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ABSTRACT: Since the discovery of DNA, the nor-

mal developing and functioning brain has been assumed

to be composed of cells with identical genomes, which

remains the dominant view even today. However, this

pervasive assumption is incorrect, as proven by increas-

ing numbers of reports within the last 20 years that have

identified multiple forms of somatically produced geno-

mic mosaicism (GM), wherein brain cells—especially

neurons—from a single individual show diverse altera-

tions in DNA, distinct from the germline. Critically, these

changes alter the actual DNA nucleotide sequences—in

contrast to epigenetic mechanisms—and almost certainly

contribute to the remarkably diverse phenotypes of single

brain cells, including single-cell transcriptomic profiles.

Here, we review the history of GM within the normal

brain, including its major forms, initiating mechanisms,

and possible functions. GM forms include aneuploidies

and aneusomies, smaller copy number variations

(CNVs), long interspersed nuclear element type 1

(LINE1) repeat elements, and single nucleotide variations

(SNVs), as well as DNA content variation (DCV) that

reflects all forms of GM with greatest coverage of large,

brain cell populations. In addition, technical consider-

ations are examined, along with relationships among GM

forms and multiple brain diseases. GM affecting genes

and loci within the brain contrast with current neural

discovery approaches that rely on sequencing nonbrain

DNA (e.g., genome-wide association studies (GWAS)).

Increasing knowledge of neural GM has implications for

mechanisms of development, diversity, and function, as

well as understanding diseases, particularly considering

the overwhelming prevalence of sporadic brain diseases

that are unlinked to germline mutations. VC 2018 The

Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.
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INTRODUCTION

The exquisite organization and complexity of cells

within the brain have been recognized since the days

of Golgi and Cajal (Cajal, 1901) at the turn of the

20th century, yet molecular mechanisms from which

the brain develops and functions are still not

completely understood. However, in the 1940s and

1950s, the discovery of DNA as the carrier of genes

(Avery et al., 1944; McCarty, 1995, 2003) and its
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structural implications for genetics (Watson and

Crick, 1953a,b) led to a model in which cells of the

brain—and all other organs in an individual—arise

from a single, genetic blueprint within a constant,

diploid genome of unchanging sequence. Each indi-

vidual has thus been generally thought to be made up

of genomically identical cells, arising from a genome

first formed at fertilization as a zygote and extending

through mitotic cell division to all cells of the body,

including the cells of the brain (Do all our body cells
have the same DNA? 2012). A corollary of this

assumption is that the universe of normal activities of

the brain—from development and functional organi-

zation to personality and consciousness—arise from

a single, immutable genome.

A prominent exception to the view that all cells of

an individual have identical genomes emerged in the

1960s from theoretical estimates of antibody diversity

vs. available genetic information (Dreyer and Bennett,

1965; Dreyer et al., 1967) wherein estimates based

upon genome size indicated that there was insufficient

genomic information to encode for the recognized

astronomical diversity of antibodies. This realization

implicated somatic changes in DNA sequence—occur-

ring post-zygotically—to allow gene recombination to

produce new, combinatorial coding sequences. This

process is known today as V(D)J recombination

(Hozumi and Tonegawa, 1976; Schatz and Baltimore,

1988; Jung et al., 2006), which affects both immuno-

globulin and T cell receptor loci, and further forms of

somatic events within adaptive immune cells occur

through heavy chain class switch recombination (Xu

et al., 2012) and somatic hypermutation (Odegard and

Schatz, 2006). Together, these changes underlie the

enormous repertoire of antigen receptors that define the

mammalian adaptive immune system. One result of

somatic recombination and hypermutation is produc-

tion of immune cells that form a complex mosaic com-

posed of cells having different DNA sequences. This

process occurs somatically and is thus not passed on

through the germline. The immune system of an indi-

vidual therefore represents a first and clear example of

genomic mosaicism (GM) involving normal cells of

the body, with clear functional consequences through

the generation of antigen receptors, and selection and

survival of immune cells (Surh and Sprent, 1994;

Shlomchik and Weisel, 2012; Stritesky et al., 2012).

An operational definition of GM includes the fol-

lowing features: (1) it occurs somatically and therefore

does not affect germline DNA sequences, contrasting

with “genetic” mutations that enter the germline

(hence the term “genomic” rather than “genetic”

mosaicism here); (2) it produces nucleotide sequence

changes, as differentiated from epigenetics (Wolffe

and Matzke, 1999) which does not, thus allowing cells

in an individual to be distinguished by their DNA

sequence, and (3) it encompasses all forms of DNA

sequence changes that include gains, losses, substitu-

tions, and rearrangements, as well as gene recombina-

tion. Importantly, GM can clearly have functional

consequences, rather than being simply an epiphenom-

enon, as already noted for the immune system.

Could GM contribute to the vast cell diversity of

form and function within the brain? Early specula-

tions in the 1960s used a general analogy of nervous

system complexity as revealed in a tissue section

from goldfish tectum (Dreyer et al., 1967) and com-

pared it to immunoglobulin diversity; these conjec-

tures were intriguing but not based on experimental

evidence. However, unlike successful identification,

in subsequent decades, of somatic DNA rearrange-

ments and mutations in the immune system (Hozumi

and Tonegawa, 1976), no definitive (or even circum-

stantial) evidence of GM in the normal nervous sys-

tem existed in the scientific literature through 1990.

The identification of components of the V(D)J cleav-

age complex (Schatz et al., 1989), and expression

within the brain of one of its components, the recom-

bination activating gene 1 (RAG1) (Chun et al.,

1991), rekindled interest in the possibility that GM,

potentially produced by DNA recombination, could

exist within the brain, albeit distinct from V(D)J

recombination in that the latter additionally requires

RAG2 expression (Chun et al., 1991). However,

efforts to identify neural GM by designed recombina-

tion reporters within the brain (Matsuoka et al., 1991;

Schatz and Chun, 1992) or candidate gene examina-

tions that included olfactory receptors (Chun, 2004;

Eggan et al., 2004; Li et al., 2004), protocadherins

(Chun, 1999; Wu and Maniatis, 1999), and drosoph-

ila DSCAM (Hattori et al., 2008; Jin et al., 2013) did

not support recombination or other directed mecha-

nisms that could produce neural GM.

Commencing in the mid-1990s, distinct app-

roaches to GM characterization emerged from studies

of programmed cell death during neurogenesis

(Blaschke et al., 1996; Kuida et al., 1996; Voyvodic,

1996; Staley et al., 1997; Blaschke et al., 1998; Kuida

et al., 1998; Pompeiano et al., 1998; Pompeiano

et al., 2000; McConnell et al., 2009; Yung et al.,

2009; Peterson et al., 2012). These approaches

revealed extensive DNA fragmentation within single

neurons that could precede cell death by days (Pom-

peiano et al., 1998), reminiscent of myriad apoptotic

cells found in regions undergoing immunological

gene recombination (Surh and Sprent, 1994; Chun,

2001). The intermixture of cells with varied levels of

fragmented DNA amidst those without
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fragmentation, virtually all of which appeared normal

by standard histological stains, supported tolerance

of genomically distinct cells, as defined by levels of

DNA fragmentation (Blaschke et al., 1996; Staley

et al., 1997; Blaschke et al., 1998; Pompeiano et al.,

1998, 2000) within a normal, developing brain,

although having primary fates leading ultimately to

cell death (Fig. 1) (Blaschke et al., 1996; Blaschke

et al., 1998; Pompeiano et al., 2000). Interestingly,

at least some of the DNA fragments were associated

with apoptotic nucleosomal ladders that possessed

blunt-ended, 50-phosphorylated ends (Blaschke

et al., 1996; Staley et al., 1997), as is also found dur-

ing V(D)J recombination (Schlissel et al., 1993).

Moreover, proteins required to join the ends during

V(D)J recombination—nonhomologous end-joining

(NHEJ) proteins (XRCC4, LigIV)—were found to

produce a major phenotype when deleted in mice:

massive cell death within the cerebral cortex (and

Figure 1 Double strand break labeling in the developing brain. (A to L) Nuclear DAPI staining

and in situ end-labeling plus (ISEL1) of double strand breaks in the embryonic mouse cortex from

embryonic days 10–18 (E10-E18) and adult (adapted from Blaschke et al., 1996). ISEL1 labeling

increases through E14 and subsequently decreases with further development. [Color figure can be

viewed at wileyonlinelibrary.com]
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other regions), resulting in embryonic lethality

(Chun and Schatz, 1999; Gu et al., 2000).

Possible sequelae of NHEJ loss, including geno-

mic instability and aneuploidy, were documented in

cancers (Difilippantonio et al., 2000; Deans et al.,

2003; Thacker and Zdzienicka, 2004), which led to

a directed search for aneuploid cells during neuro-

genesis within the embryonic cerebral cortex. This

approach identified the first definitive evidence of

neural GM—that which occurred among cells of a

single brain—through mosaic, complex aneuploidies

among mitotic neural progenitor cells (Rehen et al.,

2001) (Fig. 2), and also represents a first example

of DNA copy number variations (CNVs). In subse-

quent years, other forms of GM were identified,

including LINE1 elements and sub-chromosomal

CNVs, both of which can be captured by DNA

content variation (DCV), as well as single nucleo-

tide variations (SNVs), which together reveal the

pervasive prevalence of GM throughout the brain

(Kingsbury et al., 2006; Westra et al., 2010; Bush-

man and Chun, 2013; Bushman et al., 2015) (Fig.

3). The varied forms of neural GM in the normal

developing and mature brain are reviewed next, fol-

lowed by a discussion of functions and putative

brain disease relationships.

Figure 2 Spectral karyotyping (SKY) of NPCs in the developing brain. Spectral karyotyping

(SKY) of representative mouse embryonic neuroprogenitor metaphase spreads (adapted from

Rehen et al., 2001). (A and B) Spectral (top left) and DAPI (top right) images show chromosome

spreads and unique spectral colors for each chromosome. (C and D) Karyotypes (bottom) illustrate

losses or gains of particular chromosomes across experiments. Euploid mouse cells have two copies

of each chromosome for a total of 40. [Color figure can be viewed at wileyonlinelibrary.com]
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Genomic Mosaicism (GM) as Aneuploidy
and Aneusomy in the Developing
and Mature Brain

“Aneuploidy” is historically defined as the gain and/

or loss of chromosomes from a euploid complement

(Tackholm, 1922; Santaguida and Amon, 2015). Its

study requires analyses of all chromosomes in a

single cell, which, until recently, required examina-

tion of condensed chromosomes within metaphase

spreads. “Aneusomy” refers typically to a copy num-

ber change of a single, defined chromosome without

complete knowledge of the state of the remaining

chromosomes, and it has been historically identified

using fluorescence in situ hybridization (FISH) on

Figure 3 Timeline of studies identifying forms of genomic mosaicism and reported functions and/

or consequences. As higher-resolution NGS technologies have become available, the ability to

identify smaller somatic differences between brain cells has improved. Many forms of GM have

significant functional implications in both healthy brain and disease states. [Color figure can be

viewed at wileyonlinelibrary.com]
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nonmitotic cells (Cremer et al., 1986; Pinkel et al.,

1986). Analyses of aneuploidy date back over 175

years with the discovery of chromosomes (Naegeli,

1844; Schleicher, 1879; Flemming, 1882; Waldeyer,

1888; Paweletz, 2001) and, indeed, human chromo-

some number was not accurately reported as 46 chro-

mosomes until 1956 (Tjio and Levan, 1956), before

which it was misidentified as 48. This error under-

scores the technical challenges associated with defin-

ing chromosomes before using metaphase spreads,

the current gold standard, to examine chromosome

number.

Using what was a new technology—spectral kar-

yotyping (SKY) (Liyanage et al., 1996; Macville

et al., 1997)—to examine aneuploidy in metaphase

spreads, mitotic spreads of neural progenitor cells

(NPCs) revealed pervasive aneuploidies within the

developing mouse cerebral cortex, affecting �30% of

mitotic NPCs (Fig. 2) (Rehen et al., 2001). Aneuso-

mic postmitotic neurons (and glia) from both mouse

and human were subsequently identified using SKY

and/or FISH (McConnell et al., 2004; Kingsbury

et al., 2005; Rehen et al., 2005; Yurov et al., 2007a;

Peterson et al., 2012). In the adult brain, aneusomies

constituted a range that averaged �18% (Yurov

et al., 2005; Iourov et al., 2006, 2009ab; Yurov et al.,

2008; Faggioli et al., 2012; Yurov et al., 2014) (Table

1, Human; Table 2, Mouse). That neural aneuploidies

exist is supported not only by hybridization-based

techniques like SKY, but also by histological identifi-

cation and real-time imaging of lagging chromo-

somes and supernumerary centrosomes resulting in

multipolar cell divisions, as well as by cytological

identification of nondisjunction, micronuclei, and

multiple nuclei (Yang et al., 2003). More recently,

aneuploidies have been identified by next generation

sequencing (NGS) methods (McConnell et al., 2013;

Cai et al., 2014; Knouse et al., 2014; van den Bos

et al., 2016). All chromosomes contribute to aneu-

ploidy, and there does not appear to be a preference

for any one chromosome being affected (Rehen et al.,

2001; McConnell et al., 2004; Faggioli et al., 2012;

Peterson et al., 2012; Yurov et al., 2014).

Neural aneuploidy is most commonly seen as

hypoploidy rather than hyperploidy (chromosome

loss and gain, respectively) (Rehen et al., 2001;

Rehen et al., 2005; Yurov et al., 2005; Yurov et al.,

2007a; Westra et al., 2008). This is consistent with

the preference for segregation defects involving lag-

ging chromosomes and supernumerary centromeres

(as opposed to nondisjunction), which favor the pro-

duction of hypoploidies in the developing brain

(Yang et al., 2003). This difference is most dramatic

when assessing the population of cycling neural

progenitor cells (�sixfold more hypoploidies than

hyperploidies) (Rehen et al., 2001; McConnell et al.,

2004; Peterson et al., 2012), which may suggest that

there is negative selection pressure during differentia-

tion, ultimately producing interphase, G0 cells with a

preference for chromosome loss. An important tech-

nical aspect of assessing the prevalence of aneusomic

cells in brain tissue sections is the problem of sec-

tioning through a nucleus to render it artifactually

hypoploid. For this reason, a number of studies pur-

posefully biased examination to only chromosome

gains (hypersomies) since they would not be pro-

duced by sectioning artifact, combined with a focus

on sex chromosomes that provided positive, internal

controls for identifying 1 (single X- and Y-) chromo-

some in males or 2 (X-) chromosomes in females in

the face of aneuploid numbers of sex chromosome or

autosome copies (Rehen et al., 2001; Kingsbury

et al., 2005; Rehen et al., 2005).

Aneusomic neurons survive into adulthood (Rehen

et al., 2005; Faggioli et al., 2012; McConnell et al.,

2013; Cai et al., 2014; Knouse et al., 2014) where

they can become integrated as active components of

neuronal circuitry (Kingsbury et al., 2005), and thus

likely have functionality. As aneuploid cells are

known to have altered gene expression patterns

(Yang et al., 2003; Sheltzer et al., 2012), this likely

contributes to functional diversity (Letourneau et al.,

2014). In addition, although the majority of studies

have focused on the cerebral cortex, aneuploidy or

aneusomy appears to be ubiquitous across the neu-

raxis, and has been reported within the medulla

oblongata (Yurov et al., 2005), cerebellum (Westra

et al., 2008; Iourov et al., 2009a; Faggioli et al.,

2012), entorhinal cortex (Mosch et al., 2007), and

hippocampus (Rehen et al., 2005; Yurov et al., 2014).

Although these tissues are less thoroughly character-

ized, they generally appear to have similar levels of

aneuploidy as the cortex, although there is some evi-

dence that the hippocampus may have slightly higher

(Rehen et al., 2005; Yurov et al., 2014) and the cere-

bellum lower (Faggioli et al., 2012) rates. This form

of GM extends evolutionarily from humans through

at least teleost fish (Rajendran et al., 2007).

GM as Long Interspersed Nuclear
Element 1 (LINE1) Retrotransposons

The second identified element capable of producing

GM was LINE1 elements. Retrotransposable ele-

ments have produced genomic diversification in both

evolution and cancer (Cordaux and Batzer, 2009; Lee

et al., 2012). In humans, approximately 17% of the

genome is composed of LINE1 repetitive elements
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Table 1 Estimates of Aneuploidy Rates in the Human Cerebral Cortex

Method Study Age Cell Type Chromosome

Aneuploidy

Ratea
Hypoploidy :

Hyperploidy Ratio

FISH Yurov et al., 2007 8–12

gestational

weeks

NA 1,9,15–18, X/Y 1.5%b (29%) 5 : 2

Rehen et al., 2005 2 years NA 21 3.2% (53%) 3 : 7

Neuron 21 3.4% (55%) 7 : 9

15 years NA 21 3.8% (59%) 5 : 9

35 years NA 21 3.6% (57%) 3 : 7

Neuron 21 2.8% (48%) 1: 1

48 years NA

Neuron

21

21

3.6% (57%)

2.3% (41%)

1 : 3

5 : 7

Iourov et al., 2009b �25 years NA 13,18,21,X/Y 0.5%,0.6%,

0.4%,0.3%

(10%)

8 : 9b

NA 1,11,17,18,X 0.5%,0.7%,

0.5%, 0.8%,

0.4% (13%)

7 : 4b

Iourov et al., 2009a �25 years NA 1,7–9,11,

16–18,X/Y

0.5%,0.7%,

0.9%,0.7%,0.7%,

0.5%,0.5%,

0.8%,0.4%

(14%)

4 : 7b

Yurov et al., 2005 Adult NA 1, 13/21, 18, X/Y 0.4%, 0.3%,

0.7%, 0.8%

(12%)b

5 : 4c

Yurov et al., 2008 �60 years NA 1 0.6% (13%) 1 : 1

�79 years NA 1,11,17,18,X 0.6%,0.8%,

0.8%,1.1%,1.4%

(20%)

2 : 1b

Yurov et al., 2014 69–82 years NA 1,7,11,16–18 0.5%,0.7%,

0.7%,0.6%,0.6%,

0.8%,1.3%

(16%)

NR

NA X 1.2% (24%) NR

MCB Iourov et al., 2009a �25 years NA 1,7,14,21,X 0.3%,0.6%,

0.4%,0.5%,1.2%

(13%)

NR

Iourov et al., 2006 Adult NA 1, 9, 16, 18, X 0.3%, 0.5%,

0.4%, 0.2%,

2.0% (15%)b

NR

Iourov et al., 2009b �25 years NA 7,14,21,X 0.6%,0.4%,

0.9%,1.2%

(16%)

NR

�79 years NA 7,14,21,X 1.0%,0.8%,

1.3%,1.9%

(25%)

NR

scWGS McConnell et al., 2013 20–26 years Neuron All 1.8% 1 : 1

Cai et al., 2014 42 years Neuron All 4.9% 4 : 1

Knouse et al., 2014 40–70 years Neuron All 2.2% 1 : 1

van den Bos et al., 2016 69–93 years Neuron All 0.7% 2 : 5

NR, not reported; all tissue samples contain neurons and all sample sizes are greater than 50 cells.
aPer chromosome frequency for FISH. Total frequency of aneuploid cells—extrapolated for FISH—is in bold.
bAveraged from multiple chromosome measurements.
cEstimated from female X chromosome only.
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within the germline (Viollet et al., 2014), where they

exist as over 500,000 copies, most of which are

thought to be inactive evolutionary remnants, owing,

in part, to many stop codons within their �6 Kb

sequence (Hancks and Kazazian, 2012). The bicis-

tronic LINE1 RNA contains 2 open reading frames—

ORF1 and ORF2—that encode proteins. ORF1 is

thought to encode a high affinity RNA binding pro-

tein and ORF2 a reverse transcriptase and endonucle-

ase, which together can allow LINE1 DNA insertion

into a new genomic location (Hancks and Kazazian,

2012). This process is analogous to the integration of

retroviral proviruses (Varmus, 1982) except for a

lack of long terminal repeat (LTR) flanking sequen-

ces. Mosaic LINE1 insertions, like other elements

producing GM, have been hypothesized to contribute

to neuronal diversity (Muotri et al., 2005) through

somatic retrotransposition into the genome in neuro-

nal precursors from rat hippocampus neural stem

cells (Muotri et al., 2005). Further studies expanded

the characterization of these elements to human neu-

ral stem cell lines that also reported higher copies of

LINE1 elements in neural cell populations in compar-

ison to other tissues (Muotri et al., 2009). A variety

of sequencing approaches have supported the pres-

ence of de novo LINE1 insertions, albeit with widely

ranging estimates of their prevalence: <0.6 per

genome (Evrony et al., 2012), along with more

controversial levels of �14 per genome, while other

repeat elements (ALUs and STRs) have also been

reported and debated (Baillie et al., 2011; Upton

et al., 2015; Evrony et al., 2016).

GM Produced by DNA Content
Variation (DCV)

The third form of neural GM to be reported was

termed DCV. This was first detected in human brain

by a combination of brain cell nuclei isolation, label-

ing with fluorescent DNA dyes (with removal of

RNA by digestion), and analyses by either flow

cytometry or fluorescence activated cell sorting

(FACS) (Westra et al., 2010). A marked population

of cells with DNA content gain, as well as popula-

tions with loss, were observed, suggesting a further

example of CNVs in addition to aneuploidies, mani-

festing as DCV. Importantly, this approach enabled

interrogation of orders of magnitude more cells in a

single experiment to reveal major population changes

in the total genomic DNA of individual cells interro-

gated by flow cytometry/FACS (Fig. 4). DCV analy-

ses of nuclei from postmortem human (as well as

mouse) brain revealed that many, and in some cases a

majority of, neurons, particularly within the human

prefrontal cortex, contain more DNA than do lym-

phocyte controls, which contain, on average, nearly

Table 2 Estimates of Aneuploidy Rates in the Mouse Cerebral Cortex

Method Study Age Cell Type Chromosome Aneuploidy Ratea

Hypoploidy :

Hyperploidy

Ratio

FISH Rehen et al., 2001 E13-E14 NA X/Y 6.7% (80%) 15 : 2

Peterson et al., 2012 E19 NA 8,16 1.6%,2.1%

(31%)

NR

McConnell et al., 2004 8–14 weeks NA X/Y 6.2%b
(72%) 9 : 5c

Rehen et al., 2001 Adult NA X/Y 1.2% (21%) 5 : 1

Faggioli et al., 2012 4 months NA 1,7,14–16,18,19

Y

1%b
(18%) 1 : 1c

15 months NA 18 1.5% (26%) NR

28 months NA 1,7,14–16,18,19

Y

2.3%b
(37%) 1 : 1c

Neuron 18 2.1% (35%) NR

Neuron 18 9.8% (87%) NR

scWGS Knouse et al., 2014 Adult Neuron All 1.4% 0 : 1

Spread

counts

Peterson et al., 2012 E14 NA All 29.0% 11 : 1c

NA All 24.0% 7 : 1c

SKY McConnell et al., 2004 E12.5-E14.5 NA All 34.0%
b 3 : 1c

Rehen et al., 2001 Embryonic NA All 33.2% 6 : 1b,c

NR, not reported; all tissue samples contain neurons and all sample sizes are greater than 50 cells.
aPer chromosome frequency for FISH. Total frequency of aneuploid cells—extrapolated for FISH—is in bold.
bAveraged from multiple animals or from multiple chromosomes.
cEstimated from a figure.
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250 Mb. The technical approach was further opti-

mized to use the now common technique of separat-

ing neuronal nuclei based upon their NeuN-

immunopositivity by FACS (or FANS: fluorescence

activated nuclear sorting). This technique was first

developed and reported in earlier studies of GM

(Rehen et al., 2005), in which the most prominent

DCV gains occurred in neurons (Westra et al., 2010;

Bushman et al., 2015). Moreover, DCV varied with

neuroanatomical location, being limited in the cere-

bellum from the same brain, and reduced in some cell

types, as seen in NeuN-negative populations that

were more similar to nuclei isolated from lympho-

cytes. The specific DNA sequences accounting for

DCV remain unknown, but it is likely that DCV

comprises “large” forms of GM, like the aneuploi-

dies/aneusomies discussed above, as well as smaller

variations broadly dispersed throughout the genome

and including LINE1 elements and sub-chromosomal

CNVs, which are discussed next.

GM Produced by Copy Number
Variations (CNVs)

GM produced by mosaic aneuploidies/aneusomies

and DCV within the brain was proposed to include

DNA sequence changes such as mosaic CNVs with

neuroanatomical region specific patterns (Westra

et al., 2010). The existence of mosaic neural CNVs

was further supported by FISH studies using

Figure 4 DNA content analysis of nondiseased human nuclei from brain and lymphocytes

(adapted from Westra et al., 2010). Chicken erythrocyte nuclei (CEN) were included in each sam-

ple as an internal control. (A and B) Histograms of lymphocyte and cerebellar samples do not indi-

cate any increase in genomic content. (C and D) Analysis of DNA content in frontal cortex nuclei

has a broad “shoulder” to the right of the main peak revealing increased DNA content. (E) This

increase can also be visualized in a flow cytometry plot of individual nuclei. [Color figure can be

viewed at wileyonlinelibrary.com]
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chromosomal point probes that detected only small

chromosomal regions, and may, therefore, have

reported CNVs in addition to complete gain and/or

loss of an entire chromosome. This phenomenon

likely explains, in part, why FISH studies often report

higher levels of aneusomy than methods which cap-

ture information about entire chromosomes (Knouse

et al., 2014; van den Bos et al., 2016). Mosaic CNVs

became possible to interrogate more comprehen-

sively using the technical development of single-cell

whole genome sequencing (scWGS), an approach

that, like many aspects of DNA sequencing, remains

a work in progress. The first report of neuronal

scWGS (Evrony et al., 2012) in fact did not report

CNVs, but was targeted toward identifying novel

LINE1 insertions. However, subsequent reports have

identified a range of somatic, neural CNVs focused

primarily on neurons (Gole et al., 2013; McConnell

et al., 2013; Cai et al., 2014; Knouse et al., 2014;

Knouse et al., 2016; van den Bos et al., 2016). To

date, at least four publications using scWGS have

reported the presence of somatically derived mosaic

CNVs in human neurons (Table 3). Mosaic CNVs in

these studies showed wide variability, reporting

between 9 and 100% of neurons as containing CNVs,

with most reported alterations of between 2 and 10

Mb in size, and deletions far outnumbering amplifica-

tions (Gole et al., 2013; McConnell et al., 2013; Cai

et al., 2014; Knouse et al., 2016), as had been

observed earlier for more common chromosomal

hypoploidies. In contrast, skin or fibroblast cells were

estimated to contain 0.2–0.3 CNVs per cell, with

fewer than 25% of cells having any, indicating that

this form of GM is enriched in the brain (McConnell

et al., 2013; Knouse et al., 2016). Current efforts are

ongoing to improve the specificity of this characteri-

zation and better understand the developmental rele-

vance of neural CNVs (Rohrback et al., submitted).

Still to be determined are the functional conse-

quences of CNVs within the brain.

GM Produced by Single Nucleotide
Variations (SNVs)

The smallest form of somatic DNA sequence change

is a SNV that can be identified by single-cell whole

genome sequencing of vastly amplified genomes

combined with median 30X sequencing coverage,

which has revealed SNVs between individual neurons

at the level of single nucleotides (Lodato et al., 2015;

Bae et al., 2018; Lodato et al., 2018). A crucial initial

step in these investigations is massive amplification

of single-cell genomic DNA through use of techni-

ques like “multiple displacement amplification” T
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(MDA) that employs phi29 DNA polymerase, fol-

lowed by high coverage, whole genome sequencing

with paired end Illumina reads, which has revealed

SNVs in neurons of the brain. In addition to enor-

mous levels of amplification, data processing must

informatically take into account the error rate of the

utilized phi29 polymerase, chimeric artifacts, amplifi-

cation bias and errors, and the significant failure rates

of single genome amplifications that likely exclude

neurons with genomic attributes that interfere with

amplification (e.g., strand breaks, large structural var-

iations, chromatin states). Of further note, the unpre-

dictably biased amplification inherent to MDA

generates excessive noise which precludes the reli-

able examination of larger structural variations such

as CNVs. Nonetheless, these high depth single neu-

ron genomic sequences have expanded the forms of

GM to thousands of SNVs within single neuronal

genomes that differ from the germline. High depth

sequencing of single neuron SNVs produced during

neurogenesis has also been used for lineage mapping

of clonal populations in the adult brain (Evrony et al.,

2012; Lodato et al., 2015).

An independent methodology for assessing SNVs

utilized somatic cell nuclear transfer (SCNT) and

mouse cloning techniques involving mitral cells of

the olfactory bulb to amplify single neuronal

genomes, which also identified hundreds of SNVs

within seven single neurons (Hazen et al., 2016).

This methodology allows high depth sequencing

without artificial template amplification. It does face

intrinsic limitations, including low throughput, high

failure rates of SCNT, low rates of mitotic growth of

the newly created cells, incompatibility with humans

in requiring the use of laboratory mice, and in some

cases a need to generate cloned mice, a process that

likely excludes interrogation of cells with highly

altered genomes (e.g., aneuploid neurons). Neverthe-

less, these results demonstrated that individual mitral

neurons contain hundreds of unique SNVs, and con-

sidering the relatively shorter lifespan of mice vs.

humans, the numbers of SNVs in mice are generally

consistent with the thousands observed in older

human neurons in which SNVs appear to increase

with age (Bae et al., 2018; Lodato et al., 2018), albeit

based upon very few neurons assessed with all of

these techniques.

GM Technical Challenges

The study of neural GM has been strongly influenced

by technical advances. Metaphase spread analyses

have been used to detect chromosomal abnormalities

for over 100 years and are still in use today.

However, it has two considerable shortcomings for in

depth analysis of neural GM. First, metaphase

spreads require the presence of mitotic cells, which

represent a small fraction of brain cells (Blaschke

et al., 1996; Blaschke et al., 1998). Second, genomic

resolution is limited to large alterations that do not

inform on specific DNA sequences. DNA content

changes identified by use of fluorescent DNA dyes

combined with flow cytometry or FACS have been

widely used as a gold standard in studying the cell

cycle and in plant biology (Darzynkiewicz et al.,

2004; Dolezel et al., 2007) and have provided a high

throughput, albeit low resolution, assessment of GM

(Westra et al., 2010; Bushman et al., 2015). Flow

cytometric assessments are amenable to nonmitotic

analyses of DCV and do not require metaphase

spreads, allowing interrogation of hundreds of thou-

sands of nuclei from any tissue type in minutes

(Westra et al., 2010; Bushman et al., 2015).

FISH methods, including SKY, allow a more

targeted investigation of alterations to one or more

chromosomes, and can be performed on mitotic,

interphase, or nonmitotic cells. However, these stud-

ies have provided exceptionally variable estimates of

chromosome alteration rates—from 10% to 80% of

cells being aneuploid (Rehen et al., 2001; McConnell

et al., 2004; Rehen et al., 2005; Yurov et al., 2005;

Iourov et al., 2006, 2009ab; Yurov et al., 2007a;

Yurov et al., 2008; Faggioli et al., 2012; Peterson

et al., 2012; Yurov et al., 2014). A substantial amount

of this variability stems from experiments performing

FISH and estimating rates based on a single chromo-

some (Rehen et al., 2001; McConnell et al., 2004;

Pack et al., 2005; Yurov et al., 2008; Faggioli et al.,

2012; Yurov et al., 2014). Since metaphase segrega-

tion defects can affect multiple chromosomes simul-

taneously (Yang et al., 2003), aneuploidy of different

chromosomes is not necessarily an independent

occurrence. Thus, extrapolation produces an artifi-

cially high aneuploidy rate when an insufficient num-

ber of chromosomes are interrogated. This effect may

be further compounded by the confounding variable

of these methods reporting subchromosomal altera-

tions with the same signal as for a full aneuploidy

(Osada et al., 2002; Iourov et al., 2013; Bushman

et al., 2015; Evrony et al., 2015; Lodato et al., 2015;

Zhang et al., 2015). Peptide nucleic acid FISH

(Westra et al., 2010; Bushman et al., 2015) (PNA-

FISH) provides semi-quantitative data on a targeted

locus and has the ability to visualize single genes

when combined with appropriate microscopic techni-

ques. This method has been used to identify centro-

mere and gene copy increases (Bushman et al., 2015)

without template amplification or other polymerase
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Figure 5 Peptide nucleic acid visualization of APP CNVs. Peptide nucleic acid fluorescent in situ
hybridization was imaged using structured illumination microscopy (adapted from Bushman et al.,

2015), revealing copy number variations of APP in Alzheimer’s disease cortical neurons. [Color

figure can be viewed at wileyonlinelibrary.com]
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Figure 6 Types of GM occurring in neural progenitor populations of the developing brain and in

mature neurons of the adult brain. (A) Multiple different forms of GM have been observed to occur

in neural progenitor populations, ranging in size from over 500 Mb or more, down to the level of

single nucleotide variations. (B) Mature neurons display increases of altered genomic sequences

through at least DNA content variation (DCV), copy number variations (CNVs), and single nucleo-

tide variations (SNVs) during postnatal life. Boxes labeled with question marks reference the cur-

rent state of the field, since a range of additional forms of GM likely will be found as emerging

technologies allow for new insight and novel discoveries. [Color figure can be viewed at wileyonli-

nelibrary.com]

http://wileyonlinelibrary.com
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dependent approaches, and can provide validation for

stereotyped CNVs reported by sequencing (Fig. 5).

Additional FISH approaches based upon variations of

RNAscope used in validating transcriptomic diversity

in the human brain (Lake et al., 2016; Lake et al.,

2017; Lake et al., 2018) may have further applicabil-

ity to genomic loci in the future.

Two approaches allow high resolution sequence

information to be obtained from special treatment of

bulk (multi-cell) samples. As noted above, the first

was achieved by SCNT and clonal expansion of a sin-

gle neuron—where all derivative cells have identical

genomes—which allowed the collection of high reso-

lution, whole genome coverage data, albeit with the

previously noted limitations. A second approach

involves capture of targeted genomic regions using

bulk DNA combined with pulldown “bait” strategies.

The smaller size of the genome under interrogation

allows ultra high depth sequencing (> 1,0003),

which enables detection of somatic variants with

lower allele frequency (Sala Frigerio et al., 2015)

(�1% for SNVs, 10% for CNVs). This approach is

useful for known genomic targets and semi-

conserved GM alterations, but is not appropriate for

de novo discovery or the detection of ultra low fre-

quency somatic events as can occur with neural GM.

scWGS addresses some shortcomings of the bulk

approaches, as it directly assesses the cell of interest

without requiring totipotency or conservation of GM.

One intriguing discrepancy has been brought to light

by this method: scWGS reports much lower rates of

aneuploidy (Knouse et al., 2014; van den Bos et al.,

2016). This may be due to at least two factors. First,

these studies have performed scWGS on interphase

cells, contrasting with over 100 years of literature

that has relied on definitions of aneuploidy based

almost solely on metaphase spreads. Since the rela-

tive rates of aneuploidy reported in metaphase spread

analyses represent a cell population that has not been

assessed by scWGS, the reported discrepancies could

simply reflect differences in mitotic and interphase

brain cells. Second, scWGS can distinguish between

full and partial chromosome alterations, while other

approaches may report a broader range of aberrations

that manifest in metaphase as aneuploidy. This ulti-

mately brings into question definitions of aneuploidy

in nonmitotic cells revealed by scWGS. It is notable

that the relationship between interphase (nonmitotic)

partial aneuploidies and chromosomes seen in con-

densed metaphase spreads of the brain is not known.

However, SCNT approaches to condense postmitotic

neuronal DNA have reported rates of aberrant chro-

mosomal spreads of �64%, supporting the interpreta-

tion that partial aneuploidies/CNVs observed in

nonmitotic cells—postmitotic neurons—manifest as

chromosomal aneuploidies in metaphase spreads

(Osada et al., 2002).

In addition to large DNA alterations, the high cov-

erage data generated by extreme amplification using

MDA and high depth sequencing allowed identifica-

tion of unique SNVs (Lodato et al., 2015; Lodato

et al., 2018). However, this form of scWGS has a

high failure rate (possibly excluding neurons with

unique genomic attributes), is cost prohibitive for

more than a few cells, and regional genome bias

under the reported conditions using MDA precludes

examination of large structural variants such as

CNVs. Lower depth sequencing following PCR-

based amplification allows analysis of CNVs, but

these studies have reported extremely inconsistent

findings, which is likely due to substantial methodo-

logical variability: different ages, amplification meth-

ods, sample sizes, informatics, stringencies for

quality control (QC), and CNV calling, which were

applied in each study (Gole et al., 2013; McConnell

et al., 2013; Cai et al., 2014; Knouse et al., 2016).

At least seven critical issues associated with all

scWGS approaches to assess CNV and SNV GM

exist: (1) an absolute requirement to amplify the

single-cell genomic template using polymerases,

which itself may introduce a range of artifacts that

could create or obfuscate mosaically present CNVs

or SNVs; (2) different protocols and amplification

techniques—including different DNA polymerases—

limit direct comparisons; (3) an inability to replicate

the results, since each single cell is destroyed by

sequencing; (4) a current inability to assess sub-

megabase CNVs; (5) varied and often opaque techni-

cal details that obfuscate both failure rates and bioin-

formatics pipeline details; (6) limited individual

brain interrogation that consists of a few or even just

1 brain; and (7) miniscule sample sizes—typically

less than 100 cells. Considering the 1 trillion cells in

the human brain, these samples constitute only

1028% of cells within a single brain.

GM Generation, Functions,
and Disease Implications

The relative sizes and forms of GM (Fig. 6) under-

score a vast range—on the order of 8 logs—of DNA

sequence changes, from SNVs to hundreds of mil-

lions of base pairs in a single chromosome.

Despite extensive characterization of the occur-

rence of neural GM, there is limited understanding of

the mechanisms through which it is generated.

Mosaic neural aneuploidies arise from mitotic errors

that include lagging chromosomes, micronuclei,
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supernumerary centrosomes and chromosomal non-

disjunction (Yang et al., 2003). These mechanisms

are limited to periods of neurogenesis, particularly

during brain development (Rehen et al., 2001; Rehen

et al., 2005; Yurov et al., 2005; Westra et al., 2008).

In addition to roles in generating full aneuploidies,

micronuclei could contribute to smaller (megabase)

CNVs. Micronuclei are a common byproduct of

mitotic segregation defects and have been associated

with further degradation of the affected chromo-

some(s) upon progression through subsequent cell

cycles (Zhang et al., 2015). It is tempting to speculate

that this could be one mechanism by which such

CNVs are created, particularly those that appear to

follow a pattern similar to chromothrypsis (McCon-

nell et al., 2013; Cai et al., 2014; Knouse et al.,

2016). Another possible source of CNVs may reflect

repair of DNA, which is supported by the presence of

both documented DNA breaks and nucleotide incor-

poration (e.g., BrdU or 3H-thy) (Blaschke et al.,

1996; Blaschke et al., 1998). Also proposed to occur

during neurogenesis, mosaic LINE1 insertions, as

discussed in a previous section, are theoretically

capable of generating GM during the cell cycle

(Packer et al., 1993; Muotri et al., 2005; Shi et al.,

2007; Singer et al., 2010; Viollet et al., 2014; Mita

et al., 2018). By contrast, many neural somatic SNVs

have been associated with damage due to transcrip-

tional activity (Lodato et al., 2015), consistent with

increased SNV rates in aged brains (Bae et al., 2018;

Lodato et al., 2018), suggesting this form of GM is

generated in postmitotic neurons. It is entirely possi-

ble that other mechanisms could contribute to neural

GM, including hypothesized gene recombination,

which awaits further investigation.

The normal functions of neural GM of any form

are incompletely known, yet almost certainly affect

both development and adult brain function. Normal,

mosaically aneuploid brain cells produce altered tran-

scriptomes (Kaushal et al., 2003) consistent with

studies in simpler systems like yeast (Sheltzer et al.,

2012). In this vein, a remarkable degree of transcrip-

tomic diversity has emerged from single-cell tran-

scriptome studies throughout the neuraxis of mouse

(Usoskin et al., 2015; Zeisel et al., 2015; La Manno

et al., 2016; Poulin et al., 2016; Tasic et al., 2016;

Chung et al., 2017; Karlsson and Linnarsson, 2017;

Hochgerner et al., 2018; Rosenberg et al., 2018) and

the human brain (Lake et al., 2016; Lein et al., 2017;

Regev et al., 2017; Sousa et al., 2017), consistent

with the enormous neural GM diversity present in

both mice and humans. Transcriptomic variation can

cover the gamut of cellular functions, which remain

to be fully assessed but are clearly part of the normal

brain’s circuitry, based upon the functional integra-

tion of aneusomic neurons within the brain (Kings-

bury et al., 2005). During brain development, clear

associations between aneuploidies and cell survival

have also been documented through analyses of aneu-

ploid neural cells following cell death attenuation by

knockout of caspase 3 or caspase 9, or pan-caspase

pharmacological inhibition by Z-VAD-fmk (Peterson

et al., 2012), which results in maintenance of

increased numbers of aneuploid neural cells, includ-

ing subpopulations with extreme aneuploidy that are

not seen in the wildtype brain (Peterson et al., 2012).

These data indicate that forms of neural aneuploidy

are not neutral, with mild forms preferentially surviv-

ing, whereas more extreme forms are eliminated by

cell death. For surviving postmitotic neurons (Kings-

bury et al., 2005; Rehen et al., 2005), functional con-

sequences could be vast and difficult to predict.

However, based on a meta-analysis in yeast, aneu-

ploidy often triggers expression of stress response

genes, and suppresses cell proliferation pathways

(Sheltzer et al., 2012) that may relate in some instan-

ces to the postmitotic state of neurons. Possible func-

tions of LINE1 retrotranspositions have been

centered around behavior and memory (Singer et al.,

2010; Bachiller et al., 2017); however germline

changes in LINE1 genomic regions (Erwin et al.,

2016) distinct from retrotransposition complicate

analyses, which may explain major discrepancies in

the literature (e.g., LINE1 putative somatic retro-

transposition rates of <0.6 per genome (Evrony

et al., 2012) vs. �14 per genome (Baillie et al., 2011;

Upton et al., 2015)). It is certain that the functional

consequences of neural GM will be revealed in

increasingly greater detail by ongoing research.

Indeed, clear precedence for functional conse-

quences of GM affecting the brain and body exist in

data on diseased states. Mosaic variegated aneuploidy

(MVA), in which inactivating gene mutations in

mitotic proteins causes an increase in forms and fre-

quency of aneuploidy, ultimately results in micro-

cephaly and mental retardation (Warburton et al.,

1991; Kajii et al., 1998). Constitutive aneuploidies as

found in Down syndrome (Wiseman et al., 2015)

have clear effects on brain function, providing sup-

port for functional consequences of neural mosaic

aneuploidies and GM, while constitutive cases may

also themselves be chromosomal mosaics (Modi

et al., 2003; Leon et al., 2010; Hulten et al., 2013).

Indeed, multiple reports of elevated levels of somatic

aneuploidy in patients with ataxia telangiectasia

(McConnell et al., 2004; Iourov et al., 2009a,b),

schizophrenia (Yurov et al., 2001; Yurov et al.,

2008), autism (Yurov et al., 2007b; Iourov et al.,
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2008), and Alzheimer’s disease (Pack et al., 2005;

Mosch et al., 2007; Iourov et al., 2009b; Iourov et al.,

2011; Yurov et al., 2014) support pathogenic links.

Brain disease relationships of LINE1 GM have been

reported in rare disorders resulting from mutations in

genes that regulate LINE1: Rett Syndrome (MECP2),

ataxia telangiectasia (ATM), and Aicardi-Goutières

syndrome (involving multiple different genes, includ-

ing SAMHD1 that inhibits viral and LINE1 reverse

transcriptases). MECP2 is a suppressor of LINE1

transcription (Skene et al., 2010; Muotri et al., 2010),

while ATM recognizes LINE1 target priming retro-

transposition intermediates as damage (Coufal et al.,

2011). Aicardi-Gouti�eres syndrome is characterized

by mutations in genes that inhibit reverse trans-

cription (Zhao et al., 2013; Upton et al., 2015). It is

currently unclear how LINE1 contributes mechanisti-

cally to these diseases, but it may involve disruption

of normal gene transcription.

Rare CNVs associated with disease are supported

by somatic repeat expansions that have been reported

for multiple pathological states, as seen in tissue-

specific CAG repeat expansion profiles in Hunting-

ton’s Disease (Telenius et al., 1994; La Spada, 1997;

Shelbourne et al., 2007; Gonitel et al., 2008; Kraus-

Perrotta and Lagalwar, 2016). The highest levels of

repeat length instability are observed in the brain,

predominantly in neurons of brain regions most

severely affected by the disease (Telenius et al.,

1994; Shelbourne et al., 2007; Gonitel et al., 2008).

Repeat expansion GM has been additionally impli-

cated in spinocerebellar ataxia (La Spada, 1997;

Kraus-Perrotta and Lagalwar, 2016), frontotemporal

dementia, amyotrophic lateral sclerosis (Almeida

et al., 2013), and dentatorubral-pallidoluysian atro-

phy (Ueno et al., 1995). Interestingly, somatic repeat

expansion variation may occur in postmitotic neu-

rons, supporting neural GM disease mechanisms in

both mitotic and postmitotic periods (Gonitel et al.,

2008; Kraus-Perrotta and Lagalwar, 2016), and con-

sistent with DCV changes that are most prominent

during adult life (Westra et al., 2010; Bushman et al.,

2015). GM produced by SNVs has been linked to

rare brain diseases like hemimegalencephaly and

focal cortical dysplasia involving point mutations in

MTOR pathway genes (Evrony et al., 2012; D’Gama

et al., 2017).

Beyond rare familial brain disorders, neural GM

has been linked to sporadic Alzheimer’s disease

(AD) through both increased DCV and specific

CNV amplification of the pathogenic gene, Amyloid

Precursor Protein (APP). DCV increases of �200

Mb over the normal 250 Mb within prefrontal corti-

cal neurons indicate significant, subgenomic

increases in DNA content that are not explained by

cell cycle reentry (Yang et al., 2001; Westra et al.,

2009) nor trisomy 21 (Heston and Mastri, 1977; Pot-

ter, 1991) in view of more recent reports (Westra

et al., 2009; Bushman et al., 2015). Most notably,

single neuron qPCR for APP combined with PNA-

FISH for proximal and distal APP exons identified

increased APP copy numbers of up to 12 copies,

arising somatically and mosaically in sporadic AD

neurons (Bushman et al., 2015): CNV increases of

just 3 APP copies is pathogenic for AD in Down

syndrome (via trisomy 21 on which APP resides)

(Wiseman et al., 2015) and rare familial cases of

APP locus duplication (Hooli et al., 2012). These

results suggest a more general paradigm for neuro-

logical and neuropsychiatric sporadic brain disease,

whereby known genes from rare, familial cases—

such as APP for Down syndrome or familial AD—

are somatically and mosaically altered by GM to

produce common forms of disease. This same model

may play out in other genomic regions whose germ-

line alterations are not compatible with life—and

therefore have not been identified in familial dis-

ease—but may be altered mosaically to produce

sporadic forms of a disease.

CONCLUDING COMMENTS

Over the last 20 years, neural GM has advanced

from a theoretical concept to a definitive experi-

mental fact and now represents a vibrant field of

active research. The proven forms of GM within

single cells of the brain—aneuploidies and aneuso-

mies, other CNVs, and SNVs—are no doubt the “tip

of the iceberg” in considering the pervasive pres-

ence of DCV throughout the brain that captures vir-

tually all forms of DNA sequence alterations,

affecting both mitotic and postmitotic populations.

The combination of these alterations contribute to

increased GM over time (Fig. 7a–c). As perhaps the

most stable and long lasting biological substrate

within the brain, DNA changes produced by GM

may underlie fundamental brain activities including

complex behaviors and long term memory. The

presence of DNA fragmentation and double strand

breaks amongst developing brain cell populations

associated with cell death and differentiation likely

involves recurrent breaks in specific genes, as

reported from studies of neural progenitor cell pop-

ulations (Wei et al., 2016), which are again reminis-

cent of processes in the adaptive immune system

(Chun, 2001; Kingsbury et al., 2006; Westra et al.,

2010; Bushman and Chun, 2013). It would thus not
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be surprising to find novel forms of DNA rearrange-

ment within cells of the brain, given the postmitotic

state of neurons (distinct from clonally expanded

alterations of the immune system) and expression

of different genes (e.g., RAG1 but not RAG2 within

the brain vs. both in the immune system). All com-

bined, these diverse, nonmutually exclusive and

pervasive forms of neural GM could “barcode”

each brain cell by creating a unique genome, thus

representing a small universe of genome diversity

residing within a single brain. Moreover, further

evidence that this universe changes over time adds

another dimension of complexity, representing a

relatively unassessed variable contributing to neural

diversity at all levels of brain development and

function. This same genomically diverse universe is

currently unrecognized by virtually all genetic

models of brain disease, particularly those relying

on statistical relationships of genes identified from

cells outside of the brain, as is common for

genome-wide association studies (GWAS). The

overwhelming prevalence of sporadic brain disease

unaccounted for by defined familial genes—as

observed in Alzheimer’s disease—may be more

fully explained by mosaic genomic changes that

affect both the genes identified in rare familial

cases, as well as new genes and nongenic loci

(including mutations that may not be compatible

with life if present constitutively), particularly

within postmitotic neurons. Individual cells altered

in sporadic disease could offer a rich, new source

for discovery of meaningful disease targets. GM

within the brain therefore represents a vast frontier

awaiting further exploration and discovery, toward

more fully understanding the developing and func-

tioning brain and its diseases.

Figure 7 Rate of DNA alteration in developing brain and distribution of genomic mosaicism in

mature neurons. (A) In embryonic brain development, DNA alteration rates peak during periods

corresponding with high levels of neurogenesis, before leveling off. (B) After prenatal develop-

ment, genomic alterations continue to accumulate during neonatal and childhood neurodevelop-

mental periods, with smaller alterations accruing thereafter. (C) Taken together, genomic

mosaicism accumulates over a lifetime, starting during embryonic brain development, and continu-

ing throughout life and into adulthood and old age, potentially contributing to age related neurolog-

ical disorders. Importantly, the vast majority of these somatic changes can only be detected when

the mosaic nature of individual neurons is considered in experimental design. [Color figure can be

viewed at wileyonlinelibrary.com]
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