spread of both bacterial populations (for details, see [68]). R, Resistant; S, Susceptible.

https://doi.org/10.1371/journal.pbio.2003815.g003
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become more pathogenic for its host and of such high infectivity as to propagate an epidemic’

[77]. Still, it took several more decades before evolutionary perspectives on the biology of

infectious diseases reached the bedside and informed clinical medicine [78].

There is now increasing support for the teaching of evolutionary biology in medical facul-

ties [79, 80]. When teaching medical students, however, one should call attention to the set of

assumptions often made regarding ancestral lifestyles [81] or the adaptative value of certain

traits or behaviours [82]. Furthermore, it should be emphasized that medicine and evolution

have different ‘conceptual bases’ and are typically concerned with different problems: whereas

the former focuses on restoring health at the individual level, the latter studies biological varia-

tions at the population level and how they change over time [83]. For these reasons, the great-

est potential impact of evolutionary medicine is likely to come from a better integration of

microbial evolution in public health and epidemiology [80]. In turn, this raises the question as

to whether introducing evolutionary biology in public health departments rather than amend-

ing (dense) curriculae in medical faculties might be a more efficient strategy.

Just like evolutionary theory, public health is typically concerned with the study of popula-

tions, making it theoretically closer to clinical medicine. One of the ways this is already being

implemented is through journals and learned societies. Furthermore, evolutionary ecologists

who work on health-related topics should not hesitate to attend workshops and other scientific

meetings organised by their national public health agencies.

At the individual level, the greatest potential impact of evolutionary theory has to do with

the within-patient evolution that occurs during infection by rapidly evolving pathogens or

during cancer. One difficulty is that this requires not only convincing medical doctors of the

significance of selection processes at this level, but also of the usefulness of concepts and meth-

ods from population dynamics and community ecology to study cellular dynamics [84]. To

this end, creating bridges between molecular biology, ecology, and evolution departments

might be the most efficient way to have a concrete effect. Indeed, our historical approach

highlights that these bridges should not be taken for granted. Incidentally, this brings us back

to Pasteur’s fight to introduce microbiology in public health and Darwin’s work to bring all

available biological facts into his theory. Extending their efforts should help broaden the per-

spective for clinical research and help improve designing treatment protocols and national

guidelines.

Mastering coevolution

Over the years, Darwin and Pasteur’s fields have drifted apart due to a combination of histori-

cal, social, and epistemological factors. Evolutionary ecologists tend to focus on environmental

processes and phenotypic traits at the expenses of the underlying molecular and cellular inter-

actions, whereas clinical microbiologists work in the opposite direction (see Box 1). A more

synthetic view is not only necessary to understand pathogenesis, but also to develop and

enhance therapies as well as to reduce morbidity and mortality. This is also likely to raise ethi-

cal issues that cannot (and should not) be tackled by scientists alone.

The stakes are higher than not being able to use a few drugs. There is a serious risk that in

the long run, policies might trigger an arms race favouring more virulent parasite strains, as

witnessed for MDV in the poultry industry (see Box 1). Similar concerns apply to the use of

antimicrobial peptides in clinical and agronomical practices. Because these peptides are part of

our own defence measures, evolution of bacterial resistance could potentially reduce the effi-

cacy of our immune systems [85]. More generally, there is a documented risk of coevolution

between drug resistance and virulence [86]. Microbial evolution in response to public health

interventions is almost unavoidable; at the same time, the diversity of the microbial population
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shapes the public health response because mild strains are less reported and treated than viru-

lent ones. Actions can be undertaken, however, to ensure that the outcome of this coevolution-

ary process tends towards a more peaceful coexistence rather than an arms race [87].

In conclusion, there is an urgent need to switch from an eradication to a control perspective

as already advocated in 1955 by René Dubos [88] or in 2000 by Joshua Lederberg [55]. We

should add to the search for ’magic bullets’ the development of strategies to manage and miti-

gate pathogen evolution. In that sense, interventions that have a strong ecological and evolu-

tionary dimension, such as microbiota transplantation, new ways of administrating drugs

(varying doses, alternating or combining molecules), or even advances in phage therapy, could

be the future of public health [89, 90]. Darwin and Pasteur did not speak to each other at the

conference they attended, but it is more urgent than ever that the two fields they helped create

start conversing in the 21st century.
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ences. 1881; 92:1378–83.

13. Farley J. The Social, political, and religious background to the work of Louis Pasteur. Ann Rev Microbiol.

1978; 32(1):143–154. https://doi.org/10.1146/annurev.mi.32.100178.001043 PMID: 360963

14. Gayon J. Darwin and Darwinism in France before 1900. In: Ruse M, editor. The Cambridge encyclope-

dia of Darwin and evolutionary thought. Cambridge University Press; 2013. p. 243–312.
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