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Background: The detection of phosphatidylinositol-3 kinase catalytic alpha (PIK3CA)
gene mutations in breast cancer is a key step to design personalizing an optimal treatment
strategy. Traditional genetic testing methods are invasive and time-consuming. It is urgent
to find a non-invasive method to estimate the PIK3CA mutation status. Ultrasound (US),
one of the most common methods for breast cancer screening, has the advantages of
being non-invasive, fast imaging, and inexpensive. In this study, we propose to develop a
deep convolutional neural network (DCNN) to identify PIK3CA mutations in breast cancer
based on US images.

Materials and Methods: We retrospectively collected 312 patients with pathologically
confirmed breast cancer who underwent genetic testing. All US images (n=800) of breast
cancer patients were collected and divided into the training set (n=600) and test set
(n=200). A DCNN-Improved Residual Network (ImResNet) was designed to identify the
PIK3CA mutations. We also compared the ImResNet model with the original ResNet50
model, classical machine learning models, and other deep learning models.

Results: The proposed ImResNet model has the ability to identify PIK3CA mutations in
breast cancer based on US images. Notably, our ImResNet model outperforms the
original ResNet50, DenseNet201, Xception, MobileNetv2, and two machine learning
models (SVM and KNN), with an average area under the curve (AUC) of 0.775.
Moreover, the overall accuracy, average precision, recall rate, and F1-score of the
ImResNet model achieved 74.50%, 74.17%, 73.35%, and 73.76%, respectively. All of
these measures were significantly higher than other models.

Conclusion: The ImResNet model gives an encouraging performance in predicting
PIK3CA mutations based on breast US images, providing a new method for
noninvasive gene prediction. In addition, this model could provide the basis for clinical
adjustments and precision treatment.
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1 INTRODUCTION

Breast cancer has become the leading cause of global cancer
incidence in 2020 (1), and it is the fifth cause of cancer deaths
among Chinese women (2). A high degree of heterogeneity can be
observed in breast cancer, and genomic instability is regarded as a
major driver of tumor heterogeneity (3). The differences at the
genetic and molecular levels make clinical treatment options
hugely different. Somatic mutations are stable mutations and
play an important role in cancer development and progression
(4). The phosphatidylinositol-3 kinase catalytic alpha (PIK3CA)
gene is one of the most frequent somatic mutations in breast
cancer. According to the Cancer Genome Atlas Network, the
percentage of PIK3CA mutations is 34% (5). Phosphatidylinositol
3-kinase (PI3K) is an activator of AKT, which participates in the
regulation of cell growth, proliferation, survival, and motility. The
PI3K heterodimer consists of two subunits: the regulatory subunit
(P85) and the catalytic subunit (p110). PIK3CA induces
hyperactivation of the alpha isoform (p110a) of PI3K and can
act on the PI3K-AKT-mTOR signaling pathway to trigger
oncogene activation, and also lead to persistent AKT activation
and regulation of tumor growth in breast cancer (6–8).

Currently, available treatment options for breast cancer are
chemotherapy, endocrine therapy (ET), targeted therapy, and
immunotherapy. Two-thirds of breast cancer patients express
hormone receptors (HR) and lack human epidermal growth
factor receptor 2 (HER2) overexpression and/or amplification,
and for them, ET is the paramount medical treatment (9, 10).
However, about 50% of patients eventually develop ET resistance
due to several mechanisms, such as the dysregulation of PI3K-AKT-
mTOR signaling (11). The orally available a-selective PIK3CA
inhibitor, alpelisib, has been approved by the U.S. Food and Drug
Administration (FDA) for the treatment and prognosis of patients
with HR+/HER2- advanced or metastatic breast cancer (12, 13). In
addition, alterations in the PI3K pathway are associated with poor
outcomes of targeted therapy in HER2+ breast cancer (14). For
triple-negative breast cancer (TNBC), PIK3CA protein expression is
significantly associated with improved overall survival and disease-
free survival (15). Therefore, the PIK3CA mutation status plays a
vital role in determining the optimal treatment choice for breast
cancer patients.

Clinically relevant PIK3CA alterations are detected in several
biospecimens using different genetic testing techniques including
direct sequencing, real-time polymerase chain reaction (PCR), next-
generation sequencing (NGS), and analysis of liquid biopsy samples
(16). Although these methods for detecting genetic mutations have
improved considerably, molecular testing is often time-consuming,
operator dependent, and may be limited by inadequate sample
availability. In addition, the cost of genetic testing remains too high
for patients. Thus, it is necessary to develop noninvasive and
efficient methods for estimating PIK3CA mutation status.

Recently, medical images have been employed to identify the
gene mutations in different cancers where different images from
different modalities such as computerized tomography (CT) and
magnetic resonance imaging (MRI). For instance, Weisset al. (17)
found that texture analysis on CT images can differentiate the
presence of K-ras mutation from pan-wildtype non-small cell lung
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cancer. Dang et al. (18) used MRI texture analysis to predict p53
mutation status in head and neck squamous cell carcinoma.
Meanwhile, texture analysis has been used to assess the
relationship between genetic mutations in breast cancer and
morphological features of the masses in MRI images. Woo et al.
(19) applied texture and morphological analysis in breast MRI
images to evaluate TP53 and PIK3CAmutations. Georgia et al. (20)
performed texture analysis of breast MRI to predict BRCA-
associated genetic risk. However, CT and MRI are relatively
expensive, time-consuming, and not available for all patients.

As one of the widely used tools in breast tumor assessment,
ultrasound (US) has similar features to assess breast tumors as
CT and MRI and also has the advantages of being non-invasive,
real-time, and low cost (21). To solve the disadvantages of
operator dependence, many deep learning methods have been
proposed for US images. Unlike traditional machine learning
and radionics methods, a deep convolutional neural network
(DCNN), a special type of deep learning, does not require
domain experts to select the specific features beforehand. In
contrast, it takes the raw medical images as inputs, does not
require manually designed features, and can automatically learn
features related to classification or segmentation tasks (22). To
improve the efficiency of clinical workflows and reduce inter-
observer variation, deep learning has already been applied in
large datasets of US images for classifying benign and malignant
breast tumors (23–25), classifying molecular subtypes of breast
cancer (26, 27), predicting breast cancer lymph node metastasis
(28–31) and predicting the response of breast cancer to
neoadjuvant chemotherapy (32, 33), etc.

Some studies have applied deep learning models to identify
TP53 mutations in pancreatic cancer using MRI multi-modal
imaging (34), EGFR mutation status of lung adenocarcinoma
using CT imaging (35, 36), and KRAS mutations in colorectal
cancer using CT imaging (37). However, it remains unclear
whether deep learning models can be employed to identify
breast cancer gene mutations on US images. This study
observed the differences in breast morphology and other
features resulting from microstructural changes in PIK3CA
mutant of breast cancers, investigated whether the differences
could be captured and interpreted by US images, and identified
them using an improved residual network (ImResNet).
2 MATERIALS AND METHODS

2.1 Materials
This study enrolled 589 female patients with breast cancer who are
treated in Guangdong Provincial People’s Hospital between January
2017 and October 2021. To obtain PIK3CA mutation status, all
patients submitted their breast tissue samples and blood samples for
targeted sequencing to a clinical laboratory accredited by the College
of American Pathologists (CAP) and certified by the Clinical
Laboratory Improvement Amendments (CLIA). This retrospective
study was approved by the Institutional Review Board of
Guangdong Provincial People’s Hospital and exempt from
obtaining informed consent from patients.
May 2022 | Volume 12 | Article 850515
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Mutational analysis of the PIK3CA gene was performed using
the next-generation sequencing (NGS) technique. First, tissue
and genomic DNAs were extracted from formalin-fixed,
paraffin-embedded (FFPE) tumor tissues using QIAamp DNA
FFPE tissue kit and from blood samples using QIAampDNA
blood mini kit (Qiagen, Hilden, Germany), respectively. NGS
library construction required at least 50 ng DNA. Then, tissue
DNA was sheared using Covaris M220 (Covaris, MA, USA),
followed by end repair, phosphorylation, and adaptor ligation. A
200-400bp fragment was purified, followed by hybridization with
capture probes decoys, magnetic bead hybridization selection,
and PCR amplification. Fragment quality and size were assessed
by the high sensitivity DNA kit (Bioanalyzer 2100, Agilent
Technologies, CA, USA). Target capture was performed using
a commercial panel consisting of 520 cancer-related genes. The
cases were selected for study following the criteria ①surgical
resection was performed for the target tumor; ②the Pathological
and immunohistochemical results were completely obtained;
③the preoperative breast US images of the patients were fully
obtained and stored. Finally, 312 patients including 127 PIK3CA
mutation patients (the mean age of 51.2 years; the age range of
25-76 years) and 185 Non-PIK3CA mutation patients (the mean
age of 48.7 years; the age range of 22-89 years) with 800 US
images were collected in this study. The flowchart of the study
cohort selection is shown in Figure 1. To ensure the robustness
and accuracy of the model, multiple US images of different
sections were acquired per lesion as much as possible.

2.2 Proposed Methods
2.2.1 Tumor Region Extraction
Firstly, the region of interest (ROI) which includes the entire
tumor area, as well as the minimum peritumoral tissue was
manually cropped in breast US images which were completed by
Frontiers in Oncology | www.frontiersin.org 3
a senior radiologist with 12 years of experience. An example of
the ROI of breast US images is shown in Figure 2. After that, a
total of 800 ROI images were obtained and then split into
training and testing groups at the ratio of 75% to 25%.

2.2.2 Deep Learning Network
In the proposed method, the PIK3CA mutation status is
observed on the ROI images and the mutation identification
problem is transferred into an image classification problem. A
deep residual network (ResNet) is redesigned by changing the
architecture to extract the textural features on images and its
output parts were modified to accomplish this classification task.

In deep learning networks, multiple layers are stacked in
sequence and the output of the previous layer is fed to the
following layer. A convolution layer is a basic layer where
different filters perform a convolution operation to extract the
features from the former layers with different kernels (22). The
kth convolution layer Lk is noted as:

xkn = f omx
k−1
m ⊗Wk

mn + bkn
� �

(1)

f (x) =
x x ≥ 0

0 x < 0

(
(2)

where xk−1m is the mth feature map of layer Lk-1, W
k
mn is the

connecting weights between nth feature map of the output layer
and mth feature map of the previous layer, and the bias of nth

feature map is denoted as bkn⊗ denotes the convolution
operation, Wk

mn is randomly initialized and is then tuned using
a backpropagation procedure, and further optimized with
stochastic gradient descent (SGD) algorithm (38), f is an
activation layer to convert the nonlinear values into linear
FIGURE 1 | Flowchart of the study cohort selection.
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values. There are some commonly used activation functions
namely rectified linear units (ReLU), Sigmoid, Tangent and
softmax functions (39).

Pooling layers reduce the redundant parameters in the
convolution layer to increase the computing speed.

I(k+1) = P(I(k)) (3)

Where P is a pool function, the max pooling, average pooling,
global max pooling, and global average pooling methods are used
for this process.

In the fully connected layer, each neuron is connected to the
previous layer. Their outputs estimate the confidence to
different categories.

For a classification problem, the final layer usually uses an
activation function as the classification layer. The classification
layer yields the probabilities of the inputs belonging to a certain
class (40).

P(y = 1 ∣ x,w, b) =
exp w · x + bf g

1 + exp w · x + bf g (4)

P(y = 0 ∣ x,w, b) =
1

1 + exp w · x + bf g (5)

Where y is the class target, x ∈ RNx1 is a N dimensional feature
vector, w ∈ RNx1 is the weight parameter, and b is a bias term. In
our model, the output layer has two outputs for PIK3CA and
Non-PIK3CA mutation, respectively.

The ResNet employs a unique residual operation in the network
which makes it easy to converge, to gain accuracy from increased
depth. A ResNet utilizes skip connections, or short-cuts, to jump
over some layers. Typically, it consists of convolutional layers,
rectified linear units (ReLU) layers, batch normalization layers,
and layer skips (41). The transfer learning approach redesigns the
pre-defined network to make it accomplish different tasks, which
reduces the time in training and improves the network’s
generalization ability. In our proposed network, rather than
building a model from scratch, a ResNet50 model pre-trained by
natural images from ImageNet, is selected as a backbone to extract
the features from ROI images. ImageNet comprises more than 14
Frontiers in Oncology | www.frontiersin.org 4
million images that have been hand-annotated to indicate the
pictured objects and are categorized into more than 20,000
categories (42). Of note, in breast US transfer learning, ImageNet
is used as a pre-training dataset in most cases (43–45). The
advantages of using the pre-trained network include reducing
training time, providing better performance for neural networks,
and requiring limited data. The original ResNet is improved by
adding a new fully connected layer for feature extraction and adding
a new global average pooling to interpret these features in the
classification task. The idea is to generate one feature map for each
corresponding category of the classification task in the last
convolutional layer. Thus, the feature maps can be interpreted as
categories confidence maps. Also, the global average pooling is a
structural regularize to prevent overfitting for the overall structure.
Then, another fully connected layer is added as a classification layer
to match the output numbers of classified categories, and a binary
cross-entropy (BCE) function is used as the loss function which
computes the BCE between predictions and targets (46). Figure 3
shows the structure diagram of our proposed ImResNet.

2.3 Evaluation and Statistical
Analysis Metrics
A confusion matrix (CM) is used to evaluate classification
performance. The rows of CM represent the instances of a
predicted class and columns represent the instances of an
actual class, Using the results in CM, four parameters namely
precision (P), recall (R), F1-score, and accuracy (ACC) were
defined as follows:

PðiÞ = Mii

ojMji
(6)

RðiÞ = Mii

ojMij
(7)

P(i) is the fraction of samples where the algorithm correctly
predicted class i out of all predictions using the algorithm, and R
(i) is the fraction of cases where the algorithm correctly predicted
i out of all the true cases of i. Mij is the samples whose true class is
i and prediction class is j.
A B C

FIGURE 2 | Image pre-processing. (A) An original breast US image. (B) Image after coordinate marking. (C) The selected effective image area.
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F1(i) = 2� PðiÞ � RðiÞ
PðiÞ + RðiÞ (8)

ACC = oiMii

oijMij
(9)

where ∑iMii is all correct predictions and ∑ijMij is total
predictions. Accuracy is one metric for evaluating classification
performance, which is defined as a fraction of correct predictions
out of total predictions.

The receiver operator characteristic (ROC) curve was also
utilized to measure the classification performances of different
models. The area under curve (AUC) was calculated and worked
as a metric to evaluate the classification performance.
3 RESULTS

3.1 Platform Settings
The modified deep learning model was trained on a server with a
2 x Six-Core Intel Xeon processor and 128GB of memory. The
server is equipped with an NVIDIA Tesla K40 GPU with 12GB
of memory.

3.2 Predictive Performance of the
ImResNet Model
For the test set of 200 US images, the performance of the
ImResNet50 model has been given in Table 1. The ImResNet
model achieved the best performance in all models, with an
overall accuracy of 74.50%, and the average precision, recall, and
F1-score reached 73.35%, 74.17%, and 73.60%, respectively.
Figure 4A shows the model achieved an AUC of 0.775.
Besides, the performance of the ImResNet model can be
visualized from the CM in Figure 5. In the figures of CM, the
first two rows represent the instances of a predicted class, the first
Frontiers in Oncology | www.frontiersin.org 5
two columns represent the instances of an actual class, the
diagonal elements correspond to correctly classified
observations, and the off-diagonal cells correspond to
incorrectly classified observations. As well, the bottom row is
the row-normalized row summary, and it shows the percentages
of correctly and incorrectly classified observations for each true
class. The rightest column is the column-normalized column
summary and displays the percentages of correctly (in green
color) and incorrectly classified observations (in red color) for
each predicted class. In each cell, the percentage value is
calculated using the current number over the whole sample
number. Figure 6 shows the classification examples of the
ImResNet model. In the first line, the four images in the
PIK3CA category are listed, while the four images in the Non-
PIK3CA category are shown in the second row.

3.3 Comparison With Machine
Learning Models
First, we compared our proposed ImResNet model with two
commonly used machine learning methods to identify PIK3CA
mutations on the same dataset. In machine learning, the support
vector machine (SVM) (47) is one of the most robust supervised
learning models for classification and regression analysis, which
transfers the training examples to points in space to maximize
the width of the gap between the two categories and maps the
new unknown examples into that same space and predict their
belongings to a category based on which side of the gap they are
in. The K-nearest neighbors (KNN) algorithm is a type of
instance-based classification method where an unknown object
is classified by a plurality vote of its neighbors, with the object
being assigned to the class most common among its K nearest
neighbors. In the parameters of KNN, 5 neighbors are selected.
Euclidean distance is the distance metric, and all features are
standardized in the range of [0, 1]. The two machine learning
models’ performance is listed in Table 1, and the ROC curves are
FIGURE 3 | The ImResNet model’s structure diagram.
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depicted in Figures 4C, D. The ImResNet achieves an AUC of
0.775, higher than that of SVM and KNN models (AUC: 0.745,
0.741). The overall accuracy, average precision, recall rate, and
F1-score of the ImResNet model were all significantly higher
than the SVM and KNN models. The CMs of the two machine
learning models are shown in Figures 5C, D. We find that
compared with the SVM and KNN models, the ImResNet model
has an improvement in the ability to identify Non-PIK3CA
Frontiers in Oncology | www.frontiersin.org 6
mutation. Compared with the KNN, the ImResNet model has
increased 23(11.5%) correctly identified cases in Non-
PIK3CA mutation.

3.4 Comparison With Deep
Learning Models
To confirm the enhanced performance of the improved
ResNest50 model, we compare it with the original ResNest50
A B

D E F G

C

FIGURE 4 | ROC curves of different models. (A) Improved ResNet50. (B) Original ResNet50. (C) SVM. (D) KNN. (E) DenseNet201. (F) Xception. (G) MobileNetv2.
TABLE 1 | A performance summary of the ImResNet model and other models in identifying PIK3CA mutations of breast cancer.

Model Classifier Categories Precision Recall F1-score Accuracy

Machine learning SVM Non-PIK3CA 64.04% 74.49% 68.87%
PIK3CA 70.93% 59.80% 64.89%
Average 67.48% 67.15% 66.88%
Overall 67.00%

KNN Non-PIK3CA 61.40% 75.27% 67.63%
PIK3CA 73.26% 58.88% 65.28%
Average 67.33% 67.07% 66.46%
Overall 67.33%

Deep learning ImResNet50 Non-PIK3CA 81.58% 75.61% 78.48%
PIK3CA 65.12% 72.73% 68.71%
Average 73.35% 74.17% 73.60%
Overall 74.50%

Original ResNest50 Non-PIK3CA 65.79% 61.48% 63.56%
PIK3CA 45.35% 50.00% 47.56%
Average 55.57% 55.74% 55.56%
Overall 57.00%

DenseNet201 Non-PIK3CA 77.19% 66.67% 71.54%
PIK3CA 48.84% 61.76% 54.55%
Average 63.02% 64.22% 63.05%
Overall 65.00%

Xception Non-PIK3CA 65.79% 65.79% 65.79%
PIK3CA 54.65% 54.65% 54.65%
Average 60.22% 60.22% 60.22%
Overall 61.00%

MobileNetv2 Non-PIK3CA 77.19% 66.17% 71.26%
PIK3CA 47.67% 61.19% 53.59%
Average 62.43% 63.68% 62.42%
Overall 64.50%
May 20
22 | Volume 12 | Arti
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model and other deep learning models (DenseNet201, Xception,
MobileNetv2). We obtained the ROC curves, AUC values (as
shown in Figure 4), accuracy, precision, recall, and F1-score (as
presented in Table 1). Our model’s AUC value was 11.6% higher
than original ResNest50, 8.6% higher than DenseNet201, 15.2%
higher than Xception, and 6.6% higher than MobileNetv2.
Meanwhile, all quantitative metrics are better than other deep
learning models. From the CM in Figure 5, we found that the
ImResNet model has increased 17(19.8%), 5(2.5%), 18(9.0%) and
5(2.5%) correctly identified cases in PIK3CA mutations
compared to the original ResNest50 model, DenseNet201,
Xception and MobileNetv2, respectively.
Frontiers in Oncology | www.frontiersin.org 7
4 DISCUSSION

In this study, we proposed a DCNN-ImResNet using non-
invasive US images to identify PIK3CA mutation status for
patients with breast cancer. As one of the most common
mutated genes in breast cancer, PIK3CA plays an essential role
in both the development and progression of breast cancer (48,
49). As an oral PI3K inhibitor, Alpelisib has received FDA
approval for targeted breast cancer therapy (13). Accordingly,
determining the PIK3CA mutation status of breast cancer
patients is critical to the management. Whereas complexity of
genetic testing has limited timely testing and targeted treatment
A B

D E F G

C

FIGURE 5 | Confusion matrices of different models. (A) Improved ResNet50. (B) Original ResNet50. (C) SVM. (D) KNN. (E) DenseNet201. (F) Xception. (G) MobileNetv2.
FIGURE 6 | Classification examples of the ImResNet model.
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to breast cancer patients in the era of precision medicine.
Previously, Woo Kyung et al. (19) found that texture analysis
of segmented tumors on breast MRI based on ranklet transform
was potential in recognizing the presence of TP53 mutation and
PIK3CA mutation, and for PIK3CA mutation, the AUC of
ranklet texture feature was 0.70. But this study has some
limitations. On the one hand, acquiring MRI images of breasts
is time-consuming and expensive. On the other hand, the
computer-aided diagnostic approach in that study is semi-
automated and still needs manual interactions. Hence, we
proposed the ImResNet model which can automatically
identify PIK3CA mutations. So far, it is the first study of US
images based on deep learning for the identification of PIK3CA
mutations in breast cancer.

The ImResNet model is a feasible model for identifying
PIK3CA mutations with an AUC of 0.775 for the test cohorts,
outperforming the two machine learning models (SVM and
KNN) and other deep learning models (Original ResNest50,
DenseNet201, Xception, and MobileNetv2). The good
performance obtained illustrates that the differences in breast
morphology and other features resulting from microstructural
changes in PIK3CA mutant breast cancers could be captured by
US images and identified using a deep learning model. The
ResNet50 has been proven to have good performance in breast
US images classification because it is possible to go deeper
without losing generalization capability (26). We used transfer
learning to pre-train ResNet50 to overcome our small sample
size problem and improved the original ResNet50 by adding a
new fully connected layer for feature extraction and adding a new
global average pooling to interpret these features in the
classification task to obtain the ImResNet. Then, we trained
the ImResNet model using the presence or absence of the
PIK3CA mutations as a label and finally confirmed that the
PIK3CA mutation status can be identified from US image
data alone.

One of the advantages of our model is that it automatically
learns US image features without the need to extract features
manually. In recent years, radiomics features extracted from
non-invasive images have been applied to identify gene
mutations in some tumors. Zhang et al. (35) proposed to
develop a deep learning model to recognize EGFR status of
LADC by using the radiomics features extracted from CT
images. Their results show that this method can precisely
recognize EGFR mutation status of lung adenocarcinoma
patients. Nevertheless, the radiomics features rely on manual
annotation by professionals and automatic segmentation of the
target area. Manual annotation is time-consuming and labor-
intensive. Moreover, automated segmentation requires a well-
established segmentation system in clinical practice. By contrast,
deep learning models can automatically learn multi-level
features. A study by Kan et al. (37) investigated performance
by using a deep learning method to estimate the KRAS mutation
status in colorectal cancer patients based on CT imaging and
compared it with a radiomics model, and the results show that
the deep learning model has a better performance.
Frontiers in Oncology | www.frontiersin.org 8
Meanwhile, some studies have focused on pathological specimens
of tumors to test whether deep learning models can predict gene
mutations from pathological pictures. Wang et al. (50) demonstrated
that a DCNN could assist pathologists in the detection of BRCA gene
mutation in breast cancer. Velmahos et al. (51) used a deep learning
model to identify bladder cancers with FGFR-activating mutations
from histology images. Furthermore, Nicolas et al. (52) trained a
DCNN to predict the ten most commonly mutated genes in lung
adenocarcinoma on pathology images. They found that six of them
(TK11, EGFR, FAT1, SETBP1, KRAS, and TP53) can be predicted
with AUCs from 0.733 to 0.856. However, some histopathological
information can only be evaluated after invasive biopsy or surgery
resection. The proposed ImResNet model on US images can
repeatedly be tracked during the exploration of tumor treatment
when the patient’s physical condition is not suitable for invasive
biopsy or surgery.

Despite the better performance of the ImResNet model to
identify PIK3CA mutations, it still has several limitations that can
be improved in future work. First, the sample size was relatively small
and retrospectively collected in this study. Therefore, prospective
investigation using considerably larger datasets is required to further
validate the robustness and reproducibility of our conclusions.
Second, we included only a single-center cohort with the internal
testing set. In the future, multi-centercohorts should be recruited for
evaluation. Third, the 74.50% accuracy of our proposed method is
not yet sufficient for clinical needs, and further performance
improvements are needed in future work. However, this promising
performance could still encourage more researchers to utilize deep
learning methods based on US imaging to identify breast cancer
gene mutations.
5 CONCLUSION

In this study, we proposed a DCNN-ImResNet for the automated
identification of PIK3CA mutations in breast cancer based on US
images. Our method’s main advantage is that it is a non-invasive
method for identifying PIK3CA mutations in breast cancer suitable
for avoiding invasive damage when surgery and biopsy are
inconvenient. In addition, US images are easily available to
monitor for PIK3CA mutations throughout the treatment period
of breast cancer. And the cost and time to obtain US images are
relatively low. Although the ImResNet model has some potential in
identifying PIK3CA mutations, there is still space for performance
improvement. In the future, prospective multicenter validation
should be performed to provide a high level of evidence for the
clinical application of the ImResNet model.
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