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1  |  INTRODUCTION
When faced with novelty, most mammals increase their 
exploratory behavior to facilitate establishing and refining 
the internal representation of the novel element that could 
be for instance a change in the surroundings, a novel object 
in familiar settings or a conspecific. As a special case, an-
imals engage in active exploration when placed in a novel 
environment to gain spatial knowledge and represent the 
physical landscape. In the past century, after a series of 
seminal experiments on rats navigating in a complex maze, 

Edward Tolman put forward the proposition that animals, 
including humans, can acquire large numbers of sensory 
cues and use them to build a mental image of the environ-
ment. With this internal representation of physical space 
they can navigate to a goal by knowing where it is embed-
ded in a complex set of environmental features (Tolman, 
1948; Tolman & Honzik, 1930a,1930b). This idea is known 
today as the cognitive map, an abstract ensemble of envi-
ronmental relationships and paths which determines the 
possible routes of actions. Although generally discussed 
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Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as hold-
ing spatial information in working memory generally serving navigation under a broad 
range of circumstances, relies on a network of structures. While central to this network 
are medial temporal lobe structures with a widely appreciated crucial function of the 
hippocampus, neocortical areas such as the posterior parietal cortex and the retrosple-
nial cortex also play essential roles. Since the hippocampus receives its main subcorti-
cal input from the medial septum of the basal forebrain (BF) cholinergic system, it is 
not surprising that the potential role of the septo- hippocampal pathway in spatial navi-
gation has been investigated in many studies. Much less is known of the involvement 
in spatial cognition of the parallel projection system linking the posterior BF with neo-
cortical areas. Here we review the current state of the art of the division of labour 
within this complex ‘navigation system’, with special focus on how subcortical cholin-
ergic inputs may regulate various aspects of spatial learning, memory and navigation.
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in the context of physical space, the concept of the cogni-
tive map can be generalised to representations of abstract 
spaces as well, such as hierarchy or time- series (Epstein, 
Patai, Julian, & Spiers, 2017).

Navigation can be defined as the process of determin-
ing and maintaining a course or trajectory from one place 
to another (Gallistel, 1990). In cognitive neuroscience nav-
igation is regarded as a complex goal- directed behavior that 
involves processing a variety of sensory and proprioceptive 
stimuli, storage and recall of information and elaboration of 
plans. There are many ways of finding a goal location, from 
simple direct approach to an easy- to- locate proximal target 
(local navigation) to using well- learned routes and cognitive 
maps (wayfinding). In the simplest case (target approaching 
or taxis), the goal is directly detectable and the agent only 
needs to orient towards the observable goal or landmark 
nearby and then maintain this direction (beacon, O’Keefe & 
Nadel, 1978). In more complex situations when the goal is 
not visible, it might still be possible to locate it using visi-
ble distal cues, which can then be used to compute the goal 
direction (guidance, Morris, 1981). To reach a destination 
outside the local environment, the subject can recongise and 
approach sequential landmarks or proximal places step- by- 
step (recognition- triggered response or direction, Mallot & 
Gillner, 2000) or concatenate multiple recognition- triggered 
responses in a route (route following or topological naviga-
tion). Notably, a route is a rigid construct that do not involve 
the creation of a new path. The latter is only possible using a 
map- based strategy, which capitalises on the relational orga-
nization that is characteristic to the cognitive map.

The wanderer has access to two kinds of cues: those gen-
erated by proprioception including vestibular feedback (id-
iothetic) and those emerging from the environment such as 
landmarks (allothetic). Similarly, spatial information can 
be represented both by subject- based coordinates in a self- 
centered (egocentric) frame or by world- based coordinates 
in a world- centered (allocentric) frame (Committeri et al., 
2004; Galati, Pelle, Berthoz, & Committeri, 2010; Klatzky, 
1998, but see also Meilinger & Vosgerau, 2010; Filimon, 
2015). In natural conditions, idiothetic and allothetic signals 
can be combined to optimise navigation (Poucet et al., 2013; 
Sjolund, Kelly, & McNamara, 2018), but may be weighed 
differentially based on their perceived reliability (Chen, 
McNamara, Kelly, & Wolbers, 2017). Thus, the selection of 
appropriate navigational strategies is primarily determined by 
the perception of space, that is, by the nature of the cues that 
can be used for navigation, modified by the subjects’ individ-
ual predispositions and expectations (Ishikawa & Montello, 
2006; McIntyre, Marriott, & Gold, 2003).

Given the complexity of the process and the different 
ways by which navigation can be implemented, it is unsur-
prising that neuroimaging and lesion studies have identi-
fied an intricate network of structures involved, including 

the hippocampus, entorhinal cortex, parahippocampal 
gyrus, medial and right inferior parietal cortex, regions 
within prefrontal cortex, cerebellum, parts of the basal 
ganglia, posterior cingulate cortex and retrosplenial cor-
tex (RSC; Guterstam, Björnsdotter, Gentile, & Ehrsson, 
2015; Iaria, Chen, Guariglia, Ptito, & Petrides, 2007; Ito, 
Zhang, Witter, Moser, & Moser, 2015; Maguire et al., 
1998; Rochefort, Lefort, & Rondi- Reig, 2013). Hereafter, 
we will direct our focus on the differential role of the hip-
pocampus, the posterior parietal cortex (PPC) and the RSC 
in spatial navigation, together which areas seem to form a 
network that may serve as the anatomical bases of flexible 
integration of allocentric and egocentric information. Next, 
we will review the structural properties of cholinergic 
basal forebrain (BF) afferents to these cortical structures 
originating from the medial septum (MS) and the nucleus 
basalis magnocellularis (NBM; Figure 1). Finally, we will 
summarize the functional evidence provided by lesion, mi-
crodialysis and pharmacology studies on the role of these 
BF to cortex pathways in controlling different aspects of 
spatial cognition. Although discussing other brain areas 
are beyond the scope of this review, this does not diminish 
their relevance for navigation (see for example (Mizumori, 
Puryear, & Martig, 2009; Chersi & Burgess, 2015) on the 
importance of striatal circuits in spatial navigation).

2 |  THE ROLE OF THE 
HIPPOCAMPUS, POSTERIOR 
PARIETAL AND RSC IN 
ALLOCENTRIC AND EGOCENTRIC 
REPRESENTATION OF SPACE

2.1 | The hippocampus
The medial temporal lobe is a key structure in the spatial do-
main of cognition, for navigation as well as encoding and re-
trieval of spatial memory. This includes the anatomical areas 
of the hippocampal region (hippocampus proper, dentate 
gyrus and subicular complex) and the adjacent cortex (per-
irhinal, entorhinal, and parahippocampal cortices; Aggleton, 
2012; Fernández- Ruiz & Oliva, 2016; Lavenex & Amaral, 
2000; Squire & Zola- Morgan, 1991). The literature in this 
field is vast and multidisciplinary. Here we only provide an 
overview pertinent to our focus of cholinergic modulation 
of hippocampal function in the context of spatial learning 
and memory; for more extensive summaries and thought- 
provoking reading please refer to (Eichenbaum et al., 2016; 
Lisman et al., 2017; Moser, Moser, & McNaughton, 2017). 
As stated by (O’Keefe & Nadel, 1978), “we shall argue 
that the hippocampus is the core of a neural memory sys-
tem providing an objective spatial framework within which 
the items and events of an organism’s experience are located 
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and interrelated”. Hippocampus indeed seems to represent 
spatiotemporally coincident elements of a context, creating 
allocentric cognitive maps which are then used to guide ex-
ploration, plan navigation and interpret the current state of 
the world (Schiller et al., 2015).

Tasks requiring either spatial memory or navigation 
based on allocentric cues generally engage the hippocampus 
(Hartley, Maguire, Spiers, & Burgess, 2003; Iaria, Petrides, 
Dagher, Pike, & Bohbot, 2003; Kumaran & Maguire, 2005; 
Maguire et al., 1998) and are impaired in patients with hippo-
campal brain damage (Corkin, Amaral, González, Johnson, & 
Hyman, 1997; Feigenbaum & Morris, 2004; Guderian et al., 
2015; Hartley et al., 2007; Holdstock et al., 2000; Scoville 
& Milner, 1957). Spatial navigation becomes gradually im-
paired during ageing. A recent study (Konishi, Mckenzie, 
Etchamendy, Roy, & Bohbot, 2017) found that the age- related 
impairment of spatial memory was correlated with decreased 
hippocampal volume, while better general cognitive func-
tions were associated with superior wayfinding abilities and 
increased use of hippocampus- dependent spatial strategies.

A specific loss of cholinergic innervation of the hippocam-
pal formation has been hypothesized as a leading cause for age- 
related memory decline both in normal ageing and Alzheimer’s 
patients (Arendt & Bigl, 1986; Gallagher & Colombo, 1995; 
Whitehouse, Price, et al., 1982). It was established that the 
extent of cognitive impairment was correlated with loss of 
BF cholinergic neurons from post- mortem human brain tis-
sue samples (Arendt & Bigl, 1986; Bowen, Smith, White, & 

Davison, 1976; Iraizoz, de Lacalle, & Gonzalo, 1991; Perry 
et al., 1978). Moreover, functional alterations of cholinergic 
activity might precede morphological degeneration (Palop & 
Mucke, 2016; Schliebs & Arendt, 2011); however, a direct sup-
port for specific cholinergic dysfunction before axonal degen-
eration and plaque formation is lacking. Given the well- known 
age- associated impairment of the medial septal cholinergic 
neurons (Schliebs & Arendt, 2011), this raises the possible 
causal involvement of diminishing cholinergic innervation in 
impaired hippocampal spatial memory during ageing.

Although the hippocampus is certainly fundamental for 
allocentric navigation, it has recently been proposed that such 
tasks might be implemented by a broader network (Ekstrom, 
Arnold, & Iaria, 2014). Indeed, analysing the trajectory of 
amnestic patients with medial temporal lobe damage in a vir-
tual analogue of the Morris water maze (MWM), it was found 
that they retained the ability to acquire and utilise coarse spa-
tial maps, with partial allocentric memory (Kolarik, Baer, 
Shahlaie, Yonelinas, & Ekstrom, 2018; Kolarik et al., 2016).

In rodents, lesions to the hippocampus impairs naviga-
tional tasks that require the processing of environmental 
cues or exploration of new locations, while simple stimulus- 
response learning remains intact (Cohen, LaRòche, & 
Beharry, 1971; Morris, Garrud, Rawlins, & O’Keefe, 1982; 
Olton, Walker, Gage, & Johnson, 1977). However, the exact 
nature of the impairment and whether it is the same across 
rodents and humans remains less clear. Clark and col-
leagues used a version of the MWM that allowed the animal 

F I G U R E  1  Anatomical location 
of the spatial navigation network. (a) 3D, 
(b) coronal and (c) sagittal views of the 
mouse brain highlighting the locations 
of medial septum (red), nucleus basalis 
magnocellularis (yellow), hippocampus 
(green), posterior parietal cortex (blue) and 
retrosplenial cortex (teal). Image credit: 
Allen Institute
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to proceed directly to the hidden platform using a beacon 
(Clark, Broadbent, & Squire, 2007). However, the rats first 
had to select the correct beacon from four identical objects 
based on distal cues. After the lesion, animals were unable to 
reach the platform, as expected if the hippocampus is neces-
sary to process distal cues. However, contrary to the expec-
tation that rats would look for the platform near the beacons, 
they did not show an indication of maintaining this concept, 
suggesting a broader memory impairment not restricted to 
spatial information. Additionally, while humans with hip-
pocampal lesions retain spatial memories acquired remotely 
showing a temporally graded retrograde amnesia, lesioned 
animals are also impaired on recently acquired memories de-
spite extensive training (Clark, Broadbent, & Squire, 2005). 
This could be resolved by raising and training the animals 
in an enriched environment, where they could acquire an 
allocentric spatial representation that survived hippocampal 
damage, confirming that extensive premorbid experience 
leads to spatial representations that are independent of the 
hippocampus (Winocur, Moscovitch, Fogel, Rosenbaum, & 
Sekeres, 2005). These spatial representations, however, be-
came more schematic and could not support flexible navi-
gation, e.g. choosing an alternative route in the presence of 
an unexpected obstacle (Winocur, Moscovitch, Rosenbaum, 
& Sekeres, 2010), similarly to human patients in a complex 
environment (Maguire, Nannery, & Spiers, 2006).

Crucial support for the navigational role of the hippocam-
pal formation has come from electrophysiology experiments. 
Our current understanding of how the brain encodes spa-
tial information has been shaped by the discovery of rodent 
place cells (O’Keefe & Dostrovsky, 1971), head direction 
cells (Taube, Muller, & Ranck, 1990), grid cells (Hafting, 
Fyhn, Molden, Moser, & Moser, 2005), conjunctive grid- 
head direction cells (Sargolini et al., 2006), border cells 
(Solstad et al., 2008) and most recently speed cells (Kropff, 
Carmichael, Moser, & Moser, 2015), while other specific rep-
resentations may be present (e.g. see Diehl, Hon, Leutgeb, & 
Leutgeb, 2017). In the last decade, analogous representations 
has been discovered in humans (Doeller, Barry, & Burgess, 
2010; Ekstrom et al., 2003; Julian, Keinath, Frazzetta, & 
Epstein, 2018; Killian, Jutras, & Buffalo, 2012; Lee et al., 
2017; Miller et al., 2013; Nadasdy et al., 2017; Nau, Navarro 
Schröder, Bellmund, & Doeller, 2018).

Place cells are hippocampal principal neurons that pref-
erentially fire at given locations of the environment (‘place 
field’), thus encoding spatial information that collectively 
allow the reconstruction of the exact location of the animal 
(Chen, Andermann, Keck, Xu, & Ziv, 2013; O’Keefe & 
Dostrovsky, 1971; Olypher, Lánský, Muller, & Fenton, 2003; 
Skaggs, McNaughton, & Gothard, 1993). Moving across 
space, place cells are activated in a sequence representing a 
path that may be reactivated during sleep for memory consol-
idation (de Lavilléon, Lacroix, Rondi- Reig, & Benchenane, 

2015; O’Neill, Senior, Allen, Huxter, & Csicsvari, 2008; 
van de Ven, Trouche, McNamara, Allen, & Dupret, 2016) 
or during wakefulness to recall environmental features and 
plan actions (Ólafsdóttir, Carpenter, & Barry, 2017; Pfeiffer 
& Foster, 2013; van der Meer, Johnson, Schmitzer- Torbert, 
& Redish, 2010; Wu, Haggerty, Kemere, & Ji, 2017). This 
organisation appears to be the default processing scheme 
of the hippocampus that extends beyond spatial navigation 
and creates sequential representations of non- spatial fea-
tures, probably serving memory- guided behaviour in general 
(Allen, Salz, McKenzie, & Fortin, 2016; Aronov, Nevers, & 
Tank, 2017; Pastalkova, Itskov, Amarasingham, & Buzsaki, 
2008). Distal visual and non- vestibular self- motion cues can 
provide enough spatial information to create place fields as 
observed in virtual reality (VR), but in natural environments 
where vestibular and other sensory cues are also present, a 
more robust hippocampal activity was observed (Ravassard 
et al., 2013). Thus place field representations likely rely on 
a combination of entorhinal inputs to hippocampus that in-
clude grid, head direction and border cells. Grid cells, like 
place cells, fire at specific locations of the environment, but 
they have multiple firing fields that form a triangular grid, 
and are located in clusters in medial entorhinal cortex and 
in pre-  and para- subiculum (Boccara et al., 2010; Fyhn, 
Hafting, Treves, Moser, & Moser, 2007; Hafting et al., 2005; 
Heys, Rangarajan, & Dombeck, 2014). Each head direction 
cell fires preferentially when the animal is facing a certain 
direction, thus head direction cells represent allocentric 
heading independent of location. They are found in the dorsal 
pre- subiculum and entorhinal cortex, but also in other areas 
including the anterior dorsal thalamic nucleus and the RSC 
(Taube, 2007; Taube et al., 1990). While the head direction 
system seems to be essential for place cell stability (Calton 
et al., 2003; Harland et al., 2017), selective elimination of the 
grid input while retaining hippocampal place fields appears 
to be possible (Koenig, Linder, Leutgeb, & Leutgeb, 2011). 
However, how these diverse input patterns are integrated in 
hippocampal circuits to give rise to spatial and non- spatial 
codes remains elusive (Danielson et al., 2016; Lovett- Barron 
et al., 2012; Poucet et al., 2013).

Hippocampal theta oscillation (4–12 Hz) is generated by 
a subcortical network in which the MS likely plays a crucial 
pacemaker role (Fuhrmann et al., 2015; Hangya, Borhegyi, 
Szilagyi, Freund, & Varga, 2009; Mamad, McNamara, Reilly, 
& Tsanov, 2015). It has been linked to cognitive and other 
processes (Korotkova et al., 2018) among which explora-
tion (Gangadharan et al., 2016), moving and running, with 
a direct correlation to speed, (Bender et al., 2015; Sheremet, 
Burke, & Maurer, 2016) and memory consolidation (Boyce, 
Glasgow, Williams, & Adamantidis, 2016) are important to 
spatial navigation. Indeed, septally induced theta rhythm is 
thought to carry linear velocity information, since this struc-
ture has speed cells, its activation/deactivation can initiate/
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stop locomotion (Fuhrmann et al., 2015), and paces theta in 
correlation with speed (Tsanov, 2017). Combining the cogni-
tive map with movement information may allow updating the 
estimate of self- position while moving; indeed, speed modu-
lation of hippocampal theta frequency correlates with spatial 
memory performance in a spatial alternation task (Richard 
et al., 2013). This process may be mediated both by place 
and grid cells that could integrate spatial signals and velocity- 
dependent theta waves both in rodents (Chen, King, Burgess, 
& O’Keefe, 2013) and humans (Bohbot, Copara, Gotman, & 
Ekstrom, 2017). Moreover, septal inactivation abolishes theta 
and disrupts grid cell coding (Brandon et al., 2011; Koenig 
et al., 2011), causes deficit in spatial working memory (Ma 
et al., 2009) and impairs rats’ ability to estimate linear dis-
tances based on self- motion information (Jacob, Gordillo- 
Salas, et al., 2017), while hippocampal place fields are 
maintained (Mizumori, McNaughton, Barnes, & Fox, 1989). 
Selective ablation of septal cholinergic neurons reduced the 
amplitude and spectral power of theta oscillation without 
eliminating it (Lee, Chrobak, Sik, Wiley, & Buzsáki, 1994; 
Rastogi, Unni, Sharma, Laxmi, & Kutty, 2014), while cholin-
ergic stimulation enhanced hippocampal theta (Vandecasteele 
et al., 2014). Cholinergic M1 receptors located on hippocam-
pal pyramidal neurons might be relevant in this process, being 
critical for hippocampal synaptic plasticity, theta generation 
and spatial memory performance in a Y- maze (Gu, Alexander, 
Dudek, & Yakel, 2017). At the same time, the potential role 
of local intra- septal connections has also been emphasized 
(Dannenberg et al., 2015; Yang et al., 2014; Zant et al., 2016).

2.2 | The posterior parietal cortex
The PPC occupies the caudal part of the lateral cortex between 
the primary somatosensory area and the parieto- occipital sul-
cus. It is generally regarded an associational cortical region, 
combining inputs from sensory cortices of multiple modali-
ties with top- down prefrontal inputs and buttom- up subcorti-
cal proprioceptive and vestibular signals (Whitlock, 2017).

Posterior parietal cortex is involved in representing bodily 
position and spatial orientation, which are key features for un-
derstanding its role in navigation. In one of the first relevant 
studies, subjects familiarised with a complex virtual town 
had to navigate to an unseen target area while they under-
went positron emission tomography (Maguire et al., 1998). 
Along with the hippocampus, parietal cortex was found to be 
activated when subjects had to perform a sequence of turns 
to reach a target, irrespective of whether they were perform-
ing difficult way- finding tasks or simply following arrows 
towards the goal. Thus the parietal cortex may compute the 
correct body turns to enable navigating along a route, sug-
gesting it has a crucial role in route creation using proximal- 
egocentric cues, in contrast to the hippocampus that mainly 
represents allocentric maps.

Route learning using proximal salient cues was subse-
quently associated with a network of structures including the 
PPC, left medial frontal gyrus and left RSC. Subjects learnt 
to navigate in a VR maze with several landmarks at the cross-
roads; posterior inferior parietal regions showed increasing 
activation across sessions, correlated with behavioural mea-
sures of route expertise (Wolbers, Weiller, & Büchel, 2004). 
In an elegant study, London taxi drivers were imaged while 
navigating passengers in a detailed, topographically accurate 
videogame reproduction of the British capital. Parietal cortex 
was activated when the cab driver decided to change his route 
adapting it to environmental contingencies (e.g. change to a 
faster lane), confirming the role of PPC in ego- centric route 
planning (Spiers & Maguire, 2006). Selective representation 
of navigationally salient egocentric information was recently 
found in the precuneus, part of the posterior medial parietal 
cortex (Chadwick, Jolly, Amos, Hassabis, & Spiers, 2015).

Similar conclusions were drawn from studying the conse-
quences of PPC lesions. Patients with parietal lesions due to 
infarction had to navigate through a VR park (i.e. an open en-
vironment rich in landmarks) and a VR maze (i.e. a series of 
identical corridors and intersections) to reach a virtual gold 
pot; they were impaired on the latter, further corroborating 
that the impacted parietal area might be involved in process-
ing egocentric cues (Weniger, Ruhleder, Wolf, Lange, & Irle, 
2009). In another study, patients could recall a detailed image 
of their home city and make distance and proximity judgments 
but could not navigate between known locations or deter-
mine the correct sequence of landmark positions (Ciaramelli, 
Rosenbaum, Solcz, Levine, & Moscovitch, 2010). These re-
sults further suggest that the PPC is crucial for accessing re-
mote spatial memories within an egocentric reference frame 
that enables both navigation and re- experiencing.

Parallel to the above studies of parietal damage in human pa-
tients, rats with PPC lesions were found to be impaired on naviga-
tion based on proximal but not distal cues in the MWM (Save & 
Poucet, 2000). A partial explanation was found later by the same 
group, observing that rotation of proximal cues in an open field 
could not elicit a consequential shift in all hippocampal place 
fields after parietal lesions (Save, Paz- Villagran, Alexinsky, & 
Poucet, 2005). These finding suggest a functional importance of 
the PPC in processing the local spatial frame of reference.

A finer- grained insight on the complex role of this area 
may be gleaned from electrophysiological studies. PPC neu-
rons were recorded in rats navigating in a maze that allowed 
reaching the goal through different routes (Nitz, 2006). 
Neuronal discharge reflected a combination of movement 
direction, spatial position and behavioural information such 
as left and right turns, often scaled by path segment size, 
suggesting a relationship with route progression. PPC neu-
rons were also recorded while rats were traversing a squared 
spiral track (Nitz, 2012). Firing activity could simultane-
ously encode three frames of reference (segments, loops and 
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routes), and could thus discriminate analogous segment po-
sitions in different loops while still representing reoccurring 
patterns across segments and loops; therefore, the PPC may 
help process reference frames for route computing. Another 
experiment confirmed that PPC is tuned both to allocentric 
and egocentric reference frames. Some neurons encoded the 
egocentric position of a light cue toward which the rat had 
to move, while others represented this conjunctively with 
the animal’s head direction, consistent with the role of this 
area in orienting the body for goal- directed route progres-
sion (Wilber, Clark, Forster, Tatsuno, & McNaughton, 2014). 
Single-  and multi- unit activity revealed that PPC is also tuned 
to self- motion (Whitlock, Pfuhl, Dagslott, Moser, & Moser, 
2012; Wilber, Skelin, Wu, & McNaughton, 2017). Activity 
patterns were found to reoccur in post- experience sleep in a 
compacted fashion, temporally coordinated with hippocam-
pal reactivation, suggesting a role in memory consolidation 
during sleep (Wilber et al., 2017). The role of PPC neurons in 
encoding position and heading has also been shown recently 
in head- fixed mice performing a two- alternative forced- 
choice visual detection task by walking in a virtual T Maze 
(Krumin, Harris, & Carandini, 2017). The decisions of the 
animal were typically evident before the mouse reached the 
fork: the final choice could be predicted from the heading 
angle with increasing accuracy as the mouse reached the end 
of the main corridor. PPC neurons appeared to be selective 
for specific combinations of the animal’s position and of its 
heading angle (“position- heading field”).

2.3 | The retrosplenial cortex
The RSC is a transition area in the posterior cingulate region 
that links limbic memory areas such as the hippocampus and 
cortical areas relevant to spatial navigation and behavioural 
processing of the dorsal stream coordinating visual and motor 
information (Miller, Vedder, Law, & Smith, 2014). RSC and 
PPC are densely interconnected, and are thought to cooperate 
in coordinating egocentric and allocentric information pro-
cessing (Clark, Simmons, Berkowitz, & Wilber, 2018).

Patients with damages to the area, typically as a conse-
quence of cerebral haemorrhages or tumour in the splenium 
of the corpus callosum, consistently show difficulty acquiring 
new information and retrieving recent autobiographical mem-
ories (Gainotti, Almonti, Di Betta, & Silveri, 1998; Osawa, 
Maeshima, Kubo, & Itakura, 2006; Valenstein et al., 1987). 
This has recently been confirmed in primates by within- 
subject comparison of memory performance before and after 
controlled retrosplenial cortical lesions (Buckley & Mitchell, 
2016). Damage involving the RSC can also cause a selective 
topographical disorientation: in most of these cases, patients 
recognize familiar landmarks or visual scenes but fail to de-
scribe routes between locations, draw a path or navigate effi-
ciently even in familiar environments or learn to navigate in 

novel settings, indicating that they are unable to derive direc-
tional information from landmark cues (Greene, Donders, & 
Thoits, 2006; Ino et al., 2007; Maeshima et al., 2001; Maguire, 
2001; Takahashi, Kawamura, Shiota, Kasahata, & Hirayama, 
1997). Notably, patient TT, a former London taxi driver with 
bilateral hippocampal damage, was impaired at navigating 
in familiar and novel environments but, unlike patients with 
RSC lesions, could maintain a sense of direction and his abil-
ity to orient in familiar environments (Maguire et al., 2006). 
Studies using fMRI support the prominent role of RSC in 
processing the spatial relationships of landmarks, especially 
in connection with orientation in a novel environment (Auger, 
Mullally, & Maguire, 2012; Auger, Zeidman, & Maguire, 
2015, 2017; Dilks, Julian, Kubilius, Spelke, & Kanwisher, 
2011). Moreover, RSC is involved in processing heading direc-
tion (Marchette, Vass, Ryan, & Epstein, 2014; Shine, Valdés- 
Herrera, Hegarty, & Wolbers, 2016) and spatial position on 
the basis of self- motion cues or path integration (Sherrill et al., 
2013, 2015; Wolbers & Büchel, 2005). Thus, it appears that 
the RSC supports allocentric representations by processing 
the stable features of the environment and their spatial rela-
tionships, but also enables us to localise ourselves in the envi-
ronment. Along these lines, in a seminal review article Byrne 
et al. suggested that RSC is a “translational” area, transform-
ing allocentric representations into egocentric representations 
and vice versa, allowing the formation of a comprehensive and 
complete spatial map (Byrne, Becker, & Burgess, 2007).

In rodents, lesions to the RSC impaired allocentric spatial 
memory in the MWM (Czajkowski et al., 2014; Sutherland, 
Whishaw, & Kolb, 1988; Vann & Aggleton, 2002), while 
overexpressing CREB in RSC resulted in spatial memory 
enhancements (Czajkowski et al., 2014). In addition, tests re-
lying on path integration, integration of egocentric and allo-
centric information or switching between the two were also 
affected (Elduayen & Save, 2014; Nelson, Hindley, Pearce, 
Vann, & Aggleton, 2015; Nelson, Powell, Holmes, Vann, & 
Aggleton, 2015; Pothuizen, Davies, Aggleton, & Vann, 2010).

Combining a head- fixed locomotion assay with Ca2+- 
imaging in mouse RSC, a population of neurons located pre-
dominantly in superficial layers showed activity resembling 
that of hippocampal CA1 place cells during the same task, 
while they fired in sequences during movement showing 
firing fields that form a sparse, orthogonal code correlated 
with spatial context (Mao, Kandler, McNaughton, & Bonin, 
2017). In another study, rats were trained on a T- maze task 
in which the reward location was explicitly cued by a flash-
ing light and RSC neurons were recorded as the rats learned. 
Most RSC neurons rapidly encoded the light cue, and this 
representation was not sensitive to the location of the light. 
However, some neurons encoded also the reward and its lo-
cation, and they showed distinct firing patterns along the left 
and right trajectories to the goal (Vedder, Miller, Harrison, 
& Smith, 2016).



   | 2205SOLARI And HAnGYA

Head- direction cells (HD), while present in other cerebral 
areas such as the anterior thalamus, striatum, entorhinal cor-
tex and subiculum, represent about 8% of the RSC population, 
equally distributed across the granular and dysgranular layers. 
Some of these cells’ activity is modulated by the velocity of lo-
comotion, while others are tuned to particular combinations of 
location, direction and movement (Chen, Lin, Green, Barnes, 
& McNaughton, 1994; Cho & Sharp, 2001). Those cells are 
reciprocally connected with the antero- dorsal thalamus and in-
fluence HD firing to preferred direction (Clark, Bassett, Wang, 
& Taube, 2010). Interestingly, when rats were exploring two 
connected compartments containing landmarks in reversed 
orientation, causing conflict between global and local direc-
tional cues, some neurons in the dysgranular layer fired facing 
one direction in one chamber and the opposite in the other. 
This indicates that local environmental cues could prevail over 
head direction information in some neurons, eventually allow-
ing association or dissociation of landmark cues from the head 
direction signal (Jacob, Casali, et al., 2017).

Recording from rats also confirmed the relevance of RSC 
in path integration and the integration of allocentric and ego-
centric elements. Neurons were recorded while the animal 
was traversing a route that required a specific sequence of 
body turns depending on the direction in which it was run-
ning in a room rich in distal environmental cues. The animals 
were making specific turn sequences (route- based frames) 
while exposed to distal visual cues (allocentric frame). A 
population of neurons was found to code the animal’s allo-
centric position in conjunction with the progress through 
the current route as well as left vs right turning behaviour 
(Alexander & Nitz, 2015). More recently, the same authors 
also found populations of RSC neurons that encoded route- 
segments as well as the relative position of these segments 
within an allocentric framework (Alexander & Nitz, 2017). 
Rats were trained to navigate a track with a recursive struc-
ture; some neurons exhibited periodic activation patterns re-
peated across similarly shaped route segments, while a larger 
population exhibited periodicity over the full route, defining 
a framework for encoding sub- route positions relative to the 
whole. This hints at the involvement of RSC in the extraction 
of path components and coding their spatial relationships.

3 |  BASAL FOREBRAIN INPUTS 
TO THE HIPPOCAMPUS AND 
CORTICAL AREAS OF THE 
NAVIGATION SYSTEM

3.1 | Organization of the cholinergic BF 
projection system
Acetylcholine (ACh) is implicated in a wide range of cog-
nitive processes such as arousal (Buzsàki & Gage, 1989; 
Kasanuki et al., 2018; Papouin, Dunphy, Tolman, Dineley, 

& Haydon, 2017), attention (Howe et al., 2017; Urban- 
Ciecko, Jouhanneau, Myal, Poulet, & Barth, 2018), sen-
sory processing (Eggermann, Kremer, Crochet, & Petersen, 
2014; Froemke, Merzenich, & Schreiner, 2007; Pinto et al., 
2013), reinforcement expectation (Hangya, Ranade, Lorenc, 
& Kepecs, 2015), reward and addiction (Shin, Adrover, & 
Alvarez, 2017; Siciliano, McIntosh, Jones, & Ferris, 2017). 
ACh is also involved in learning and plasticity: septal cho-
linergic inputs are capable of modulating different types 
synaptic plasticity in hippocampus with remarkable tem-
poral precision, coordinating presynaptic and postsynaptic 
activities (Gu, Lamb, & Yakel, 2012; Gu & Yakel, 2011); 
cholinergic inputs to sensory cortices cause receptive field 
reorganizations (Froemke et al., 2007) and mediate novel en-
coding of non- sensory information (Chubykin, Roach, Bear, 
& Shuler, 2013).

The vast majority of cholinergic input to neocortex, archi-
cortex and subcortical structures arise from neurons located 
in the BF (Woolf, 1991). In primates these cells are intermin-
gled with non- cholinergic neurons and are distributed rostro-
caudally in four partially overlapping groups, with different 
projection areas (Mesulam, Mufson, Levey, & Wainer, 1983; 
Mesulam, Mufson, Wainer, & Levey, 1983). This categorisa-
tion has been extended to rodents, although anatomical dis-
tinction of the specific nuclei appear more subtle (Coppola & 
Disney, 2018; Gorry, 1963). The medial septal nucleus (MS 
or CH1) and the vertical limb of the diagonal band of Broca 
(CH2 or VDB) send massive projections to the hippocampal 
formation, while the horizontal limb of the diagonal band of 
Broca (CH3 or HDB) projects to the olfactory bulb and fron-
tal cortices. The fourth nucleus, CH4, also called NBM, con-
sists of a heterogeneous ensemble of nucleus- like structures, 
such as the sublenticular substantia innominata/extended 
amygdala (SI/EA), globus pallidus internus (GPi), internal 
capsule, nucleus ansa lenticularis, magnocellular preoptic 
nucleus (MCPO), nucleus basalis proper and according to 
most categorisations also the ventral pallidum (VP). These 
areas project to the neocortex in a medio- lateral organisation: 
HDB/SI/VP neurons project to the medial frontal, cingulate, 
retrosplenial and visual cortex, while MCPO and nucleus 
basalis proper / GPi project to somatosensory, auditory and 
pyriform cortex. The lateral hypothalamus and basalateral 
amygdala are also densely innervated. This complicated no-
menclature introduces some ambiguity in the literature; for 
instance, nucleus basalis sometimes refers to the entire pos-
terior BF (CH3- CH4), while in more refined treatments it 
designates the cholinergic system located along the internal 
capsule- GPi and GP- caudate borders (here termed nucleus 
basalis proper). Additionally, the boundaries between BF 
structures are not well established, hence projection targets of 
subregions vary across studies; nevertheless, there is strong 
consensus about the medio- lateral projection topography 
along the anterio- posterior axis of the BF.
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The corticopetal projections from the BF cholinergic 
neurons (BFCN) have been extensively studied (Gielow & 
Zaborszky, 2017; Mesulam, Mufson, Levey, et al., 1983; 
Rye, Wainer, Mesulam, Mufson, & Saper, 1984; Zaborszky 
et al., 2015). Frontal cortex shows the highest cholinergic 
fibre density, followed by the occipital and parietal cortices. 
In contrast to cholinergic axons, GABAergic BF neurons ap-
pear to exclusively innervate inhibitory neurons (Zaborszky, 
Van Den Pol, & Gyengesi, 2012). The ratio of cholinergic 
to non- cholinergic BF projection neurons systematically var-
ies according to the cortical target area, lower in frontal (0.3 
on average) than in posterior projecting areas (0.6). BFCN 
that target different cortical areas have a partial overlap in 
the rostro- caudal extent of the BF, with a general topographi-
cal rule that neurons projecting to medial targets (e.g. frontal 
cortex) are located medially and rostrally, while those pro-
jecting to more lateral targets lay in more lateral and caudal 
parts (Zaborszky et al., 2015).

Elegant recent applications of monosynaptic retroviral 
rabies- tracing started to provide a more complete picture 
on the organization of BF connectivity by cell type specific 
expression of the tracers using Cre driver lines (Do et al., 
2016; Hu, Jin, He, Xu, & Hu, 2016). It was found that the 
striatum and hypothalamus provided the highest numbers of 
inputs to BFCNs (Hu et al., 2016), in line with previous an-
atomical studies (Cullinan & Záborszky, 1991; Henderson, 
1997). The study also confirmed known projections from 
neuromodulatory centres such as ventral tegmental area and 
raphe nuclei, parts of amygdala, ascending brainstem input 
and innervation by olfactory areas (Gielow & Zaborszky, 
2017). Cortical inputs to the BF in rats originate only in re-
stricted regions of the cortex, including medial, lateral and 
orbitofrontal part of the prefrontal cortex, with a small con-
tribution from the insular- piriform cortices, arising mostly 
from deep cortical layers, with occasional labelling in layer 
2/3. Interestingly, prefrontal fibres synapse exclusively on 
non- cholinergic neurons, forming synaptic contact primar-
ily with dendritic spines or small dendritic branches (89%); 
the remaining axon terminals established synapses with den-
dritic shafts (Zaborszky, Gaykema, Swanson, & Cullinan, 
1997). Interestingly, Hu et al. found a small subset of inputs 
originating from frontal cortical areas directly onto cholin-
ergic cells in mice. The distribution of the input is generally 
similar across the different BF cell types, while the output 
patterns are markedly different: for example, compared to 
the other cell types, the projection from BFCNs is stronger 
in the basolateral amygdala, hippocampus, and visual cortex 
but weaker in the lateral hypothalamus, lateral habenula, and 
the ventral tegmental area (Do et al., 2016). The recent de-
velopment of a murine whole- brain atlas of the cholinergic 
system using genetically labelled cholinergic neurons and 
whole- brain reconstruction of optical images at 2- μm reso-
lution revealed cholinergic subgroups within the same area 

with different target region-  and layer specificity (Li, Yu, 
et al., 2018).

Recently multiple cholinergic systems have been shown to 
co- release other transmitters: cholinergic neurons of the stri-
atum and medial habenula can release glutamate (Ren et al., 
2011; Tritsch, Ding, & Sabatini, 2012); cholinergic BF neu-
rons projecting to at least some neocortical areas co- release 
GABA (Case et al., 2017; Saunders, Granger, & Sabatini, 
2015; Saunders, Oldenburg et al., 2015), while those pro-
jecting to the basolateral amygdala appear to co- release glu-
tamate (Nickerson Poulin, Guerci, El Mestikawy, & Semba, 
2006). Understanding the functional significance of releas-
ing multiple transmitters by cholinergic and other neuromod-
ulatory cell types requires further investigation; for recent 
reviews see (Ma, Hangya, Leonard, Wisden, & Gundlach, 
2018; Tritsch, Granger, & Sabatini, 2016; Vaaga, Borisovska, 
& Westbrook, 2014).

Below we give a brief overview of the corticopetal pro-
jections of BF structures relevant for spatial learning and 
navigation, i.e. the MS and the NBM. These structures pro-
vide dense cholinergic innervation to the hippocampus, the 
RSC and the PPC, modulating their activity during spatial 
navigation.

3.2 | The medial septum
Cholinergic cells constitute about 5% of the MS cell popula-
tion, while the majority of neurons are GABAergic and glu-
tamatergic (Gritti et al., 2006). Cholinergic cells are mainly 
found in the midline and the lateral parts of the MS, in de-
creasing numbers from anterior to posterior (Kiss, Borhegyi, 
Csaky, Szeiffert, & Leranth, 1997; Van der Zee & Luiten, 
1994).

The major projection target of the MS is the hippocam-
pal complex through the fimbra- fornix pathway, mainly the 
hippocampus proper and the entorhinal cortex, with fewer 
efferents in perirhinal and postrhinal cortices (Gulyás, 
Acsády, & Freund, 1999; Kondo & Zaborszky, 2016). The 
MS also sends a limited number of axons to the medial 
habenula (Qin & Luo, 2009) and to retrosplenial, infralim-
bic and prelimbic cortices (Gaykema, Luiten, Nyakas, & 
Traber, 1990; Unal, Joshi, Viney, Kis, & Somogyi, 2015). 
The septo- hippocampal pathway is the main source of ACh 
in the hippocampus (Dannenberg et al., 2015; Lewis & 
Shute, 1967; Nilsson & Björklund, 1992; Nilsson, Kalén, 
Rosengren, & Björklund, 1990; Vandecasteele et al., 2014), 
and provides widespread innervation of both principal cells 
and interneurons (Frotscher & Léránth, 1985). Contrary to 
the general view of mixed synaptic and non- synaptic cho-
linergic signalling (Vizi & Kiss, 1998), it has recently been 
shown that the overwhelming majority of cholinergic ter-
minals may establish synapses (Takács et al., 2018). More 
specifically, cholinergic fibres terminate in the stratum 
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oriens of CA1 and CA3 (Matthews, Salvaterra, Crawford, 
Houser, & Vaughn, 1987), contacting pyramidal cells 
(Wainer et al., 1984), GABAergic interneurons (Leranth 
& Frotscher, 1989) and dentate granule cells (Nyakas, 
Luiten, Spencer, & Traber, 1987). Notably, cholinergic 
neurons were shown to activate astrocytes, which in turn 
excite GABAergic hilar interneurons, leading to inhibition 
of dentate granule cells (Pabst et al., 2016).

Parallel to the cholinergic projection, GABAergic BF 
neurons also send axons to CA1, CA3 and dentate gyrus, 
targeting different GABAergic interneuron types (Acsády, 
Halasy, & Freund, 1993; Freund, 1989; Freund & Antal, 
1988; Gärtner, Härtig, Brauer, Brückner, & Arendt, 2001; 
Gulyás, Görcs, & Freund, 1990; Papp, Hajos, Acsády, & 
Freund, 1999; Takács, Freund, & Gulyás, 2008). The MS 
GABAergic subpopulation exhibiting the strongest theta 
rhythmicity, coined the Teevra cells, innervate CA3 in-
terneurons selectively (Joshi, Salib, Viney, Dupret, & 
Somogyi, 2017). Septo- hippocampal glutamatergic neu-
rons (Colom, Castaneda, Reyna, Hernandez, & Garrido- 
sanabria, 2005; Gritti et al., 2006) provide a hitherto less 
investigated projection to CA1 and CA3 where they tar-
get both pyramidal cells and interneurons, as well as in-
terneurons of the dentate gyrus (Fuhrmann et al., 2015; 
Huh, Goutagny, & Williams, 2010; Manseau, Danik, & 
Williams, 2005; Sotty et al., 2003). Few neuropeptidergic 
efferents have also been reported to project from the lateral 
region of MS to CA2/3a (Peterson & Shurlow, 1992; Senut, 
Menetrey, & Lamour, 1989).

The RSC receives most of its cholinergic innervation 
from the NBM (Bigl, Woolf, & Butcher, 1982; Mesulam, 
Mufson, Levey, et al., 1983) and the DBB (Gonzalo- 
Ruiz & Morte, 2000); however, a few cholinergic fibres 
originating in the MS were observed to innervate layer 
1 and 3 of the RSC (Gage, Keim, Simon, & Low, 1994; 
Gonzalo- Ruiz & Morte, 2000; Robertson, Baratta, Yu, & 
LaFerla, 2009; Tengelsen, Robertson, & Yu, 1992). While 
75%–80% of MS neurons labelled retrogradely from RSC 
were choline- acetyltransferase-  (ChAT) positive, septal ef-
ferents also contained a GABAergic component (Freund 
& Gulyás, 1991) that mostly targeted various types of in-
terneurons but in 7% pyramidal cells (Unal, Joshi et al., 
2015).

3.3 | The nucleus basalis magnocellularis
The NBM is most known for its large, multipolar choliner-
gic cells with extensive dendritic trees (Woolf, 1991), pro-
viding the main cholinergic input to the entire neocortical 
mantle (Price & Stern, 1983). They contribute 80%–90% of 
the NBM efferents in humans and primates (Raghanti et al., 
2011). This proportion appears significantly lower (20%) 
in rodents, the rest provided by GABAergic and to a lesser 

degree glutamatergic neurons (Gritti, Mainville, Mancia, & 
Jones, 1997 but see Baskerville, Chang, & Herron, 1993), 
suggesting an upscaling of neocortical cholinergic projections 
in primates. The density of the cholinergic terminals varies 
across the six layers of cortex and depends on the cortical 
region studied; indeed, up to 13 possible patterns have been 
catalogued (Lysakowski, Wainer, Bruce, & Hersh, 1989). 
As a general pattern, there is usually a moderately high den-
sity of terminals in layers 1–3, low density in layer 4, again 
higher density in layer 5 and variable innervation of layer 
6 (Eckenstein, Baughman, & Quinn, 1988). Cholinergic ter-
minals form dendritic synapses, more frequently with shafts 
than spines and rarely with somata (Umbriaco, Watkins, 
Descarries, Cozzari, & Hartman, 1994), with a majority 
found on GABAergic neurons (Beaulieu & Somogyi, 1991). 
Cortical pyramidal neurons and PV+ interneurons are acti-
vated via muscarinic receptors upon weak cholinergic activa-
tion. Strong cholinergic inputs engage nicotinic receptors on 
layer 1 and non- fast- spiking layer 2/3 interneurons including 
those expressing vasoactive intestinal peptide (VIP+) (Alitto 
& Dan, 2012; Letzkus et al., 2011), probably leading to VIP- 
mediated disinhibition (Lee, Kruglikov, Huang, Fishell, & 
Rudy, 2013; Pfeffer, 2014; Pi et al., 2013), but potentially 
also disynaptic inhibitory effects (Arroyo, Bennett, Aziz, 
Brown, & Hestrin, 2012).

Among the areas receiving cholinergic inputs from the 
NBM, the RSC (Bigl et al., 1982) and the PPC (Bucci, Conley, 
& Gallagher, 1999) are particularly relevant for the cognitive 
processes underlying spatial navigation. The RSC shows a 
distinctive cholinergic innervation pattern, with dense fibres 
in layer 1, sparse projections to layer 2/3, and strong inner-
vation of layer 6. The PCC has a moderate and distributed 
cholinergic innervation, with some variation depending on 
the sub- area considered (Lysakowski et al., 1989).

4 |  THE ROLE OF THE BF 
CHOLINERGIC SYSTEM IN SPATIAL 
NAVIGATION

4.1 | Impairments of the cholinergic system 
and spatial navigation in Alzheimer’s patients
Cognitive impairment in Alzheimer’s patients has been 
linked to the net loss of cholinergic markers in the entorhi-
nal cortex and BF neurons (Bartus, Dean, Beer, & Lippa, 
1982; Geula & Mesulam, 1989; Whitehouse, Struble, Clark, 
& Price, 1982). In addition, BF atrophy was observed in 
Mild Cognitive Impairment (MCI) prodromal to AD (Grothe 
et al., 2010), suggesting that cholinergic dysfunction is cen-
tral to the cognitive decline observed in pathological ageing. 
In normal ageing, cholinergic neurons show structural and 
functional abnormalities and a moderate cell loss (Schliebs 
& Arendt, 2011) that accompany minor cognitive deficits, 
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suggesting a role for cholinergic decline in healthy ageing as 
well. In patients diagnosed with AD, spatial disorientation is 
one of the earliest symptoms present (McShane et al., 1998; 
Pai & Jacobs, 2004), already observed in MCI (Lithfous, 
Dufour, & Després, 2013) and gradually aggravating with 
disease progression (deIpolyi, Rankin, Mucke, Miller, & 
Gorno- Tempini, 2007). Interestingly, even preclinical sub-
jects, characterized by decreased Aβ42 levels in the cerebro-
spinal fluid prodromal to MCI, showed deficits in allocentric 
wayfinding but not egocentric route learning (Allison, Fagan, 
Morris, & Head, 2016). With disease progression, naviga-
tional difficulties seem to be connected with a diffuse brain 
damage in temporal and fronto- parietal areas including RSC 
(Vlček & Laczó, 2014) thought to translate between egocen-
tric and allocentric frames of reference (Alexander & Nitz, 
2015; Sherrill et al., 2013). Specifically, navigation scores 
were correlated with grey matter density and glucose me-
tabolism both in RSC and hippocampus (Pengas et al., 2010, 
2012). In another study testing virtual as well as real navi-
gation in a hospital lobby, AD but not MCI patients were 
impaired on a test of self- orientation, requiring to indicate 
directions to scenes from the route (Cushman, Stein, & 
Duffy, 2008). Patients were also impaired on translating al-
locentric map representations to egocentric directions in a 
VR (Morganti, Stefanini, & Riva, 2013). In sum, anatomi-
cal and functional evidence points to an early involvement of 
the cholinergic system in learning deficits in Alzheimer’s pa-
tients (Hampel et al., 2018). Nevertheless, human studies on 
cholinergic degeneration are still scarce. Specifically, more 
comprehensive anatomical data from post- mortem samples 
establishing detailed inter- relationships between cholinergic 
axonal degeneration, cell loss, plaque formation and clinical 
record of cognitive disabilities could reveal the course of pa-
thology progression in more details.

4.2 | The role of the cholinergic system in 
navigation: lesion studies
The role of BFCNs including both MS and nucleus basalis 
in spatial learning, navigation and spatial working memory 
was extensively studied in rodents by applying different 
techniques to introduce BF lesions. Non- specific lesions 
were performed by injecting glutamatergic agonists ibo-
tenic or quisqualic acid or AMPA, via administration of tet-
rodotoxin or by electrolysis (Kesner, Crutcher, & Measom, 
1986; Page, Sirinathsinghji, & Everitt, 1995; Rashidy- Pour, 
Motamedi, & Motahed- Larijani, 1996; Steckler, Andrews, 
Marten, & Turner, 1993). Specific ablation of cholinergic 
neurons could be achieved by in loco injection of 192 IgG 
saporin (Lappi, Esch, Barbieri, Stirpe, & Soria, 1985; Wiley, 
Oeltmann, & Lappi, 1991), a ribosome- inactivating protein 
covalently linked to an antibody against the p75 NGF recep-
tor, specifically expressed by cholinergic neurons (but also 

Purkinje cells) in the adult brain (Book, Wiley, & Schweitzer, 
1992; Dawbarn, Allen, & Semenenko, 1988). It should be 
noted however, that while small injections lead to incom-
plete lesions, large doses affected other cell types including 
parvalbumin- expressing GABAergic neurons. Moreover, 
injections often spread into the striatum where they could 
theoretically impact cholinergic interneurons, whereas intra-
ventricular injections destroyed cerebellar Purkinje cells and 
could affect norepinephrine levels in hippocampus (Heckers 
et al., 1994; Walsh et al., 1995). With histological verification 
rarely performed, these present complications in interpreting 
this body of literature (Hasselmo & Sarter, 2011; McGaughy, 
Everitt, Robbins, & Sarter, 2000; Wrenn & Wiley, 1998).

For assessing the impact of lesioning, the most widely 
applied test is the spatial version of the MWM, in which the 
animal has to learn and remember, using distal cues, the lo-
cation of a hidden platform in a tank of opaque water. Since 
acquiring such memory takes multiple training sessions for 
the animal, the learning curve can be measured and quan-
tified by changes in escape latency. To test the robustness 
of the memory, the platform is then removed and the time 
spent by the animal swimming near its previous location 
is measured during probe trial. Moderate spatial learning 
deficits were reported after selectively targeting the medial 
septal cholinergic neurons (Berger- Sweeney et al., 1994; 
Frick, Kim, & Baxter, 2004; Hagan, Salamone, Simpson, 
Iversen, & Morris, 1988) while some of the studies failed to 
detect significant changes (Baxter, Bucci, Gorman, Wiley, 
& Gallagher, 1995; Baxter et al., 1996; Decker, Radek, 
Majchrzak, & Anderson, 1992; Dornan et al., 1997). More 
severe impairments on MWM were found when targeting 
the NBM cholinergic system, often in combination with 
the MS, or injecting the toxin in the ventricles (Miyamoto, 
Kato, Narumi, & Nagaoka, 1987; Nilsson et al., 1992; 
Berger- Sweeney et al., 1994, 2001; Leanza, Nilsson, Wiley, 
& Björklund, 1995; Lehmann et al., 2000; Nieto- Escámez, 
Sánchez- Santed, & de Bruin, 2002 but see also Frick et al., 
2004); nevertheless, the latter approach probably ablates 
parts of striatal cholinergic interneurons as well, thus af-
fecting multiple parallel memory systems (discussed later in 
more details). Electrolytic (Miyamoto et al., 1987) and ra-
diofrequency (Decker, Curzon, Brioni, & Arnerić, 1994) le-
sions of the whole MS caused a marked deficit in the spatial 
MWM, suggesting that non- cholinergic neurons may also 
play an important role in spatial memory. This was further 
confirmed by selective lesions of GABAergic BF neurons 
(Lecourtier et al., 2011; Roland et al., 2014). As a poten-
tial synthesis, Wrenn and Wiley concluded that (i) learning 
and memory are only affected by ‘near- complete’ lesions, 
probably because a relatively small proportion of choliner-
gic neurons can maintain basic functions; (ii) the mild im-
pairments or lack of effects found in MS cholinergic lesions 
could partly be due to incomplete lesions and (iii) more 
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complicated memory tasks show deficits more sensitively, 
while MWM can be considered fairly easy.

Another widely adopted apparatus to investigate spa-
tial learning and working memory is the radial arm maze 
(RAM): here, using proximal or distal cues, the animal has 
to learn which arms are baited and must visit them only once. 
Cholinergic (Decker et al., 1992; Lehmann, Grottick, Cassel, 
& Higgins, 2003; Perry, Hodges, & Gray, 2001) or nonspe-
cific (M’Harzi & Jarrard, 1992) lesions of the rat NBM, MS 
or both lead to a dramatic reduction of performance both in 
the spatial learning and cued version of this task. When ex-
ploring an environment featuring a choice of multiple arms 
(e.g. plus or T maze), rodents have the natural tendency to 
alternately enter each arm, avoiding consecutive visits of the 
same location. This behaviour relies on spatial working mem-
ory. Rodents show impairments in alternation behaviour after 
cholinergic ablation of the NBM or the MS, both separately 
and in combination (Chang & Gold, 2004; Dornan et al., 
1997). In delayed- matched- to- sample tasks, unlike spon-
taneous alternation, rodents learn to remember and re- visit 
a previously sampled location. Also dependent on spatial 
working memory, animals with cholinergic lesions to the MS 
perform poorly on this task (Fitz, Gibbs, & Johnson, 2008; 
Johnson, Zambon, & Gibbs, 2002; Walsh, Herzog, Gandhi, 
Stackman, & Wiley, 1996). The MS cholinergic system is 
also involved in object location memory, evidenced by im-
paired performance on object location recognition in lesioned 
animals (Cai, Gibbs, & Johnson, 2012; Okada, Nishizawa, 
Kobayashi, Sakata, & Kobayashi, 2015).

Electrophysiological recordings support the idea of 
BFCNs being involved in spatial memory and navigation. 
First evidence was acquired from rats with fimbra- fornix le-
sions, showing more dispersed, less reliable place fields in a 
familiar arena, which could be disrupted by alterations of the 
maze (e.g. 90° rotation; Shapiro et al., 1989). Place cell firing 
is preserved after MS lesions (Koenig et al., 2011; Mizumori 
et al., 1989) and resilient to mild disturbances by novel cues; 
however, repetitive exposure to new environments unmasked 
a decreased ability of the hippocampal place cell network 
to form new representations (Ikonen, McMahan, Gallagher, 
Eichenbaum, & Tanila, 2002). In accordance, place cell spa-
tial representation were found to be less stable in a mouse 
model of AD (Mably, Gereke, Jones, & Colgin, 2017).

In summary, collective evidence suggests a fundamental 
role of the BFCNs in spatial cognition, supported by both 
lesion studies and clinical observations. Taking a closer 
look, however, one might discover a perplexing variability 
of outcomes of BF lesion studies in the ‘gold standard’ spa-
tial MWM, with severe impairments emerging only in case 
of extensive, non- specific lesioning. On the other hand, im-
paired performance was consistently reported in other tasks 
that likely represent higher cognitive load (RAM, T- maze, 
novel object location). This suggests that BFCNs become 

necessary when the task demands spatial orientation along 
with more complex cognitive processing involving working 
memory and attention.

Perhaps the future of this line of studies lies in optoge-
netic and pharmacogenetic suppression of the cholinergic 
system, which could provide the necessary spatio- temporal 
and cell type specificity. Such studies are still few but have 
so far demonstrated that BFCNs are necessary for the de-
tection and discrimination of salient cues, probably serv-
ing cue- guided responses (Gritton et al., 2016; Pinto et al., 
2013). Notably, optogenetic inhibition of the cholinergic 
system also impaired the acquisition of learned fear be-
haviours (Jiang et al., 2016).

4.3 | The role of cholinergic afferents 
inferred from pharmacology experiments
Acetylcholine acts both on G protein- coupled metabtropic 
‘muscarinic’ receptors (mAChRs, M1- M5) and ionotropic 
‘nicotinic’ receptors (nAChRs, pentamers of different types 
of α and β subunits). The most commonly expressed mus-
carinic receptors in the brain are M1 (activating), M2 and 
M4 (inhibiting) (Levey, Kitt, Simonds, Price, & Brann, 
1991). Notably, presynaptic M2 receptors act as inhibitory 
auto- receptors on cholinergic terminals and have been used 
as markers for cholinergic neurons (Brown, 2010). Most 
nAChRs in the mammalian brain are either α4β2 or α7, that 
lead to fast depolarisation through increased cation perme-
ability, either enhancing transmitter release presynaptically 
or leading to excitatory postsynaptic responses, depending 
on localisation (Alkondon & Albuquerque, 2004; Dani & 
Bertrand, 2007). α7 receptors show lower affinity for nico-
tine, rapid desensitisation and fast kinetics compared to α4β2 
(Giniatullin, Nistri, & Yakel, 2005). Two additional centrally 
expressed nicotinic receptors worth mentioning. First, the re-
cently described α7β2 receptor has unique pharmacological 
and functional characteristic, being highly sensitive to func-
tional inhibition by pathologically- relevant concentrations of 
oligomeric, but not monomeric or fibrillar forms of amyloid 
β1-42 (Aβ1-42) (Liu et al., 2009; Wu et al., 2016). During the 
progression of AD, cholinergic inputs degenerate and the 
number of nAChRs in temporal areas decreases (Nordberg, 
1994). Second, while there is generally little support for nico-
tinic postsynaptic effects on pyramidal neurons, as a notable 
exception, layer 6 pyramidal neurons express the relatively 
rare α5- subunit together with β2 in heteromeric nicotinic 
receptors leading to nicotinic postsynaptic potentials and 
regulating short- term plasticity. (Hay, Lambolez, & Tricoire, 
2016; Hedrick & Waters, 2015; Verhoog et al., 2016) For de-
tailed description on the distribution and differential impact 
of cholinergic receptors in the hippocampus and neocortex, 
see (Dannenberg, Young, & Hasselmo, 2017; Obermayer, 
Verhoog, Luchicchi, & Mansvelder, 2017).
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Most pharmacological manipulations of the cholinergic 
system has been performed by systemic injection of the phar-
macons, while fewer studies employed intracortical or intra-
ventricular administration through implanted cannulae. In the 
following, we summarize the results and conclusions gained 
by applying cholinergic agonists and antagonists in behaving 
animals; for a more extensive review, see (Deiana, Platt, & 
Riedel, 2011; Everitt & Robbins, 1997; Haam & Yakel, 2017; 
McGaughy et al., 2000; Pepeu & Giovannini, 2010).

The muscarinic antagonist scopolamine has been widely 
used to induce “cholinergic amnesia” (Klinkenberg & 
Blokland, 2010) and has been shown to impair spatial nav-
igation (Svoboda, Popelikova, & Stuchlik, 2017). Systemic 
injection of scopolamine either before the training or the 
test disrupted spatial learning and memory in the MWM 
(Huang et al., 2011); working-  and short- term memory per-
formance was also impaired in RAM (Kay, Harper, & Hunt, 
2010; Pilcher, Sessions, & McBride, 1997) and T- maze ex-
periments (Spowart- Manning & van der Staay, 2004). When 
introducing the drug to well- trained animals, there were usu-
ally no effects observed, suggesting that cholinergic demand 
varies during different stages of memory processing. While 
generally viewed as a muscarinic antagonist acting mostly 
via blocking M1 receptors (Burke, 1986), its specificity is 
questionable; indeed, it has been shown to increase ACh 
release through blocking presynaptic M2 auto- receptors, 
leading to an upregulation of cholinergic effects under some 
conditions. For this property, scopolamine was widely used 
to enhance cholinergic efflux in ACh bioassay experiments 
(Phillis, 2005). In addition, it may partially affect nicotinic, 
glutamatergic and serotonergic receptors as well, further 
broadening the range of possible interpretations (Falsafi, 
Deli, Höger, Pollak, & Lubec, 2012; Lochner & Thompson, 
2016). Nevertheless, the selective M1 antagonist pirenzepine 
exerted effects similar to those of scopolamine in sponta-
neous alternations in a Y maze, and this effect could be fully 
reversed by cN- A- 343, a selective M1 agonist, but only par-
tially by the nonselective muscarinic agonist oxotremorine 
(Ukai, Shinkai, & Kameyama, 1995). Consistently, the M1 
agonist AF102B significantly reduced the age- related cogni-
tive deficit in rats, allowing them to learn platform location in 
the MWM at a time course comparable with young controls 
(Brandeis, Dachir, Sapir, Levy, & Fisher, 1990).

Nicotinic blockade also leads to impairments of spa-
tial memory. Mecamylamine, a widely used non- selective 
nicotinic antagonist disrupts learning and memory in the 
MWM; this impairment is additive but not synergistic with 
similar effects of scopolamine, suggesting at least partially 
independent mechanisms (Cozzolino et al., 1994; Decker & 
Majchrzak, 1992; Riekkinen, Sirviö, Aaltonen, & Riekkinen, 
1990). Mecamylamine also reduces memory performance in 
the delayed- match- to- sample version of the RAM (Maviel 
& Durkin, 2003). With a marked contrast to scopolamine, 

mecamylamine exerted its detrimental effects not only before 
training or testing but also by introducing post hoc (Brucato, 
Levin, Rose, & Swartzwelder, 1994; Levin, Castonguay, 
& Ellison, 1987). Similar results were obtained when ap-
plying more specific drugs such as dihydro- β- erythroidine 
(DH- β- E), a selective α4β2 antagonist or methyllycaconitine 
(MLA), specific for the α7 subunit (Andriambeloson, Huyard, 
Poiraud, & Wagner, 2014; Curzon, Brioni, & Decker, 1996) .

Consistent with the impairments induced by nicotinic an-
tagonists, nicotine itself was found to have a beneficial effect 
on memory performance and cognition in general (Levin, 
McClernon, & Rezvani, 2006). Nicotine can partially rescue 
age- related decline of spatial memory performance in MWM 
and RAM in mice (i) aged naturally (Levin & Torry, 1996; 
Socci, Sanberg, & Arendash, 1995), (ii) treated with AF64A, a 
neurotoxic derivative of choline that causes AD- like cognitive 
impairments (Yamada, Furukawa, Iwasaki, & Ichitani, 2010), 
and (iii) after radiofrequency lesions of the MS (Decker et al., 
1992). However, these beneficial effects depend on the dose 
and mode of application (Levin & Torry, 1996; Taylor, Bassi, 
& Weiss, 2005); for example, while acute injection of nico-
tine could improve the retention of the original position of an 
object in the novel object location (NOL) task (Melichercik, 
Elliott, Bianchi, Ernst, & Winters, 2012), chronic adminis-
tration had an opposite effect (Kenney, Adoff, Wilkinson, & 
Gould, 2011). Chronic nicotine infusion, on the other hand, 
was found to improve memory performance in the RAM, 
suggesting that results may also differ depending on the exact 
behavioural paradigm of choice (Levin, Christopher, Weaver, 
Moore, & Brucato, 1999). Selective α7 or β4 ligands show 
similar effects. The selective α7 agonist DLPhtCho was able 
to reduce the scopolamine- induced negative effect on MWM 
learning (Yaguchi, Nagata, & Nishizaki, 2009). Similarly, 
the selective β4 agonist SIB- 1553A, although ineffective in 
normal subjects, could reverse age- related or scopolamine- 
induced working memory deficit in a T maze task (Bontempi, 
Whelan, Risbrough, Lloyd, & Menzaghi, 2003; Bontempi 
et al., 2001).

There are considerably fewer studies that have investi-
gated the effect of local, intracerebral drug applications. 
Scopolamine infusion in the dorsal hippocampus impaired 
acquisition and retention of spatial memory in the MWM 
(Herrera- Morales, Mar, Serrano, & Bermúdez- Rattoni, 
2007). Interestingly, the M1 antagonist pirenzepine dis-
rupted long- term spatial memory but not acquisition, while 
the M2 antagonist BIBN- 161 had no effect; however, when 
applied in combination, they caused a complete impairment 
similar to the effect of scopolamine. Thus in contrast with 
systemic pirenzepine application mentioned above (Ukai 
et al., 1995), local infusion had a more defined effect, sug-
gesting that recall but not learning is mediated by M1 recep-
tors in dorsal hippocampus (Hagan, Jansen, & Broekkamp, 
1987; Hunter & Roberts, 1988). Scopolamine injection to 
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the ventral hippocampus decreased performance in the RAM 
(Kim & Levin, 1996). Similar impairments were observed 
when nicotinic antagonists (mecamylamine, MLA or DH- 
β- E) were injected to either ventral (Felix & Levin, 1997) or 
dorsal hippocampus (Nott & Levin, 2006). These manipula-
tion were shown to affect the hippocampal place code: while 
recording in CA1, scopolamine or specific muscarinic an-
tagonists pirenzepine or methoctramine (M2/M4- antagonist) 
were infused locally through a dialysis probe. Scopolamine 
significantly reduced in- field firing rates and increased the 
ratio of out- of- field to in- field rates of place cells, and re-
duced the smoothness of the rate maps (Brazhnik, Borgnis, 
Muller, & Fox, 2004), consistent with systemic effects of sco-
polamine on spatial coding (Newman, Climer, & Hasselmo, 
2014). The specific antagonists had limited effects in isola-
tion, but reproduced these effects of scopolamine when ap-
plied in combination.

Intraseptal infusion of scopolamine impaired spatial 
learning in the MWM (Elvander et al., 2004) and mem-
ory performance in a T maze alternation task, in a dose- 
dependent manner (Givens & Olton, 1990). Interestingly, the 
cholinergic agonist carbachol could also cause spatial mem-
ory impairments in MWM and delayed- non- match- to- sample 
tasks (Bunce, Sabolek, & Chrobak, 2004a, 2004b; Elvander 
et al., 2004), probably by facilitating encoding at the expense 
of retrieval, hence disturbing their balance. Indeed, carbachol 
prevented the retrieval of spatial representations of familiar 
environments when injected to CA1 (Sava & Markus, 2008). 
At the same time, encoding of new environments was facil-
itated specifically in aged rats, potentially due to the resto-
ration of age- impaired encoding processes. In line with these, 
the muscarinic agonist oxotremorine also improved spatial 
memory performance but only in old animals (Frick, Gorman, 
& Markowska, 1996; Markowska, Olton, & Givens, 1995).

Local application of scopolamine, mecamylamine or car-
bachol to NBM prevented spatial learning in MWM (Wilson, 
Munn, Ross, Harding, & Wright, 2009). However, it is hard 
to decipher whether these impairments were specific to spa-
tial coding or at least partially a consequence of impaired 
attentional (Chudasama et al., 2004; Ljubojevic et al., 2018) 
or working memory processes (Croxson, Kyriazis, & Baxter, 
2011; Ragozzino & Kesner, 1998; Sun et al., 2017; Yang 
et al., 2013).

In summary, conclusions based on local application of 
cholinergic drugs are roughly consistent with the results of 
systemic treatment, showing impairments of spatial mem-
ory encoding and retrieval by both nicotinic and muscarinic 
antagonists. Conversely, drugs that activate nicotinic recep-
tors enhance the encoding of new information. These results 
should be considered with two caveats. Firsts, when drugs 
are applied systemically, it is impossible to exclude off- target 
effects and the involvement of other structures. Indeed, these 
results are consistent with the nootropic effect of nicotine 

(Newhouse et al., 2012; Sarter, 2015) and amnestic effect 
of scopolamine (Klinkenberg & Blokland, 2010) that have 
been observed in other cognitive domains such as fear mem-
ory (Wilson & Fadel, 2017) or operant conditioning (Leach, 
Cordero, & Gould, 2013; Shi et al., 2013). Nevertheless, 
local delivery of muscarinic antagonists in dorsal or ventral 
hippocampus still had a negative impact on spatial memory. 
Second, BFCNs may co- release ACh and GABA under certain 
circumstances, rendering BFCN lesions and anti- cholinergic 
drug effects only partially comparable. Nonetheless, electro-
physiological recordings of place cell and grid cell activity 
support the idea that the observed deficits are at least in part 
due to altered spatial processing and abnormalities of cholin-
ergic activity.

4.4 | Acetylcholine levels during navigation: 
microdialysis studies
Further insight about the role of the cholinergic system in 
spatial learning and memory was provided by microdialysis 
studies, in which ACh efflux is measured at a time resolu-
tion of seconds to minutes, depending on the technical details 
(König, Thinnes, & Klein, 2017). ACh levels were monitored 
in parietal cortex and hippocampus while rats were navigat-
ing through an open field for the first and second time (novel 
and familiar environment, respectively; Giovannini et al., 
2001). During the first exploration a significant increase in 
cortical and hippocampal ACh release was observed, and 
when the animals were placed back in their home cage it 
slowly returned to basal levels. The exploration of the same 
arena in a second occasion caused a smaller and shorter last-
ing increase in ACh, suggesting a cholinergic component as-
sociated with novelty. When rats were trained in a RAM or a 
T maze alternation task, hippocampal ACh level was found 
to progressively increased during learning across days and 
the magnitude of change was positively correlated with spa-
tial memory performance (Fadda, Cocco, & Stancampiano, 
2000; Giovannini et al., 2001). Interestingly, this activation 
in trained animals not only persisted during performing the 
task, but was already present when rats were placed in a 
“waiting cage”. Naïve animals showed a smaller increase in 
both environments, indicating that increased neurotransmit-
ter release was both due to the novel environment and task 
anticipation (Fadda, Melis, & Stancampiano, 1996). In rats 
performing the same task, parallel to the rise of hippocam-
pal ACh levels, an even bigger increase of ACh efflux was 
observed in the 29ab sub- region of the RSC, which persisted 
after the end of the task (Anzalone, Roland, Vogt, & Savage, 
2009). Septal GABAergic lesion by GAT1- saporin impaired 
hippocampal ACh efflux as well as memory performance in 
a delayed non- match- to- position task (Roland et al., 2014).

Interesting insights were also gained from studies on a rodent 
models of diencephalic amnesia (i.e. the Wernicke- Korsakoff 
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Syndrome), the pyrithiamine- induced thiamine deficiency 
(PTD). Rats in the PTD group were kept on a thiamine- free 
diet and were given daily injections of pyrithiamine hydro-
bromide, eventually leading to seizures at which point thia-
mine was reintroduced. PTD rats showed lower hippocampal 
ACh increase and impaired performance both on a sponta-
neous alternation and a non- match- to- position task. This was 
paralleled by a selective loss of MS/DB cholinergic neurons 
revealed by stereology (Roland & Savage, 2007; Savage, 
Roland, & Klintsova, 2007).

Parallel memory systems can compete or collaborate de-
pending on the task both in animals and humans (Poldrack 
& Packard, 2003; White & McDonald, 2002). For instance, 
simple navigation problems like alternation in a T maze can 
be solved both applying an allocentric (place) and an egocen-
tric (response) strategy. These are thought to be dependent on 
the hippocampus and the dorsal striatum, respectively. In a 
study from McIntyre and colleagues, both hippocampal and 
striatal ACh levels were monitored while rats were trained in 
a maze where the baited arm could be reached employing ei-
ther of the strategies. Some rats used a spatial strategy while 
others a turning strategy; interestingly, this choice could be 
predicted by the ratio of hippocampal to striatal ACh efflux 
not only during the training, but even in the preceding base-
line period (McIntyre et al., 2003). Another study from the 
same group showed that while hippocampal ACh levels were 
high from the beginning of the training and maintained at 
the same levels, striatal ACh efflux increased gradually, sug-
gesting that there might be a gradual shift from allocentric 
to egocentric strategies during navigation (Chang & Gold, 
2003). When rats were trained on a response strategy ex-
plicitly, they showed higher striatal ACh levels compared to 
learning a spatial version of the same maze (Pych, Chang, 
Colon- Rivera, Haag, & Gold, 2005). In contrast, hippocam-
pal ACh levels were more related to the abundance of sensory 
cues, suggesting that hippocampus may enhance learning a 
response strategy when extra- maze cues are available.

This dissociation between striatal and hippocampal sys-
tems in spatial learning has also been demonstrated using the 
MWM. Animals that had received pre- training lesions or ex-
pressed a dominant- negative mutant of CREB in the dorsal 
striatum were impaired in learning the cued navigation task, 
but showed a faster learning on the spatial version, while an-
imals lesioned in the dorsal hippocampus showed opposite 
effects, suggesting a competition between the striatal and 
hippocampal memory systems (Lee, Duman, & Pittenger, 
2008). Consistent with these findings, PTD- treated rats re-
lied more on egocentric strategies and showed higher striatal 
ACh efflux compared to the controls (Vetreno, Anzalone, 
& Savage, 2008). However, a co- operative rather than com-
petitive interaction between these systems has been demon-
strated in human patients of Huntington disease (Voermans 
et al., 2004). Evidence for synergistic effects were also 

demonstrated when lesions were performed after rats were 
trained both on spatial and cued navigation (Ferbinteanu, 
2016). In this case, performance on both tasks was impaired 
after lesioning either the hippocampus or the dorsal striatum.

Therefore, while ACh release in hippocampus seems to be 
essential for spatial learning with allocentric cues, high cho-
linergic levels in tasks where no spatial strategy is obvious 
suggest that hippocampus is also involved in broader aspects 
of learning or performing the task in general, e.g. memory 
encoding, sustained attention and detecting changes in task 
contingencies that would require a strategy shift. Clarifying 
the relationship between cholinergic firing activity, ACh- 
mediated postsynaptic currents and detectable extracellular 
choline levels could aid the interpretation of these data in 
the future. In addition, time course of receptor availability 
for synaptic and extrasynaptic ACh could help establish a 
link between pharmacology and microdialysis / voltammetry 
studies.

4.5 | The role of cholinergic signalling in 
cortical processing
Electrophysiology studies have also shed light on how 
cholinergic innervation may influence cortical processing. 
Septo- hippocampal afferents has been shown to control the 
amplitude of hippocampal theta oscillation relevant for spa-
tial navigation and learning, without strongly affecting its 
frequency (Hasselmo, Hay, Ilyn, & Gorchetchnikov, 2002; 
Lee et al., 1994), the latter probably controlled by septal 
GABAergic pacemaker neurons (Borhegyi, Varga, Szilágyi, 
Fabo, & Freund, 2004; Hangya et al., 2009; Ujfalussy & 
Kiss, 2006). Theta oscillation was proposed to separate en-
coding and retrieval processes in the CA1, mediated by en-
torhinal and CA3 inputs, respectively (Hasselmo, Bodelón, & 
Wyble, 2002; Koene, Gorchetchnikov, Cannon, & Hasselmo, 
2003). This model was later confirmed experimentally in an 
elegant closed- loop stimulation study by Siegle and Wilson 
(Siegle & Wilson, 2014). In this process, cholinergic affer-
ents are thought to enhance the encoding phase (Barry, Heys, 
& Hasselmo, 2012; Hasselmo, 2006; Hasselmo, Hay et al., 
2002); indeed, cholinergic antagonists reduce theta- gamma 
cross- frequency coupling and the modulation of theta oscilla-
tion by animal speed (Newman et al., 2017). As an extension 
of the above model, theta oscillation was proposed to coordi-
nate the integration of different sensory modalities for spatial 
navigation (Tsanov, 2017). Cholinergic neurons may exert 
their effects both directly on hippocampal interneurons and 
pyramidal cells and indirectly via the innervation of septo- 
hippocampal GABAergic neurons (Dannenberg et al., 2015; 
Yang et al., 2014). Cholinergic manipulations influence the 
firing of both place cells and grid cells, possibly through 
presynaptic inhibition of excitatory and inhibitory synaptic 
transmission in the hippocampus and entorhinal cortex and 
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the modulation of intrinsic currents in excitatory and inhibi-
tory neurons (Dannenberg, Hinman, & Hasselmo, 2016).

Cholinergic afferents to the hippocampal CA1 were shown 
to be important for spike- timing- dependent plasticity (Seol 
et al., 2007). Relative timing of Shaffer collateral stimulation 
with respect to optogenetic activation of cholinergic fibres 
determined the form of plasticity in a time- sensitive manner 
on the millisecond scale (Gu & Yakel, 2011). This effect re-
quired both pre-  and postsynaptic processes (Gu et al., 2012) 
and involved α7 nicotinic as well as muscarinic receptors (Gu 
& Yakel, 2011; Yakel, 2012).

Little is known about how coordinated firing of BF cell 
assemblies may influence cortical processing and cognition. 
A series of papers from Nitz and colleagues demonstrated the 
formation of such assemblies in the nucleus basalis. These 
are orchestrated by local beta oscillations (Quinn, Nitz, & 
Chiba, 2010; Tingley et al., 2014) that appear to be impli-
cated in learning processes (Quinn et al., 2010) and recruited 
in specific task phases during cognitive processing (Tingley 
et al., 2014). A correlated, temporally coordinated activa-
tion of posterior parietal cortical neuron populations was 
observed (Tingley et al., 2014), which may serve as a basis 
for BF modulation of PPC activity during spatial learning 
and navigation. In rough agreement, beta coherence between 
prefrontal cortex and PPC was found to be influenced by nu-
cleus basalis cholinergic lesions in another study (Ljubojevic 
et al., 2018). In addition, nucleus basalis may exert a more 
global influence on the so- called default mode network in-
volving both the retrosplenial and the anterior cingulate cor-
tex (Nair et al., 2018; Turchi et al., 2018). Nevertheless, how 

cholinergic control of cortical firing serves spatial learning 
and navigation will require further investigation.

5 |  CONCLUSIONS

The hippocampus, retrosplenial and posterior parietal corti-
ces are fundamental to spatial navigation, necessary for the 
formation, integration and flexible use of egocentric and al-
locentric frames of reference to create routes towards distant 
goals. Hippocampus integrates environmental features into an 
allocentric cognitive map with associated meta- information 
to guide exploration; PPC is crucial for egocentric route plan-
ning, while RSC integrates self- based and world- based refer-
ence systems to allow optimal navigation strategies (Oess, 
Krichmar, & Röhrbein, 2017; Figure 2).

Basal forebrain cholinergic neurons project to all of these 
structures. While lesion studies lead to variable results and 
a general uncertainty about the degree to which these inner-
vations are necessary for navigation, pharmacology studies 
interfering with cholinergic receptors consistently reported 
impaired spatial memory encoding and retrieval, spatial 
working memory and navigation in general. Measuring 
hippocampal ACh efflux by microdialysis suggested that 
hippocampal ACh levels are strongly correlated with the em-
ployment of allocentric orientation and navigation strategies. 
Investigating the hippocampal place code after lesions of the 
cholinergic system showed maintained hippocampal place 
cells but impaired grid cell firing and decreased flexibility 

F I G U R E  2  Key anatomical and 
functional relationships of the spatial 
navigation network. The basal forebrain 
nuclei send cholinergic efferents to the 
hippocampus and the cortex, regulating their 
activity. Hippocampus and posterior parietal 
cortex represent allocentric and egocentric 
information, respectively, which are then 
integrated in the retrosplenial cortex
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and resilience to environmental stress of spatial coding, sug-
gesting a non- trivial role of subcortical cholinergic inputs.

Thus, while we can claim that ACh has an important role 
in spatial cognition, we have little mechanistic understanding 
of the nature of this role, despite the tremendous effort put in 
cell type specific lesioning and pharmacology experiments. 
This might be attributed to methodological issues, which 
are related to four types of specificity: (i) spatial specific-
ity: where do we intervene, (ii) temporal specificity: on what 
timescale does our manipulation exert its effect, (iii) cell type 
specificity: which neurons do we manipulate and finally (iv) 
behavioural specificity: how do we test spatial cognition.

Spatial specificity relies on anatomical knowledge. While 
the hippocampus is arguably the best characterized brain area 
as far as structure is concerned, much less is known about 
the relatively complex anatomy of the BF. For instance it is 
generally considered that the BF sends ‘parallel’ cholinergic, 
GABAergic and glutamatergic projections to cortical areas. 
However, recent studies suggest that the extent of this target-
ing may vary across BF subregions (Gielow & Zaborszky, 
2017; Zaborszky et al., 2015) and it is generally not known 
whether different BF cell types of a given area have the same 
projection targets. In addition, there is little information on 
how input and output patterns change within the BF in a cell 
type specific manner as the few studies addressing this ques-
tion has largely ignored the anatomical complexity of the BF 
so far (Do et al., 2016; Hu et al., 2016; Li, Yu et al., 2018). 
Moreover, local connections within the BF are only partially 
mapped (Do et al., 2016; Gielow & Zaborszky, 2017; Yang, 
Thankachan, McCarley, & Brown, 2017; Yang et al., 2014). 
Therefore, we expect that improving our anatomical under-
standing of BF structures, cell type and subregion specific 
inputs and outputs and differences in local connectivity using 
novel viral labelling techniques including monosynaptic 
rabies tracing or cTRIO (Beier et al., 2015; Schwarz et al., 
2015) will improve our abilities of spatially specific target-
ing of the BF. New insights may also arise using promising 
alternatives to the 192- IgG saporin lesioning such as the use 
of immunotoxin in transgenic animals (Okada et al., 2015). 
Optogenetic methods could further increase spatial speci-
ficity compared to the limited possibilities of local drug in-
jections or localised lesioning approaches (Siegle & Wilson, 
2014).

Multiple cognitive, homeostatic and other physiological 
processes operate in parallel at a large variety of temporal 
scales. For instance, spatial learning processes may be in-
fluenced by attention, arousal, task engagement, motivation, 
fatigue, and ultimately, wakefulness. These change at dif-
ferent times and with different speed, providing a chance to 
separate them conceptually. For this, temporal control over 
the experimental manipulations are needed (Solari, Sviatkó, 
Laszlovszky, Hegedüs, & Hangya, 2018), only partially 
provided by pharmacology and microdialysis and entirely 

lacking in lesion studies. Here we expect that the temporal 
precision of combined electrophysiology, optogenetics and 
high throughput rodent cognition assays will lead to signif-
icant breakthroughs in understanding how cholinergic ac-
tivity can support multiple cognitive processes at different 
time scales (Buzsaki et al., 1988; Hangya et al., 2015; Sarter, 
Lustig, Howe, Gritton, & Berry, 2014; Tingley et al., 2014).

Cholinergic, GABAergic and glutamatergic neurons 
are intermingled in the BF (Gritti et al., 2006; Zaborszky, 
Pang, Somogyi, Nadasdy, & Kallo, 1999). Subtypes of these 
send projections to cortex and other areas, some co- express 
other markers like somatostatin or calretinin (Gritti, Manns, 
Mainville, & Jones, 2003; Zaborszky et al., 2012), whereas a 
subset (or all?) cholinergic neurons co- release GABA (Case 
et al., 2017; Saunders, Granger et al., 2015; Takács et al., 
2018). Different cell types are often associated with differ-
ent functions and tremendous insights has been gained by 
recording cell type specific activities or conducting cell type 
specific manipulations in the past. While classical methods 
as pharmacology or IgG- saporin lesions were limited in their 
cell type specificity, modern optogenetic and chemogenetic 
tools opened a new avenue for cell type specific interrogation 
(Barry, Akopian, Cepeda, & Levine, 2018; Herman et al., 
2016; Li, Zeng et al., 2018; Orr et al., 2015), likely deliver-
ing precious new information about cholinergic function in 
the near future.

Indeed these techniques have already helped demonstrate 
the role of ACh in modulating cortical activity and enhanc-
ing sensory detection and discrimination (Eggermann et al., 
2014; Pinto et al., 2013; Rothermel, Carey, Puche, Shipley, 
& Wachowiak, 2014), as well as in fear learning and mem-
ory (Hersman et al., 2017; Jiang et al., 2016; Unal, Pare, & 
Zaborszky, 2015).

Standard rodent navigation tasks do not provide fine 
grained behavioral information and present only limited cog-
nitive challenge to rats and mice. While this was a constraint 
when animals had to be trained manually, the emergence of 
the rodent cognition field operating with high throughput au-
tomated assays (Brunton, Botvinick, & Brody, 2013; Dhawale 
et al., 2015; O’Connor et al., 2010) with psychometric train-
ing that allows controlling cognitive demand and testing well 
defined hypotheses will likely transform our understanding of 
spatial cognition. One example is the emergence and spread 
of rodent VR navigation systems in recent years (Aronov & 
Tank, 2014; Kaupert et al., 2017; Leinweber, Ward, Sobczak, 
Attinger, & Keller, 2017) allowing complicated navigation 
tasks. This also provides a segue to another important issue: 
mechanistic insight often emerges from probing the activity 
of neurons under different conditions (Sviatkó & Hangya, 
2017), which type of studies have been scarce with respect 
to cholinergic control of spatial learning, memory and nav-
igation. Head- fixed VR navigation studies provide a new 
avenue in this direction, rendering cortical and hippocampal 
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activity accessible for in vivo Ca- imaging (Bittner et al., 
2015; Danielson et al., 2016) and intracellular recordings 
(Harvey, Collman, Dombeck, & Tank, 2009). Other options 
include extracellular recordings, possibly combined with op-
togenetic tagging (Cohen, Haesler, Vong, Lowell, & Uchida, 
2012; Kvitsiani et al., 2013; Lima, Hromádka, Znamenskiy, 
& Zador, 2009), and implantable miniscopes (Ghosh et al., 
2011; Zong et al., 2017) in freely behaving rodents.

If we consider the general processing schemes of the strongly 
interconnected system of hippocampus, RSC, PPC, prefrontal 
cortex, BF and potentially other cortical and subcortical areas, 
it is clear that spatial cognition is likely only one aspect of more 
abstract processes they implement. Indeed, there is an ongoing 
stimulating debate whether hippocampal cognitive maps should 
be considered only in the spatial domain (Eichenbaum et al., 
2016; Lisman et al., 2017). Additionally, it has been recently 
shown that RSC is involved in processing permanence and sta-
bility not only of spatial landmarks but also of actions and be-
haviour (Auger & Maguire, 2018). In this regard it is interesting 
to consider how BFCNs participate in regulating RSC functional 
connectivity in the default mode network (Shah et al., 2016). 
Therefore, research should likely be oriented towards a more 
general framework, putting navigation and cognitive maps into a 
broader perspective. This probably will require a paradigm shift 
that we expect will not only reveal a great deal about cholinergic 
modulation of spatial cognition but could also transform our un-
derstanding of neuronal information processing in general.
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