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Abstract

Purpose

Previous studies have proved that vascular endothelial growth factor (VEGF) has a dual role

in the promotion of new bone formation and blood vessel repair during fracture healing.

However, how to introduce VEGF to a fracture site safely and effectively is still a challenge.

This study aimed to prepare a VEGF-loaded nanographene coated internal fixation screw

and to evaluate its effects in the treatment of femoral neck fracture.

Methods

Nanographene coated screws were prepared by direct liquid-phase exfoliation of the graph-

ite method, and the surface characteristics were observed through scanning electron

microscopy (SEM). VEGF was loaded on nanographene coatings through physical adsorp-

tion, and the VEGF controlled release was examined by ELISA. Then a canine femoral neck

fracture model was built to examine both the angiogenic and osteogenic properties of the

VEGF-loaded coated screws. X-ray, micro-CT-based microangiography, and histopatho-

logic evaluation were used to assess the fracture healing progress.

Results

The results demonstrated that nanographene could load VEGF effectively, and the accumu-

lative release of VEGF clearly increased during the entire testing period (9 days) without

burst release. In canine fracture models, the results of X-ray, microangiography, and histo-

pathologic examination proved that the speed of fracture healing, new bone formation area,

and revascularization of the fractured femoral heads in the VEGF-loaded coated screws

groups were significantly higher than in the control groups.

Conclusion

Our study proved that VEGF-loaded nanographene coated screws were effective in the

treatment of femoral neck fracture and prevention of avascular necrosis of femoral head.
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Introduction

Femoral neck fracture has two major complications, avascular necrosis of femoral head and

the non-union of the fracture. While the rate of non-union recently decreased apparently with

the improvement of the internal fixation techniques, the rate of ANFH remains the same [1].

The occurrence of ANFH is primarily related to its unique anatomical structure, the artery cir-

cle of branches of the medial circumflex femoral artery and lateral femoral circumflex artery

[2]. ANFH may occur if the femoral head blood supply is not restored in a timely manner after

fracture [3]. The application of vascular repair-related growth factors is now considered to be a

more effective way to treat femoral neck fracture and reduce the incidence of ANFH because

of its ability to promote early recovery of the blood supply of femoral heads after fracture [4,5].

Vascular endothelial growth factor (VEGF) is currently considered the most important reg-

ulatory factor of angiogenesis involved in various vascular repair processes [6,7]. It plays an

essential role in fracture healing [5,8–11]. In the inflammatory phase of fracture healing,

VEGF can recruit macrophages to the fracture site and regulate angiogenesis. VEGF partici-

pates in the regulation of the blood vessels and bone formation in intramembranous ossifica-

tion and endochondral bone ingrowth in endochondral ossification. Given the important role

of VEGF in both bone repair and vascular repair, we plan to load VEGF safely and effectively

into the femoral head and hope it can be effective in the treatment of femoral neck fracture

and the prevention of ANFH.

As the thinnest nanomaterial, graphene has only a single atomic layer of thickness and can

be applied as a coating on any material surface [12]. Compared with other nanomaterials, gra-

phene has an extremely high specific surface area, and both sides can absorb drugs and achieve

high-dose drug loading [13–15]. In our study, we applied VEGF-loaded nanographene coated

screws to the treatment of femoral neck fracture and evaluated whether it can simultaneously

promote osteogenesis and angiogenesis in fracture healing.

In the evaluation of experimental results, we used a new contrast agent for the first time—

subnanometer barium sulfate for canine femoral microangiography. After the image recon-

struction of micro-CT, the evaluation of bony and vascular repair in fracture healing can be

analyzed from two-dimensional and three-dimensional levels.

Materials and methods

Preparation of nanographene coated internal fixation screws

Nanographene was prepared by the direct liquid-phase exfoliation of graphite. Fifteen milli-

grams of natural graphite was mixed with 5 ml disperse solvent (1:1 isopropyl alcohol/H2O) in

a 7.5-ml glass flask. After agitation for 10 minutes, the suspension underwent ultrasonic treat-

ment for 4 hours (ultrasonic frequency, 40 kHz). The dispersion was centrifuged twice for 10

minutes at 1000 rpm at room temperature. The supernatant was collected and a stable gra-

phene suspension was finally obtained. The internal fixation screws (Ti6Al4V, Wego, China)

were immersed in nitric acid solution for 1 week in advance and then soaked in graphene

supernatant for another week. After that, screws were removed and adequately rinsed by

deionized water. The nanographene coated screws were prepared completely. The morphology

of the surface of the coated screws was examined by scanning electron microscopy (SEM,

JEOL Japan).

In vitro cytotoxicity evaluation

The extracts of the nanographene coated screws were prepared according to ISO 10993–12.

Steps are briefly described as follows. Sterile nanographene coated fixation screws were
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completely immersed in 6 ml endothelial cell medium (ECM) with 5% fetal bovine serum

(FBS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and osteoblast medium (Scien-

Cell, San Diego, CA, USA) and placed in an incubator at 37˚C for 72 hours. Coated screws

were removed from the ECM and osteoblast medium, and the extracts were centrifuged for 5

minutes at 1000 rpm. The supernatants were sterilized through a 0.22-μm filter and refriger-

ated at 4˚C and used within 1 week. The human umbilical vein endothelial cells (HUVECs)

(Allcells, Alameda, CA, USA) and osteoblasts (Type culture collection of the Chinese Academy

of Sciences, Shanghai, China) were used to evaluate the cytotoxicity of the coated screws.

HUVECs and osteoblasts were seeded at a density of 3 × 103/well in 96-well plates and cultured

with 100 μl coated screw extract or special medium as control groups, for 4 days. The cells

were then stained every 24 hours with 10 μl Alamar Blue dye and examined by microplate

reader (wavelength, 450 nm).Each group was measured with n = 6 samples for the in vitro

cytotoxicity evaluation, with 3 repeat measurements.

VEGF loading and in vitro release kinetics

The 1-cm thread side of the nanographene coated screws and screws without coating were

immersed in 20 ug/ml VEGF solution (dissolved in phosphate-buffered saline [PBS]) for 12

hours at 4˚C. As the control group, the same length nanographene coated screws were

immersed in phosphate-buffered saline (PBS) for 12 hours at 4˚C.The screws were then

washed three times with distilled water, lyophilized, and placed in a 15-ml sterile tube. The

tube was added with 10 ml PBS (pH 7.4) and placed in a shaking water bath at 37˚C and

shaken at 100 rpm/min. At predetermined time periods (0 h, 8 h, 12 h, 24 h, 48 h, 72 h, 168 h,

216 h, and 288 h), 1 ml of supernatant was collected and replaced with the same volume of

fresh PBS. The amount of VEGF released into the supernatant at each time point was mea-

sured by ELISA. Each group was measured with n = 3 samples for the in vitro release kinetics,

with 3 repeat measurements.

Released VEGF biological activity test

A VEGF-loaded nanographene coated screw was dissolved in 10 ml ECM (ScienCell, Carlsbad,

CA, USA) with 5% FBS (Gibco) and placed in the same VEGF releasing condition in step 2.3

for 9 days. The supernatant was collected, sterilized by a 0.22-μm filter, and stored at 4˚C

(used within 1 week); 11.6% Matrigel (Becton, Dickinson, and Company, UK) was thawed at

4˚C overnight. Ninety-six-well plates and micropipette tips were precooled on ice. In each

well, 50 μl Matrigel was added and incubated at 37˚C for 30 minutes to solidify; 4,000/100 μl

HUVECs were added on the Matrigel and incubated at 37˚C in an atmosphere of 5% CO2 and

95% air. After 12 hours of incubation, the HUVECs were imaged using an inverted microscope

(Leica, Wetzlar, Germany). Three fields were chosen at random, and the length of the capil-

lary-like tubes was measured by Image-Pro Plus 6.0 software.

Animal experiment design and surgical procedure

All experimental animal surgery procedures and feeding standards were approved in accor-

dance with the guidelines of the Care and Use of Laboratory Animals of the Zhongshan Hospi-

tal of Fudan University, Shanghai, China. Ten healthy adult (male and female) Beagle dogs,

weighing 15–18 kg, were provided by the Laboratory Animal Center of Zhongshan Hospital of

Fudan University. They were housed individually in the same room and could move freely in

cages under conditions at 18–25˚C,25–75% humidity, and 12h lighting (6:00–18:00). The

room and cages were cleaned daily. And during the cage cleaning time, the dogs were taken

outside of cages the reduce their stress. Animals were provied with 230-250g of solid food daily
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and filtered tap water and libitum. The operations would only be performed while the animal

had no fear appearance, ate regularly and slept well. The left and right posterior limbs were

treated with VEGF-loaded nanographene coated screws (experimental side) and nanogra-

phene coated screws without VEGF (control side) separately on the same dog. All surgery pro-

cedures were performed under basic anesthesia by injecting 10% pentobarbital sodium (25

mg/kg) intravenously. The fracture procedures are briefly described as follows. After general

sterilization, a curved incision, approximately 10 cm, was made in the hip followed by the sub-

cutaneous soft tissue separated step by step. The hip joint capsule was exposed and opened.

Then a chisel was used to create a fracture at the midpoint of the femoral neck. The fracture

was reduced and fixed temporarily with a 1.5-mm Kirschner wire. Then a VEGF-loaded nano-

graphene coated screw was implanted into the femoral head through femoral torque and the

other femoral head with a nanographene coated screw that was not VEGF loaded. All operative

procedures were performed by the same surgeons. Postoperatively, all experimental dogs

received routine care and were injected penicillin (800,000 units) intramuscularly for 3 succes-

sive days to prevent infection. For pain relief, meloxicam (0.2 mg/kg on the day of surgery, and

there after the dose of 0.1 mg / kg every day for 1 week). General well-being, wound healing,

and postoperative complications were observed daily. Sutures were removed after 2 weeks.

Radiological examination

Under basic anesthesia, hip anteroposterior X-ray examinations were performed on all experi-

ment animals at day 1 and at 8 and 12 weeks post surgery. The radiographic results were

assessed by two radiologists who were blinded to the study.

Microangiography

Preparation of the contrast agent consisted of 4% gelatin–30% subnanometer barium sulfate

suspension. 1) 4% gelatin solution:120 g gelatin (Sigma) was added in 3000 ml PBS and placed

in a shaking water bath at 37˚C for 12 hours; 2) 900 g subnanometer barium sulfate was added

in 3000 ml 4% gelatin solution and placed in a shaking water bath at 45˚C for 1 hour; and 3)

the suspension in step 2 was filtered three times by sterile gauze and used within 24 hours.

Under basic anesthesia, the dogs were fixed on the operating table in the dorsal position

after skin preparation. A median abdominal incision (approximately 15 cm) was made fol-

lowed by the skin, linea alba, and retroperitoneal tissue cut in a step-by-step fashion. The

abdominal aorta and inferior vena cava were exposed and inserted with a vessel cannula,

respectively. Two hundred and fifty milliliters of 0.9% saline with 12,500 U heparin was

injected into the abdominal aorta for the heparinization of lower limb blood supply. Then,

approximately 3000–5000 ml saline was injected into the abdominal aorta to replace the lower

limb blood. After that, the experiment animals were sacrificed by injecting an overdose of

anesthetics. One thousand milliliters of 4% paraformaldehyde was inputted into the abdominal

aorta slowly. The 4% gelatin–30% subnanometer barium sulfate suspension was injected into

the abdominal aorta rapidly with certain pressure. The infusion was stopped when there was

an outflow of white liquid on the vena cava side. Then the abdominal aorta and vena cava were

closed. To solidify the contrast agent sufficiently, all of the specimens were stored at 4˚C over-

night. The femoral heads were removed and fixed in 4% paraformaldehyde for 1 week at 4˚C

before micro-CT scanning.

Micro-CT scanning and image reconstruction

After calibration, micro-CT (Healthcare Locus SP, General Electric, Fairfield, Connecticut,

USA) scanning (46 μm resolution, scanning time 18 minutes) was performed on specimens.

Femoral neck fracture treatment and nanographene coated screws
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Reconstructed images, maximum-intensity projection (MIP), and Isosurface images were gen-

erated by Micro View software (General Electric). MIP is an overall projection of the femoral

head that can display the whole two-dimensional distribution of vessels within the femoral

head, whereas Isosurface exhibits a three-dimensional image. By selecting the appropriate

threshold (3000 HU), the data of vessels within the femoral head can be extracted and recon-

structed to a three-dimensional angiographic image through Isosurface.

After micro-CT scanning, the specimens were cut in half and then embedded in paraffin

for histopathological analysis.

Analysis of microstructure and bone mineral density of femoral head

By manually choosing the uniform region of interest (ROI) (Fig 1), the trabecular thickness

(Tb.Th) and bone mineral density (BMD) of femoral head, excluding the screw canal and cor-

tical bone, were quantitatively analyzed by advanced bone analysis (ABA) in Micro View soft-

ware. Each group was measured with 5 ROI for further analysis, with 3 repeat measurements.

Histopathological evaluation

Dogs were sacrificed at 12 weeks after microangiography examination by injecting an overdose

of pentobarbital sodium intravenously. Samples of bilateral femoral heads were harvested and

fixed in 4% neutral-buffered formalin, decalcified in 10% ethylenediaminetetraacetic acid

(EDTA) for further histopathological measurements after the surrounding soft tissue was

Fig 1. Advaned bone analysis (ABA) by Micro View software. After micro-CT image reconstruction, Micro View could analyze the BMD and

microstructure of any certain volume of ROI within the femoral heads.

https://doi.org/10.1371/journal.pone.0187447.g001
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removed clearly. Then the samples were sectioned and stained using hematoxylin and eosin

staining (HE), Masson’s trichrome, and CD31 immunohistochemical staining. Stained sec-

tions were examined under an inverted microscope. Average Tb.Th, newly formed bone area

(%), and microvessel density (MVD) [16] were obtained using Image-Pro Plus 6.0 and ana-

lyzed by two blinded pathologists.

Statistics

All data are expressed as mean ± standard deviation (x±s). Statistical analysis was performed

using SPSS 16.0 statistical software. Differences between the experimental and control groups

were compared using an independent samples t test. P<0.05 was defined as statistically

significant.

Results

Nanographene coated screws morphological observation

SEM images of internal fixation screws with and without nanographene coating were obtained

at 1000x magnification (Fig 2). The surface of screws without coating was performed as a loose

and porous structure. After coating of the screws with nanographene, a thin layer of laminated

material could be observed on the surface of the screws. Nanographene coating did not have

an obvious change on the morphology of the screws.

In vitro cytotoxicity evaluation

A comparison of the cytotoxicity of the coated screw extracts with ECM or osteoblast medium

were carried out by Alamar blue assay. As shown in Figs 3 and 4, there was no significant dif-

ference between the proliferation rate of the study groups (P>0.05). The results indicated that

nanographene coating did not increase the cytotoxicity of the internal fixation screws.

Fig 2. SEM images of internal fixation screws. The surface of nanographene coated screws (right) is covered with a thin layer of laminated

material, and the morphology of the surface had clearly not been changed, as shown in the scanning electron microscopy (x1000).

https://doi.org/10.1371/journal.pone.0187447.g002
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In vitro release kinetics

The cumulative release rates of VEGF from nanographene coated screws in PBS are shown in

Fig 5 and Table 1. The release of VEGF was sustained for 9 days with a cumulative release

amount up to 9.51 ± 0.23 ng. There was no burst release observed in the whole process. In the

control group, there had very little burst release of VEGF in the uncoated screws in the first

few hours and degraded within 3 days.

Fig 3. Osteoblast cytotoxicity test of nanographene coated screws. The result of the cytotoxicity test of

nanographene coated screws showed that nanographene coating did not affect the biocompatibility of

screws, because there was no significant difference between the control group and experimental groups.

https://doi.org/10.1371/journal.pone.0187447.g003

Fig 4. HUVECs cytotoxicity test of nanographene coated screws. The result of HUVECs cytotoxicity test

showed that there was no significant difference between the control group and experimental groups as well.

https://doi.org/10.1371/journal.pone.0187447.g004
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Released VEGF promotes angiogenesis in vitro

To further elucidate the bioactivity of VEGF released by nanographene coated screws, Matrigel

tube formation was investigated in vitro. When cultured with cumulative 9-day extracts of

VEGF-loaded nanographene coated screws for 12 hours, the average length of tubular

Fig 5. Release curve of VEGF. The curve (C) showed that the sustained release of VEGF on nanographene coating could last 9 days without a

burst release. As the control gourp (B), nanographene coating screws without VEGF loaded had no VEGF released. There had very little VEGF

burst relese on screws without nanographene coating (A) had no sustainded release effect.

https://doi.org/10.1371/journal.pone.0187447.g005

Table 1. The amount of sustained-release VEGF in three different groups(n = 3). (�x±s).

Time(h) 0 8 12 24 48

Uncoated screws (ng) 0.01±0.00 0.01±0.01 0.01±0.01 0.00±0.00 0.01±0.01

Coated screws with VEGF (ng) 0.79±0.07 0.81±0.12 0.80±0.11 0.80±0.13 0.79±0.10

Coated screws w/o VEGF (ng) 1.09±0.19 2.02±0.28 4.07±0.27 5.20±0.27 6.21±0.20

Time(h) 72 168 216 288

Uncoated screws (ng) 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00

Coated screws with VEGF (ng) 0.62±0.06 0.37±0.04 0.15±0.02 0.10±0.01

Coated screws w/o VEGF (ng) 6.68±0.38 7.76±0.40 9.51±0.23 9.47±0.13

The release of VEGF was sustained for 9 days with a cumulative release amount up to 9.51 ± 0.23 ng. There was no burst release observed in the whole

process. In the control group, there had very little burst release of VEGF in the uncoated screws in the first few hours and degraded within 3 days.

https://doi.org/10.1371/journal.pone.0187447.t001
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structures formed by HUVECs was significantly increased (P<0.05), as compared with the

control groups (Figs 6 and 7). The result demonstrated that the released VEGF still had

bioactivity.

X-ray examination

After surgery, all objects had clear fracture lines and received good reduction (Fig 8A and 8B).

By 8 weeks postoperatively, the fracture lines in the experimental groups disappeared and the

Fig 6. The biological activity of released VEGF. The cumulative sustained release of VEGF within 9 days still had biological activity and could

promote the tube formation of HUVECs (right) compared with the control groups (left) in vitro.

https://doi.org/10.1371/journal.pone.0187447.g006

Fig 7. The total length of tube formation of HUVECs. The total length of tube formation in both the experimental groups and control

groups were analyzed by Image-Pro Plus 6.0 software. The figure shows that the total length of tube formation in the experimental groups

was higher than the control groups (P<0.05).

https://doi.org/10.1371/journal.pone.0187447.g007
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Fig 8. X-ray examination. After surgery (day 1), the fractures in both the experimental group (a) and control group (b)

were clear and received good reduction. By 8 weeks postoperatively, the fracture line disappeared in the experimental

groups (c), and BMD in the fracture site was similar with surrounding bone tissue. In the control group (d), the fracture line

was blurred and BMD was lower than the bone tissue around the fracture site. At 12 weeks after surgery, the fracture lines

in both groups disappeared. The BMD of the fracture site in the experimental group (e) was consistent with the

surrounding bone tissue; however, the BMD in the control group (f) was still lower than the neighboring bone tissue.

https://doi.org/10.1371/journal.pone.0187447.g008
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bone density was similar to the bone tissues around the fracture site (Fig 8C) compared with

the fracture line blurred in the control groups and a lower bone density in the fracture site (Fig

8D). By 12 weeks, the fracture was completely healed in the experimental groups with no

apparent difference in the bone density of the fracture site as compared with the nearby nor-

mal bone tissue (Fig 8E). In the control groups, the fracture lines were almost invisible as well,

and the bone density of the fracture site was still lower than the normal bone tissue around it

(Fig 8F).

2D reconstructed images

After 12 weeks of surgery, the MIP images showed that there were several microvessels in the

femoral heads of the experimental groups (Fig 9A) connected with the vessels of great trochan-

ter of the femur through the femoral neck, and they distributed more evenly and broadly com-

pared with the control groups. In the control groups (Fig 9B), the numbers and branches of

microvessels in the femoral heads were lower than the experimental groups, and there was no

obvious microvessels of the femoral heads connected with the surrounding vessels.

3D reconstructed images

The 3D images of the microvessels within the femoral heads were reconstructed and custom-

ized to red by Isosurface of Micro View. The spatial relationship between the bone microstruc-

ture and microvessels could be observed from the coronal and sagittal planes (Fig 10A and

10C). By choosing the appropriate threshold (3000 HU), microvessels could be extracted and

displayed directly without the surrounding bone structure (Fig 10B and 10D). The results of

the 3D-reconstructed images of the microvessels further demonstrated that the numbers and

branches of microvessels in the femoral heads of the experimental groups (Fig 10A and 10B)

were more than the control groups (Fig 10C and 10D).

Advanced bone analysis of femoral heads

Bone structural parameters are shown in Table 2. The BMD of the femoral heads of the experi-

mental groups was significantly higher than the control groups (408.6 ± 39.9 vs. 310.6 ± 28.7,

Fig 9. The MIP of microangiography of the femoral heads. The MIP of microangiography of the femoral heads shows that the number and

branches of microvessels in the experimental group (VEGF) was higher than the control group (CON).

https://doi.org/10.1371/journal.pone.0187447.g009
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P<0.05). The Tb.Th of the two groups had no statistically significant difference despite the fact

that there was an increasing trend in the experimental groups.

Histopathological evaluation

Compared with the control groups, the width and area of the bone trabecula of the experimen-

tal groups showed in HE staining were higher at 12 weeks postoperatively (Fig 11A and 11B).

However, the results had no statistically significant difference (P>0.05) (Table 3). The images

of Masson’s trichrome stain (Fig 11C and 11D) showed that there was more red-stained

Fig 10. 3D images of microvessels and bone structure. The three-dimensional images of microvessels and bone structure (left) in the

femoral heads could be displayed simultaneously through Isosurface of Micro View software. By choosing the appropriate CT values, the

information of microvessels (right) could be extracted separately. The images demonstrated that the microvessels in the experimental

group (a,b) were more evenly and broadly distributed than in the control group (c,d).

https://doi.org/10.1371/journal.pone.0187447.g010

Table 2. The BMD and Tb.Th of the femoral heads after micro-CT analysis at 12 weeks postoperatively

(n = 5).

Group Control Experiment

BMD(mg/cc) 310.6±28.70 408.6±39.94

Tb.Th(μm) 126.6±9.36 164.4±19.54

The BMD of the femoral heads of the experimental groups was significantly higher than the control groups.

The Tb.Th of the two groups had no statistically significant difference despite the fact that there was an

increasing trend in the experimental groups.

https://doi.org/10.1371/journal.pone.0187447.t002
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Fig 11. Histopathological evaluation of the femoral heads. HE staining (x100), Masson’s trichrome

staining (x100), and CD31 immunohistochemical staining (x200) of the femoral heads at 12 weeks after

surgery. a, c, e experimental groups; b, d, f control groups. a, b, c, d show the bone tissue adjacent to the

screw trajectory.

https://doi.org/10.1371/journal.pone.0187447.g011
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mature bone observed in the femoral heads of the experimental groups than the control

groups. New bone formation area (%) in the experimental femoral heads (Table 4) was more

than the control groups (p<0.05). CD31 immunohistochemical staining (Fig 11E and 11F)

demonstrated that the number of CD31 positive cells and microvessels of experimental groups

(Table 5) was significantly higher than the control groups (P<0.05).

Discussion

Previous studies have proven that the severity of fracture displacement and internal fixation

avascular necrosis incidence were closely related: the higher the degree of fracture displace-

ment, the more complete damage to the blood supply of the femoral head, and the higher the

incidence of postoperative ANFH [17,18]. A number of recent studies have shown that the

choice of surgical treatment for femoral neck fracture should be based on the remaining blood

supply of the femoral head after injury rather than relying solely on the severity of the fracture

displacement [19,20]. This suggests that early recovery of the femoral head blood supply could

be the key to preventing ANFH after internal fixation.

We chose VEGF as the delivery drug for the treatment of femoral neck fracture. VEGF, as

the most important regulatory factor of angiogenesis, is involved in all processes of angiogene-

sis [6,7,21]. VEGF also played a crucial role in the progress of bone growth as well as fracture

repair [10,11,22]. Our experiment results demonstrated that the microvessel density and BMD

of the femoral heads in the experimental sides increased compared with the control sides, indi-

cating that VEGF-loaded nanographene coated screws could accelerate fracture healing and

promote blood vessel repair. To load VEGF into the fracture site effectively, we prepared nano-

graphene coating as the drug delivery system. Nanographene, as a novel biomaterial, has been

proved to have good biocompatibility [23]. Also, Kim et al. [24] and Li et al. [25] reported that

nanographene could be conductive of the adhesion and differentiation of adipose-derived

MSCs and neural stem cells. Nanographene material can be applied to the surface of any shape

of materials as a single atom sheet to enhance the materials’ performance, such as biocompati-

bility and cell adhesion [26]. As reported nanographene has shown the advantage of little cyto-

toxicity while with the ability sustained release for many days[27,28].Our experimental results

showed that the nanographene could be successfully applied as a coating on the surface of the

Table 3. Data analysis of trabecular bone of HE staining (n = 5). (�x±s).

Group Control Experiment

Percent trabecular area (%) 43.68±3.89 50.80±3.28

Trabecular width (μm) 129.00±10.17 146.80±19.45

Compared with the control groups, the width and area of the bone trabecula of the experimental groups

showed in HE staining were higher at 12 weeks postoperatively. However, the results had no statistically

significant difference.

https://doi.org/10.1371/journal.pone.0187447.t003

Table 4. Data analysis of new bone formation area (%) of Masson’s trichrome staining (n = 5). (�x±s).

Group Control Experiment

New bone formation area (%) 8.31±1.60 17.30±1.50

New bone formation area (%) in the experimental femoral heads was larger than the control groups.

https://doi.org/10.1371/journal.pone.0187447.t004
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internal fixing screws and that it did not affect the biocompatibility and surface characteristics

of the screws. The nanographene coating could absorb a certain amount of VEGF, demon-

strating effective sustained release of VEGF. As a simple and effective drug delivery system,

nanographene coating could deliver VEGF to the fracture site directly in the treatment of fem-

oral neck fracture.

Microangiography is one of the most intuitive methods in the assessment of the blood sup-

ply recovery of the femoral head after injury. We carried out microangiography by abdominal

aorta and inferior vena cava catheter, which is a clear, simple approach that is easy to repeat.

The diameter of subnanometer barium sulfate particles is smaller than 500 nm and can be eas-

ily injected into microvessels of bone. The CT value of the subnanometer barium sulfate, as

the vascular contrast agent, is greater than 3000 HU. However, the CT value of cancellous

bone CT is generally less than 1500 HU. This CT value difference could be distinguished

between microvessels and bone microstructure in femoral heads. Thus, samples could be

scanned by micro-CT without decalcification, so as to keep all the vascular and bony informa-

tion in the femoral heads. After image reconstruction, microvessels and bone microstructure

within the femoral head could be displayed simultaneously and analyzed from any two-dimen-

sional and three-dimensional level through Micro View software. In addition, compared with

Microfil [29] and Angiofil [30], subnanometer barium sulfate is a highly economical and suit-

able agent for the angiography of medium and large animals. Our experiment results showed

that subnanometer barium sulfate could be successfully used as a contrast agent for the micro-

angiography of beagles. After micro-CT scanning, the distribution of microvessels could be

displayed clearly from two- and three-dimensional aspects.

The main limitations in our study were that we reduced the fixation time to 12 weeks. If it

could be extended to 6 months, there might be a better result. In our study, we testified that

nanographene coating had good biocompatibility, but we did not study the rest of material

characterisation of it, such as adhesivity.Otherwise,this animal model could not reflect the real

condition that is seen in human fracture healing process and may account for the excellent

healing of experimental animals in this study.

Conclusion

In conclusion, our experiment proved that VEGF-loaded nanographene coated internal

fixation screws could promote new bone formation and the recovery of blood supply in the

fracture healing process. As a new contrast agent, combined with micro-CT scanning, subnan-

ometer barium sulfate, as a new contrast agent, could clearly show microvessels in femoral

heads and make the quantitative analysis of microvessels and bone microstructure possible.
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Table 5. Microvessel density of CD31 immunohistochemical staining (n = 5). (�x±s).

Group Control Experiment

Microvessel density (MVD) 61.20±9.39 113.40±12.50

CD31 immunohistochemical staining demonstrated that the number of CD31 positive cells and microvessels

of experimental groups was significantly higher than the control groups.

https://doi.org/10.1371/journal.pone.0187447.t005
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