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Abstract: Cancer stem cells (CSCs) play a critical role in the initiation, progression and therapy re-
lapse of many cancers including non-small cell lung cancer (NSCLC). Here, we aimed to address the
question of whether the FACS-sorted CSC-like (CD44 + &CD133 +) vs. non-CSC (CD44−/CD133−
isogenic subpopulations of p53wt A549 and p53null H1299 cells differ in terms of DNA-damage
signaling and the appearance of “dormant” features, including polyploidy, which are early markers
(predictors) of their sensitivity to genotoxic stress. X-ray irradiation (IR) at 5 Gy provoked signif-
icantly higher levels of the ATR-Chk1/Chk2-pathway activity in CD44−/CD133− and CD133+
subpopulations of H1299 cells compared to the respective subpopulations of A549 cells, which only
excited ATR-Chk2 activation as demonstrated by the Multiplex DNA-Damage/Genotoxicity profiling.
The CD44+ subpopulations did not demonstrate IR-induced activation of ATR, while significantly
augmenting only Chk2 and Chk1/2 in the A549- and H1299-derived cells, respectively. Compared to
the A549 cells, all the subpopulations of H1299 cells established an increased IR-induced expression
of the γH2AX DNA-repair protein. The CD44−/CD133− and CD133+ subpopulations of the A549
cells revealed IR-induced activation of ATR-p53-p21 cell dormancy signaling-mediated pathway,
while none of the CD44+ subpopulations of either cell line possessed any signs of such activity. Our
data indicated, for the first time, the transcription factor MITF–FAM3C axis operative in p53-deficient
H1299 cells, specifically their CD44+ and CD133+ populations, in response to IR, which warrants
further investigation. The p21-mediated quiescence is likely the predominant surviving pathway
in CD44−/CD133− and CD133+ populations of A549 cells as indicated by single-cell high-content
imaging and analysis of Ki67- and EdU-coupled fluorescence after IR stress. SA-beta-galhistology
revealed that cellular-stress-induced premature senescence (SIPS) likely has a significant influence
on the temporary dormant state of H1299 cells. For the first time, we demonstrated polyploid giant
and/or multinucleated cancer-cell (PGCC/MGCC) fractions mainly featuring the progressively
augmenting Ki67low phenotype in CD44+ and CD133+ A549 cells at 24–48 h after IR. In contrast,
the Ki67high phenotype enrichment in the same fractions of all the sorted H1299 cells suggested an
increase in their cycling/heterochromatin reorganization activity after IR stress. Our results proposed
that entering the “quiescence” state rather than p21-mediated SIPS may play a significant role in the
survival of p53wt CSC-like NSCLC cells after IR. The results obtained are important for the selection
of therapeutic schemes for the treatment of patients with NSCLC, depending on the functioning of
the p53 system in tumor cells.
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1. Introduction

Non-small cell lung cancer (NSCLC) accounts for nearly 85% of all lung-cancer cases
with an estimated five-year relative survival of 8%. Radiation therapy (RT) is the standard
treatment for patients with locally advanced inoperable lung cancer. However, the radiore-
sistant cancer stem cells (CSCs) that are present inside tumors are responsible for RT failure,
metastases, relapses and poor prognoses in cancer patients. Many studies indicate CD133,
CD44, ABCG2 and ALDH1A1 as the most recognizable lung CSC markers [1,2], as well as the
expression of common stem-related transcription factors, as octamer-binding transcription
factor 4 (OCT4) and sex-determining region Y-box 2 (SOX2) are upregulated in CSCs [3–6].
The molecular mechanisms of CSC radioresistance are attributable to enhanced DNA double-
strand break (DSB) repair mechanisms [7]. DNA DSBs are considered the most dangerous
lesions caused by ionizing radiation (IR), leading to cell-cycle arrest, programmed cell death,
chromosome aberrations and mutations [8]. H2AX phosphorylation on Ser139 (γH2AX) is a
primary response to DNADSB formation and repair, and is exerted by the phosphoinositide-
3-kinase-related protein kinases (PIKKs), such as ATM (ataxia telangiectasia mutated), ATR
(ATM and Rad3-related), or DNA-dependent protein kinase (DNA-PK) [9–11]. Our previous
studies suggested, that in p53null NSCLC cells, ATR phosphorylates H2AX as a result of the
formation of single-stranded DNA breaks and during replication stress, such as replication-
fork arrest [12,13]. ATR further activates the ATR-Chk1 pathway, thereby preventing DNA
from further damage, and is thus essential to the survival of many cancers [14].

In most p53wt cancers, p21 promotes stress-induced premature senescence (SIPS)
rather than apoptosis [15,16]. The most widely used marker of senescent cells is senescence-
associated beta-galactosidase (SA-beta-gal), a lysosomal hydrolase [17,18]. The activity of
SA-beta-gal is measured at pH 6.0, while beta-galactosidase is physiologically active at
pH 4.0, which is typical of lysosomal acidic media. However, the presence of SA-beta-gal
alone does not exclude the possibility of a cell being quiescent, or differentiating, as they
are all progressive phenomena with intermediate transitional stages [19]. Recent studies
have determined that polyploid giant cancer cells (PGCCs) emerging in tumors under the
influence of hypoxia, radiation and after chemotherapy may serve as a source of CSCs [20].
The main factor leading to the formation of PGCCs is p53 deregulation [21,22]. Previously,
it was thought that these cells are of no interest, as they arise from the repeated failure
of mitosis/cytokinesis and enter into aging, as a result of which they lose their ability to
proliferate, resulting in death over time. With the onset of favorable conditions, PGCCs
undergo depolyploidization as a result of multipolar mitosis, budding or splitting with the
formation of daughter cells that have the features of CSCs as well as the tumorigenicity [23].
The resulting offspring exhibit increased drug resistance and radioresistance, featuring
properties of stem cells, and are capable of metastasis and relapses.

In the present study, we analyzed key DNA-damage pathways in sorted CD44−/
CD133−, CD44+ and CD133+ populations of A549 (p53wt) and H1299 (p53null) cells before
and after 5 Gy irradiation. We differentiated proliferation and dormant states between
typical diploid and polyploid giant cancer cells (PGCCs) to show that the presence of
p53wt in sorted cancerstem-like CD44+ and CD133+ populations of A549 cells leads to a
p21-dependent quiescence state rather than senescence.

2. Materials and Methods
2.1. Cell Lines and Culture Conditions

Human A549 and H1299 cell lines were obtained from ATCC and cultured in RPMI-
1640 medium with 10% FBS, 1% penicillin/streptomycin and L-glutamine in an incubator
(humidified atmosphere, 37 ◦C, 5% CO2).
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2.2. Cell Sorting

A549 and H1299 cells were collected by trypsinization, washed in ice-cold PBS
(pH = 7.4) and 1 × 106 cells per sample were incubated with Anti-CD133 Antibody, Alexa
Fluor® 488 conjugated (MAB4310X, Sigma-Aldrich, Darmstadt, Germany) and with mono-
clonal Anti-CD44−PE antibody (SAB4700187, Sigma-Aldrich, Darmstadt, Germany) for
30 min at 4 ◦C. After the washing steps, the labeled cells were analyzed by flow cytometry
using a BD FACSMelody™ Cell Sorter (BD Life Sciences, San Jose, CA, USA). The purity of
sorted populations represented 90% and was validated using Amnis ImageStreamX Mark
II Imaging Flow Cytometer (Luminex Corporation, Austin, TX, USA) and analyzed using a
data-analysis template created in IDEAS v6.2.

2.3. Irradiation

Cells were seeded in 6-well plates 24 h before irradiation with 5 Gy (dose rate
of 0.85 Gy/min (2.5 mA, 1.5 mm Al filter) a 200 kV X-ray) using RUB RUST-M1 X-
irradiator facility (JSC “Ruselectronics”, Moscow, Russia). The exposure was performed at
room temperature.

2.4. Western-Blotting Analysis of OCT4 Expression

Proteins were extracted using RIPA lysis buffer and centrifuged at 14,000 g for 25 min
at 4 ◦C, the supernatant was collected, and the total protein content was measured using the
bicinchoninic-acid (BCA) assay. Proteins were separated using 8–16% SDS–polyacrylamide
gel (Bio-Rad Laboratories, Mini-PROTEAN TGX Gels, Hercules, CA, USA) and transferred
onto nitrocellulose membranes (7.1 × 8.5 cm, Bio-Rad Laboratories, Trans-Blot® Turbo™
Trans-fer, Neuberg, Germany), which were then incubated with blocking buffer (Thermo
Scientific™ Pierce™ Protein-Free Blocking Buffer, Waltham, MA, USA). The membrane was
incubated with anti-OCT4 Rabbit Monoclonal antibody (dilution 1:1000; ZRB1101, Merck
KGaA, Darmstadt, Germany) in blocking buffer at 4 ◦C overnight. The polyclonal antibody
against anti-GAPDH antibody (1:1000; G9545, Sigma-Aldrich, St Louis, MO, USA) was used
as a house-keeping control gene. The membrane was washed with 1× PBS (pH = 7.2–7.6),
containing 0.05% Tween-20 (Pharm grade, Biolot, St. Petersburg, Russia) 3 times for 3 min
each and was further incubated for 2 h with a peroxidase-conjugated secondary sheep
anti-rabbit (p-SAR IgGs) (dilution 1:5000, IMTEC, Moscow, Russia) antibodies at room
temperature. The formed membrane-bound immune complexes were detected using the
Clarity™ Western ECL Substrate reagent Luminol/peroxide solution (dilution 1:1, Bio-Rad,
Hercules, CA, USA). Blots were visualized, and the relative densities of the bands were
calculated by Chem-iDoc™ MP Imaging System (170–8280) by Bio-Rad and normalized to
the GAPDH control.

2.5. Immunofluorescence Analysis of SOX2 Expression

Cells were seeded into the 384-well plate at the density of 2000 cells/0.05 cm2. After
24 h, cells were fixed with 4% formaldehyde, permeabilized with 0.3% Triton X-100 and
incubated in 1× PBS at pH 7.4 with 2% BSA (bovine serum albumin) for 40 min at room
temperature to block non-specific antibody binding. Cells were incubated with primary
rabbit anti-SOX2 antibody (dilution 1:100, AB5603, Merck KGaA, Darmstadt, Germany) for
1 h at room temperature. After 3 rinses with 1× PBS, pH 7.4, cells were incubated with sec-
ondary anti-rabbit Alexa 488 antibody (dilution 1:500; Merck KGaA, Darmstadt, Germany).
Nuclei were counterstained with Hoechst (Dilution 6 µg/mL, Thermo Scientific™ Hoechst
33, 342 Solution (20 mM)). The fluorescent signal was measured at excitation/emission
maxima of 496/519 using the CLARIOstar microplate reader (BMG LABTECH, Ortenberg,
Germany). MARS Data Analysis Software (BMG LABTECH, Ortenberg, Germany) was
used to analyze the obtained data. The data are presented as fold of change over control
(RFU in the wells stained by normal rabbit IgG).



Int. J. Mol. Sci. 2022, 23, 4922 4 of 26

2.6. Spheroids Culture

A549 and H1299 spheroids were generated as free-floating spheroids cultured in
Corning® Costar® Ultra-Low Attachment Multiple 96-well plates (Kennebunk, ME, USA).
Cells were re-suspended as ten thousand cells per well and cultivated in serum-free medium
(RPMI, Gibco, Life Technologies Limited, Paisley, UK), which was supplemented with
20 ng/mL epidermal growth factor (EGF Sigma-Aldrich, Darmstadt, Germany), 10 ng/mL
of basic fibroblast growth factor (bFGF, Sigma-Aldrich, Darmstadt, Germany), 2 mM L-
glutamine and 1% penicillin/streptomycin. Cells were cultivated for up to 10 days.

2.7. Immunofluorescence Analysis of FAM3C and MiTF Expression in Tumor Spheroids

Immunofluorescent staining and imaging of NSCLC tumor spheroids was performed
according to protocol (https://doi.org/10.1016/j.xpro.2021.100578 accessed on 18 June
2021). Spheroids were incubated with primary rabbit polyclonal antibody to FAM3C/ILEI
(dilution 1:100, Cat. # ab72182, Abcam, Cambridge, MA, USA), mouse monoclonal Anti-
MiTF antibody [C5] (dilution 1:100, Cat. # ab12039, Abcam, Cambridge, MA, USA) and
secondary goat anti-rabbit Alexa Fluor 488 conjugated (dilution 1:500; Cat. # A-11008,
Merck Millipore, Burlington, VT, USA) and goat anti-mouse Cy5 conjugated (dilution 1:500;
Cat. # AP124C, Merck Millipore, Burlington, VT, USA) antibodies. Imaging was performed
using EVOS FL Auto Cell Imaging System (Thermo Fisher Scientific, Waltham, MA, USA).
Microphotographs were analyzed using CellProfiler cell-image-analysis software.

2.8. Click-iT™ EdU Alexa Fluor 488 Proliferation Assay

Cells (at concentrations of 2000/0.056 cm2) were seeded in a 384-well plate for 24 h and
48 h following exposure to an extra single dose of 5 Gy. Then, EdU labeling reagent (final
concentration 10 µM) was added to cell cultures and maintained in a 5% CO2 humidified
incubator at 37 ◦C for 2.5 h. Then, cells were fixed in 2% (v/v) paraformaldehyde at room
temperature for 15 min and incubated with 6 µg/mL Hoechst 33342 (Thermo Fisher Scientific,
Waltham, MA, USA) overnight for nuclei staining at 4 ◦C. Following two rinses in 1× PBS,
1× EdU buffer additive was added for 1 h and incubated at room temperature protected
from light. Imaging and analysis of proliferating cells were performed using the ImageXpress
Micro XL High-Con-tent Screening System (Molecular Devices LLC., San Jose, CA, USA).

2.9. Immunofluorescence Analysis of Ki67

Cells (at concentrations of cells 2000/0.056 cm2) were seeded in a 384-well plate for
24 h and 48 h following exposure to an extra single dose of 5 Gy. Then, cells were washed
briefly in 1× PBS (pH 7.4) and fixed with 4% formaldehyde for 15 min, followed by 3 rinses
in 1× PBS (pH 7.4). After that, cells were permeabilized with 0.25% Triton X-100 for 15 min
and washed then 3 times in 1× PBS (pH 7.4). After blocking cells with 6% BSA (bovine
serum albumin) in 1× PBS (pH 7.4) for 1 h at room temperature, cells were incubated
with mouse monoclonal Ki67 antibody (5 µg/mL, clone Ki-S5, Sigma-Aldrich, Darmstadt,
Germany), and diluted in 1× PBS with 1% BSA and 0.3% TritonX-100 for 1 h at room
temperature. After 3 rinses in PBS, cells were incubated for 1 h at room temperature
with secondary antibody, F(ab’)2-Goat anti-Mouse IgG (H + L) Secondary Antibody, Qdot
655 with conjugate (Dilution 1:50, invitrogen), which was diluted in PBS with 1% BSA
and 0.3% Triton-X 100, followed by 3 rinses in 1× PBS. Nuclei were counterstained with
Hoechst (Dilution 6 µg/mL, Thermo Scientific™ Hoechst 33342 Solution). Single-cell high-
content imaging and analysis of cells was performed, and the inner integrated fluorescence
intensities of Ki67 staining per cell nuclei were calculated using the ImageXpress Micro XL
System and MetaXpress Software (Molecular Devices LLC, San Jose, CA, USA).

2.10. Cell-Signaling Multiplex Assay

Cells we seeded on 6-well plates and exposed to 5 Gy of X-ray irradiation, incubated
for 1 h and washed 2 times with ice-cold PBS. 1X MILLIPLEX® MAP Lysis Buffer with the
addition of protease inhibitors (Protease Inhibitor Cocktail Set III, Cat. No. 535140, EMD
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Millipore, Darmstadt, Germany) was added to each well. Cells were scraped off the dish
with a cell scraper and suspensions were transferred into centrifuge tubes. Lysates were
rocked for 30 min at 4 ◦C on a shaker and then centrifuged for 25 min at 4 ◦C 14,000× g.
Protein concentration was determined using BCA assay (Thermo Scientific™ Pierce™
BCA Protein Assay Kit, Rockford, IL, USA). The MILLIPLEX® MAP 7-plex DNA Dam-
age/Genotoxicity Magnetic Bead Kit (Cat. No. 48-621MAG, EMD Millipore, St. Charles,
MO, USA.) was used for the simultaneous quantification of the following 7 analytes in cell
lysates: ATR (total), Chk1 (Ser345), Chk2 (Thr68), H2A.X (Ser139), MDM2 (total), p21 (total),
and p53 (Ser15). The analysis was performed according to the manufacturer’s instructions.
Next, 10 µg of total protein was added to each well. A lyophilized stock of cell lysate
prepared from A549 cells stimulated with 5 µM camptothecin (overnight) was used as a
stimulated control. The analysis was performed using Luminex MAGPIX® system with
xPONENT® software (Luminex Corporation, Austin, TX, USA). Data were analyzed using
MILLIPLEX® Analyst 5.1 Software (Luminex Corporation, Austin, TX, USA). The results
are represented as the MFI fold of the change in tested analytes.

2.11. Analysis of Senescence-Associated β-Galactosidase-Positive Cells

The proportion of senescence-associated β-galactosidase (SA-beta-gal)-positive cells
was analyzed using the “Cellular Senescence Assay” commercial kit (EMD Millipore,
Burlington, MA, USA, Catalog Number: KAA002). The cells were stained according to
manufacturer’s protocol. The stained cells were visualized using EVOS® FL Auto Imaging
System (Fisher Scientific, Pittsburgh, PA, USA) with 20× objective. The proportion of
SA-beta-gal-positive cells was calculated manually.

2.12. MTT Assay

Cells were seeded into a 96-well plate (4 × 103 cells/well). After 24 h, 48 h, 72 h
and 96 h, 10 µL of the MTT labeling reagent (final concentration 0.5 mg/mL) was added
to each well and incubated for 2 h at 37 ◦C in a humidified 5% CO2 atmosphere. Then,
150 µL of DMSO was added to each well. Absorbance was measured at 540 nm wavelength
using a CLARIO star microplate reader (BMG LABTECH, Ortenberg, Germany). Data were
analyzed using MARS Data Analysis Software (BMG LABTECH, Ortenberg, Germany).
Relative cell viability is represented as the percentage of metabolic activity (OD450nm) of
IR-treated cells relative to the metabolic activity (OD450nm) of untreated cells (control)
measured at 24 h of incubation, which was taken as 100%.

2.13. Statistics

Statistics were performed using the Statistica 8.0 software (StatSoft, Palo Alto, CA,
USA) and GraphPad Prism 9.0.2.161 (GraphPad Software, San Diego, CA, USA) software.
Statistical significance was tested using the Student t-test and Mann–Whitney U Test. The
results are represented as means ± SD of three independent experiments. Significance
levels were denoted by asterisks: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results
3.1. Sorting Strategy of CD44+ and CD133+ Cells

A cluster of differentiation 44 (CD44), which is a non-kinase cell-surface transmem-
brane glycoprotein and a marker for cancer stem cells, has been reported to be associated
with poor prognosis in non-small-cell lung cancer (NSCLC). However, its involvement in
tumor growth has not been fully elucidated [24,25]. The expression of CD133 (Prominin-1),
which is a surface glycoprotein linked to organ-specific stem cells and another marker
for cancer stem cells, was described as a marker of cancer-initiating cells in different tu-
mor types and was an independent predictor of poor prognosis of NSCLC [26–28]. Cells
overexpressing CD44 and CD133 possess several CSC traits, such as self-renewal and
epithelial–mesenchymal transition (EMT) capability, as well as resistance to radiotherapy.
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In order to validate sorted CD44+ and CD133+ populations, cells were analyzed using
Amnis ImageStreamX Mk II Imaging Flow Cytometer (Luminex Corporation, Austin, TX,
USA) and IDEAS v6.2 data analysis. Bivariate plots and histograms were sequentially
applied during data acquisition in INSPIRE in order to exclude the debris and ensure that
the best focused single-cell images of positive and negative CD44 and CD133 cells were
captured from each sample (Figure 1). The percentage of selected positive events in A549
and H1299 populations are represented in Table 1.

Figure 1. Gating strategy and representative images of CD44−, CD44+, CD133− and CD133+ popu-
lations of A549 (a) and H1299 (b) cells using Amnis ImageStreamX Mk II Imaging Flow Cytometer.
The first column represents bivariate plot of BF aspect ratio versus BF area, which allows for the
selection of single cells and the removal of doublets and small and large debris. Histograms of CD44
and CD133 intensity in the second column allows for the selection of CD44+ and CD133+ cells (third
column) from dimly stained (CD44− and CD133−) events (fourth column).

Table 1. The Percentage of CD44+ and CD133+ Cells in A549 and H1299 Populations.

Cell Line CD44+ Cells, % CD133+ Cells, %

A549 1.8 2.61
H1299 2.81 3.39

Thus, compared to the A549 cell line, the H1299 cell line was enriched in constitutive
subpopulations of cells carrying CD44+ and CD133+ markers of CSCs.

3.2. Expression of Stem-Cell Transcription Markers in CD-Sorted Populations of NSCLC Cells

OCT4 and SOX2 are the key transcription factors of embryonic stem cells (ESCs).
The expression of OCT4 was more frequently located at the invasive front of tumors and
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was significantly correlated with various aggressive behaviors of cancers, including TNM
classification and the clinical stage [29]. SOX2 is a well-characterized pluripotent factor that
is essential for stem-cell self-renewal, reprogramming, and homeostasis. The expression of
OCT4 and SOX2 is upregulated in CSCs.

The overall OCT4 expression in all the sorted populations of the H1299 cell line was
higher than in the A549 cells, reaching significance in CD44−/CD133− and CD44+ cells
(Figure 2a). Notably, the CD44+ subpopulation demonstrated significantly (p < 0.05) higher
OCT4 expression compared to the CD44−/CD133− subpopulation of the H1299 cell line.

Figure 2. Western-blotting analysis of OCT4 (a) and SOX2 (b) expression in CD-sorted populations
of A549 and H1299 cell lines. Data are means ± SD of three independent experiments. Statistical
significance is denoted by asterisks, where: * p < 0.05, ** p < 0.01, *** p < 0.001.

On the contrary, the overall SOX2 expression level in the H1299 cells was lower com-
pared to the A549 populations (Figure 2b). Compared to the CD44−/CD133− and CD133+
populations, the CD44+-sorted cells demonstrated significantly (p < 0.001 and p < 0.05,
respectively) higher levels of SOX2 expression in both p53wt and p53null cells. These data
demonstrate that CD44+ cells contain more prominent features of CSCs in NSCLC.

3.3. Spheroid Formation

Another characteristic of CSCs is the 3D tumor-spheroid formation in a serum-free
medium. The 3D tumor spheroids are self-organizing, free-floating structures of tumor
cells with a rounded morphology and predominant intercellular interactions [30].

Exponentially growing sorted populations of A549 (p53wt) and H1299 cells (p53null)
were exposed to 5 Gy IR. Immediately after irradiation, the cells were detached from the
plastic, resuspended in serum-free medium containing growth factors, and seeded at the
density of 10,000 cells/well in 96-well plates. After three days, the H1299 cells formed
spheroids (Figure 3). Surprisingly, although bulk A549 populations tend to aggregate,
none of the CD-sorted cell populations formed spheroids. Several days later, all the H1299-
derived spheroids started to shrink in size with the appearance of the high amount of cell
debris in the wells (not shown). In contrast, the A549 cells sustained viable cell morphology
with minimal cell debris. Thus, these results led us to speculate (or hypothesize) that under
genotoxic and nutrient stress, such as IR exposure and serum starvation, functional p53
may promote entering a safer, presumably “dormant” state in order to preserve NSCLC
cells from death, irrespective of their stemness.
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Figure 3. Tumor-spheroid formation in CD-sorted populations of A549 and H1299 cell lines four
days after 5 Gy irradiation. Scale bar 200 µm.

3.4. Irradiation-Induced Changes in Metabolic Activity (MTT Test)

To assess the relative cell viability and proliferation following 5 Gy IR exposure, we
conducted the MTT assay. We observed that 5 Gy significantly diminished the rate of
glycolytic NAD(P)H production of both p53wt- and p53null-derived subpopulations of
NSCLC cells over 96 h following irradiation (Figure 4).

Figure 4. Assessment of cell viability using the metabolic MTT assay of the glycolytic NAD(P)H
production at different times after IR at 5 Gy. * denotes significant differences at * p < 0.05; ** p < 0.01;
*** p < 0.001.

3.5. DNA Damage Response Pathway Profiling in CD-Sorted Populations of NSCLC Cells

The appearance of relapse after radiotherapy is associated with the presence of in-
tratumor populations of cancer stem-like cells (CSC), which have increased resistance
to genotoxic stress. It remains an open question whether CSCs really have a unique set
of changes in DNA-damage response (DDR), ensuring the survival of cancer cells af-
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ter IR exposure. The current observations of spheroid culture survival complement our
previous data, which demonstrated that functional p53 increases clonogenic survival of
X-ray-resistant sublines derived from parental NSCLC cells exposed to fractionated IR.
Moreover, we also demonstrated higher numbers of γH2AX foci in H1299 cells compared
to A549 cells one hour after 2 Gy exposure [13], which can be the result of inefficient DNA
double-strand-break (DSB) repair or due to the formation of additional foci caused by
replication stress. On the other hand, the p53null H1299 cells were more radioresistant than
the H1299 subline, which expressed the functional wild-type p53 [31].

Therefore, to explore and further clarify the underlying early signaling-pathway events
in response to genotoxic stress, we tested the levels of both total ATR, MDM2 and p21, and
phosphorylated forms of Chk1, Chk2, H2A.X, and p53 proteins in sorted populations of
A549 and H1299 cell lines one hour after 5 Gy irradiation using the MILLIPLEX® MAP
7-plex DNA Damage/Genotoxicity Magnetic Bead Kit (Figure 5).

Figure 5. MILLIPLEX® MAP 7-plex DNA Damage/Genotoxicity Magnetic Bead Panel analytes
were detected in CD-sorted populations of A549 and H1299 cell lines 1 h after 5 Gy irradiation.
Median Fluorescent Intensities (MFIs) are reported as fold change over the positive control (A549
cells stimulated with 5 µM camptothecin) provided by the manufacturer.

There are numerous proteins involved in the detection and repair of IR-induced
DNA damage, which is initiated by the accumulation of sensor proteins such as Rad9,
Rad1 and Hus1 at the site of DNA damage, and in the facilitation of checkpoint proteins’
phosphorylation conducted by the transducers ATM and ATR, which are the key kinases
of the initial phase of DDR. The basal level of ATR expression in all sorted populations
of non-irradiated H1299 cells was significantly (p < 0.05) higher than in the respective
populations of A549 cells (Figure 5). The 5 Gy IR exposure further increased the levels of
ATR expression over basal levels only in CD44−/CD133− and CD133+ populations of
A549 and H1299 cells, whereas it decreased only in the CD44+ population of A549 cells.
As expected from the ATR data, in response to IR exposure, all the sorted populations of
H1299 cells demonstrated a significant (p < 0.05) increase in γH2AX (DNA-DSB-repair
marker) levels over basal levels of the non-irradiated cells, being most prominent (almost
5,6- and 3-fold, respectively) in the CD44−/CD133− and CD133+ populations. Notably,
after 5 Gy exposure, all the sorted populations of H1299 cells showed overall significantly
(p < 0.05) higher levels of γH2AX compared to the A549 cells, which is also in agreement
with our previous studies using multi-fractionated irradiation [12,13]. In contrast, the
levels of γH2AX did not change in all the sorted populations of A549 cells regardless of
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the exposure. Together, these data may indicate that, in the absence of functional p53, the
H2AX phosphorylation is likely associated with ATR activity as a result of replication-fork
arrest in the presence of single-stranded DNA after IR exposure.

Checkpoint kinases, such as serine/threonine kinases Chk1 and Chk2, which are
activated by ATM/ATR, are essential for cell-cycle arrest before mitosis in response to DNA
damage [32]. Chk2 is stably expressed throughout the cell cycle and is mainly activated
by ATM in response to DNA DSBs. In contrast, Chk1 is largely restricted to the S and G2
phases [33], and is activated in response to DNA damage or stalled replication forks. As
a possible result of high ATR activity after 5 Gy exposure, all the sorted populations of
H1299 cells (Figure 5) showed statistically significantly (p < 0.05) higher levels of Chk1
compared to both non-irradiated cell lines and the irradiated A549 cells. Chk2 showed the
same pattern of expression, indicating the onset of the ATM-Chk2 pathway in the sorted
populations of irradiated H1299 cells. In summary, all the sorted populations of p53null
H1299 cells and p53wt A549 cells demonstrated a significant increase in IR-induced levels
of ATR/ATM-Chk1/Chk2- and ATM-Chk2-pathway activity, respectively, suggesting a
more prominent arrest before mitosis in CD44−/CD133− and CD133+, but not in CD44+
populations of H1299 cells.

DNA damage leads to rapid and substantial multisite phosphorylation of the DDR
effector protein p53, which is initially nucleated through the phosphorylation of serine 15.
The phosphorylation of p53 on Ser15 in response to DNA damage is mediated through the
ATM and ATR protein kinases [34–36]. This phosphorylation is required for p53 to function
in the physiological context of p53-responsive promoters and suggests a key and possibly
universal role even for low levels of this modification in promoting p53-transcription
function [37]. Curiously, the level of basal and IR-induced p53-Ser15 phosphorylation
in all the sorted populations of p53null H1299 cells was almost equal to the level of the
kit positive control, i.e., A549 cells stimulated with 5 µM camptothecin. Notably, these
phosphorylation levels did not significantly change in response to IR in any of the sorted
H1299 cell populations. In contrast, compared to non-irradiated cells, 5 Gy IR exposure of
A549 cells expressing p53wt significantly augmented p53-Ser15 phosphorylation, especially
in the CD44−/CD133− population, which was significantly (p < 0.001) higher than in the
CD44+ and CD133+ populations.

Such a dramatic increase in p53-Ser15 phosphorylation in the CD44−/CD133− pop-
ulation of A549 cells was accompanied by a subtle increase in MDM2, which is another
DDR effector and a negative regulator of p53 that counteracts the overactivation of p53
signaling. Indeed, MDM2 levels did not significantly change among the CD44+ and CD133+
populations of A549 cells after 5 Gy exposure. In the absence of functional p53, MDM2
expression in all the sorted populations of H1299 cells remained diminished irrespective
of irradiation.

Similar to MDM2, the silencing of p53 signaling in the H1299 cells was further con-
firmed by the absence of changes in the lowest expression of p21, which is the p53 down-
stream transcriptional target, independently of irradiation. In contrast, all the sorted
populations of non-irradiated A549 cells possessed high levels of basal p21 expression,
with the CD44+ population having the most prominent levels. In response to 5 Gy ex-
posure, the CD44+ cells displayed a statistically significant (p < 0.05) reduction, whereas
the CD44−/CD133− and CD133+ cells demonstrated a significant increase in p21 expres-
sion compared to the respective sorted non-irradiated A549 cells. This reduction seems
to likely be the consequence of decreased ATR expression followed by subtle p53-Ser15
phosphorylation signaling, only in the CD44+ population of A549 cells.

Collectively, the radioresistance of the CD44−/CD133− and CD133+ populations
of H1299 cells was apparently related to the cell’s ability to establish the ATR/ATM-
Chk1/Chk2-pathway-mediated arrest before mitosis, whereas the ATM/ATR-p53-p21
signaling-mediated cell dormancy is the anticipated consequence of IR-induced DDR in
the same populations of less radioresistant A549 cells. The IR-induced DDR in the CD44+
populations of both cell lines was exceptional, i.e., these populations of A549 and H1299
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cells likely underwent ATR/Chk2- and ATR/ATM-Chk1/Chk2-pathway-mediated arrest
before mitosis, respectively. At the same time, none of the CD44+ populations of neither
A549 nor H1299 developed cell-cycle arrest due to ATM/ATR-p53-p21 signaling-mediated
cell-dormancy pathway.

3.6. Proliferation-Related Activity in CD-Sorted Populations of NSCLC Cells

The activation of the p53-p21 pathway caused by DNA damage leads to Cdk2 in-
hibition and arrest in the G1–G0 phase of the cell cycle [38]. Many studies suggest that
p21 promotes SIPS rather than apoptosis in most p53wt cancers [15,16]. Hence, from our
DDR-pathway-profiling data, it seems highly likely to anticipate either irradiation-induced
G0/G1 arrest or SIPS in all the sorted populations of A549 and H1299 cells. Conversely,
we suspected the least extent of dormant phenotypes (quiescence or SIPS) in the CD44+
populations of H1299 cells following the IR-induced DDR.

The inability of the H1299 cells to sustain extended spheroid growth cannot simply be
explained by the reduction in the fraction of DNA-replicating cells in response to harsh
stress conditions. Our data on cell-cycle analysis by flow cytometry with Propidium iodide
staining show that both CD44+ and CD133+ A549-derived subpopulations decreased and
substantially increased the proportion of cells in G1/S and in G2/M phases, respectively,
at any time point after IR exposure (data not shown). Only the CD44−/CD133− sub-
population did not show any difference between the exposed and unexposed cells within
48 h after irradiation. The substantial increase in G2/M phases of the cell cycle represents
the accumulation of cells that had been in earlier phases of the cell cycle at the time of
IR exposure. This late G2/M accumulation suggests the enrichment of cells lacking the
IR-induced S phase ATR-CHK1 checkpoint, confirming our results of Multiplex analysis.

In contrast to the A549-derived cells, the H1299-derived CD44−/CD133− subpopu-
lation demonstrated a significant decrease and increase in cell fractions in the G1&S and
G2/M phases, respectively, albeit only at 48 h after irradiation (data not shown). Both
CD44+ and CD133+ H1299-derived subpopulations did not significantly change the frac-
tion of cells in different phases of cell cycle by 48 h after IR exposure. These results might
indicate that in the absence of functional p53, the 5 Gy IR exposure does not cause cell-cycle
arrest in CSC-like (CD44+ &CD133+) subpopulations of H1299 cells despite significant
activation of IR-induced ATR-CHK1/2-pathway signaling.

Indeed, IR exposure decreased the fraction of EdU+ cells in all the sorted populations
of NSCLC cells (Figure 6a). However, in the absence of functional p53, H1299-derived
cells diminished the fraction of EdU+ cells to a lesser extent than the A549-derived cells,
suggesting a faster entry into the DNA-replication phase of proliferation than the p53wt
A549-derived cells at 48 h after irradiation (Figure 6a). These observations led us to
investigate in-depth whether individual sorted populations had left the cell cycle and
entered quiescence or stress-induced premature senescence (SIPS) after IR exposure.

Cell dormancy (either quiescence or SIPS) in response to genotoxic stress is often
related to the formation of giant cancer cells, either multinucleated (MGCC) and/or poly-
ploid (PGCC), in relation to their p53 status [39–41]. Recently, we demonstrated that
p53null NSCLC cells augment polyploid giant-cancer-cell (PGCC) fractions, irrespective
of IR regimen [42]. New data have demonstrated that the careful quantification of Ki67
antibody staining could reveal more than simply whether a cell is in the proliferative state:
it can additionally distinguish a rapidly cycling cell with a very short quiescence from
a slowly cycling cell that spends long periods in quiescence prior to re-entering the cell
cycle [43]. Besides, a strict correspondence between the amounts of EdU-substituted DNA
and the intensities of EdU-coupled fluorescence [44] led to our subsequent use of EdU in
experiments aimed at estimating accurate cell-cycle parameters of sorted populations of
NSCLC cells.
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Figure 6. EdU-coupled fluorescence-intensity analysis of distinct cell-cycle characteristics. (a) The
proportion of EdU-positive cells in CD-sorted populations of NSCLC cells 24–48 h after irradiation.
(b) Using the ImageXpress Micro XL High-Content Screening System, we analyzed EdU fluorescence
in PGCC 24–48 h after 0 Gy (blue dots) or 5 Gy (red dots) exposure The nuclear area of 400 nm was
used as a threshold for PGCC cells according to the literature. Green circles demonstrate EdUlow area
of “quiescent” cells. Data are means ± SD of three independent experiments. Statistical significance
is denoted by asterisks, where: **** p < 0.0001.
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Hence, we took advantage of using single-cell high-content imaging and analysis to
quantify the integrated intensities (IIs) of both Ki67 and EdU fluorescent signal per cell nu-
cleus with respect to the nucleus area (reflecting either nucleus size or amount of nuclei per
diploid or MGCC/PGCC cells, respectively). Plotting IIs of either Ki67 (Figure 7) or EdU
(Figure 6b) staining vs. nuclear area estimated by Hoechst 33342 staining allows a relation
of the nuclear area of individual cancer cells to their either cycling/heterochromatin remod-
eling or DNA-replication capability, respectively. Following the direct correlation of human
cell ploidy and nuclear-area size [45], and the proposed characteristic of PGCCs as the
tumor cells with nuclei at least three times the size of the nuclei of diploid cells [20], we first
estimated the PGCC threshold (marked as “PGCC area” on Figure 6b and Figure 7) of the
nuclear area of A549 and H1299 cells as> 406µm2, and> 420µm2, respectively. Such thresh-
old values enabled MGCC/PGCC’s cycling/heterochromatin remodeling and division-
capability analysis separately from the bulk of the sorted NSCLC cells.

We used EdU-coupled fluorescence-intensity analysis to characterize cell types featur-
ing highly distinct cell-cycle characteristics. After 24 h of cultivation, every non-irradiated
sorted NSCLC cell line (A549 and H1299) consisted of two populations (blue dots on
Figure 6b). First, a presumably dormant slow-cycling/proliferating population (SCP),
whose nuclear-area values are directly correlated with IIs of EdU limited to certain fixed
and relatively low levels (approx., max value = 40,000 RFU for EdU). Another population
with the scattered distribution of higher IIs of EdU-coupled fluorescence (approx., max
value = 80,000 RFU for EdU) at different nuclear-area values, which likely represents a
rapidly cycling/proliferating population (RCP). This distribution of all sorted populations
into SCP and RCP and the ratio of background values of maximum intensities were sus-
tained even after 48 h of the culture of non-irradiated A549 and H1299 cells. Having proved
the good stoichiometric properties of incorporating EdU into newly synthesized DNA, it
was demonstrated that cells in the G1 phase (DNA content = 2N; lower intensity peak)
of the cell cycle contain half the amount of EdU DNA and, accordingly, emit half of the
average fluorescence intensity found in cells at the S–G2 phase (DNA content = 4N; higher
intensity peak) of the cell cycle [44]. Based on these data, it can be reasonably assumed
that non-irradiated SCPs of both cell lines are most likely mainly in the G1–G0 phase of
the cell cycle, whereas RCPs are at the S–G2 phase of the cell cycle. Of note, compared to
A549 cells, all the sorted populations of non-irradiated H1299 cells contained substantially
more MGCC/PGCCs (see “PGCC area” on Figure 6) belonging mainly to RCPs at any time
of cultivation. Conversely, most non-irradiated MGCC/PGCCs of A549 cells apparently
belonged to the SCP.

It should be noted that 24 h after irradiation, all the sorted populations of both cell
lines showed a decrease in II levels of EdU-coupled fluorescence of the RCP cells to a level
close to that of the non-irradiated SCP cells. In doing so, irradiated SCP cells from both
cell lines appeared to exhibit further-reduced levels of EdU-coupled fluorescence with
values lower than those of the non-irradiated cells, suggesting that this population was
in the G1–G0 transition phase. IR augmented the formation of EdUlow PGCCs 24 h after
exposure (Figure 6b, red dots, “PGCC area”) in all the sorted populations of both A549
and H1299 cells. At 48 h after irradiation, all the sorted populations of wild-type p53
A549 cells had significantly fewer cell counts (including MGCC/PGCCs), with rapidly
cycling/proliferating cells in the G2–S (highest EdU-coupled fluorescence) phase of the cell
cycle compared to the same populations of H1299 cells lacking p53. At the same time, the
non-irradiated diploid fraction of A549 cells decreased the proportion of S phase cells from
1.3 to 2.8 times by 48 h (not shown).

In our study, the SCP subpopulations (both irradiated and non-irradiated) with the
lowest levels of EdU–coupled (EdUlow) fluorescence (Figure 6b) also demonstrated low IIs
of Ki67-coupled fluorescence (Ki67low cells) (Figure 7), resembling the features of “spon-
taneous G0” or the spontaneous quiescent phase of the cell cycle [46]. The spontaneous
quiescent (denoted as “spG0” in Figure 6b) state differed from the classical deep quiescent
G0 state in that spG0 cells did not have distinctively low levels of Ki67- and EdU-coupled
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fluorescence, as would be expected if Ki67 was “off” in deep quiescence forced by differ-
ent stress conditions [43]. Indeed, deep quiescent G0-like (EdUlow and Ki67low, red dots
on Figures 6b and 7, respectively) SCP subpopulations clearly appeared in all the sorted
populations of A549 and H1299 cells at 24 h after IR exposure.

Figure 7. Ki67-coupled fluorescence-intensity analysis of distinct cell-cycle characteristics 24–48 h
after 0 Gy (blue dots) or 5 Gy (red dots) exposure. The ImageXpress Micro XL High-Content Analysis
of Ki67 fluorescence intensities in sorted populations. Green circles demonstrate Ki67low area of
“quiescent” (G0/G1 arrested) cells. Data are means ± SD of three independent experiments.

PGCC/MGCC fractions featuring SCP were progressively augmented only in the
CD44+ and CD133+ A549 cells, demonstrating the stable Ki67low phenotype at 24–48 h after
irradiation (Figure 7, red dots, PGCC area), which was not evident in the CD44−/CD133−
population of the same cell line. In contrast, PGCC/MGCC fractions of all the sorted H1299
cells were enriched mostly in cells featuring RCP (Ki67high), suggesting their increase in
cycling capability after 24–48 h of exposure. Interestingly, the least RCP enrichment was
observed in CD44+ H1299 cells within the same period.

To compare the cells exiting cell cycle (slow/non-cycling & proliferating, such as
in SCPs) in both cell lines, we estimated the ratio of integrated intensities of EdU- and
Ki67-coupled (X- and Y-axis, respectively on Figure 8) fluorescence that were simultane-
ously measured in the nuclei of the same irradiated and non-irradiated cells. Compared
to non-irradiated cells, most of the populations of irradiated A549 and H1299 lines exited
the cell cycle and accumulated in presumably dormant populations exhibiting extremely
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low EdU- and Ki67-coupled (Figure 8) fluorescence intensities in the same cells that had
a limited II’s values 24 h after irradiation. A significantly smaller, presumably active
cycling/proliferating population of these cells exhibited increased linearly related fluores-
cence intensities greater than those of the non-irradiated cells. In summary, the number of
A549 cells featuring SCP (Ki67low/EdUlow) and RCP (Ki67high/EdUhigh) subpopulations
was significantly lower than the H1299 cells. These data suggest the fractions of A549 cells
exiting and re-entering the cell cycle were much smaller than in the H1299 cells, the CD44+
fraction of which was likely more frequently exiting from the “dormant” state by 48 h after
5 Gy exposure.

Figure 8. Click-IT EdU- and Ki67-coupled fluorescence measured simultaneously in sorted A549
and H1299 cells. The single-cell EdU and Ki67 quantitative fluorescence analysis is presented to
differentiate between slow-cycling/proliferating population (SCP) (Ki67low/EdUlow) and rapidly
cycling/proliferating population (RCP) (Ki67high/EdUhigh) cohorts within each sorted cell population
of irradiated (red dots) and non-irradiated (blue dots, control) cells at 24 h and 48h of cultivation after
5 Gy irradiation. Data are representative of three independent experiments.
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3.7. The Proportion of SA-Beta-Gal Positive Cells in Response to IR

Senescent and terminally differentiated cells can also be Ki67 negative or weakly
express Ki67 [47], and can mimic cells residing in the G0 state. Differing from quiescent
cells, senescent cells should be identified based on their high senescence-associated β-
galactosidase (SA-beta-gal) activity, the presence of p16, and the degradation of MDM2 [48].
The increased level of SA-beta-gal reactivity, as a prominent marker of high lysosomal
activity and lysosomal content, was observed in both senescence and quiescence status,
but was clearly higher in senescence [49]. SA-beta-gal is an enzyme that is accumulated in
senescent and aging cells [50,51]. Our DDR-pathway-profiling data (Figure 5) demonstrated
a subtle MDM2 increase in the CD44−/CD133− population of A549 cells only after IR.

Hence, to evaluate whether the activation of the p53-p21 pathway in A549 cells is
also associated with increased SIPS constituting the impact on the irradiation-induced
dormancy of all sorted populations of A549 and H1299 cells, we analyzed the proportion
of senescence-associated beta-galactosidase (SA-beta-gal)-positive cells. Conversely, we
suspected the least extent of the dormant SIPS phenotype in the CD44+ populations of
H1299 cells following the IR-induced DDR.

Indeed, all CD-sorted populations of the non-irradiated H1299 cell line contained a
significantly higher fraction of SA-beta-gal-positive cells compared to the A549 populations
(Figure 9). Overall, the CD44+ populations of both p53wt A549 and p53null H1299 cells
had the least basal (non-irradiated) fraction of SA-beta-gal+ cells. Exposure to 5 Gy IR
significantly reduced the SA-beta-gal+ fraction of the CD44−/CD133− population of
H1299 cells, without any significant changes in either the CD44+ or CD133+ population at
24 h after IR. Under the same conditions, in spite of p53-p21-MDM2 activation, the SA-beta-
gal+ fraction of the CD44−/CD133− and CD44+ populations of A549 cells demonstrated a
shallow increase, whereas the same fraction of the CD133+ population almost disappeared.

Figure 9. The proportion of senescence-associated beta-galactosidase (SA-beta-gal)-positive cells in
CD-sorted populations of A549 and H1299 cell lines 24 h after 5 Gy irradiation. Data are means ± SEM
of more than three independent experiments. Where: * p < 0.05, ** p < 0.01, *** p < 0.001.

3.8. Possible Molecular Messengers of Spheroid’s Response to IR

To explore possible molecular messengers underlying the quiescence response to IR,
we chose to analyze a pair of mutually connected microphthalmia-related transcription
factor (MITF) and the FAM3 metabolism-regulating signaling-molecule C, also known as
family with sequence similarity 3, member C (FAM3C) or a cytoplasmic interleukin-like
EMT inducer (ILEI) protein.

Therefore, we evaluated the intracellular MITF and FAM3C expressions in spheroid
cultures with and without 5 Gy IR after four days of cultivation using quantitative high-
content imaging and analysis of all the sorted populations of A549 and H1299 cell lines
(Figure 10).
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Figure 10. Representative microphotographs of immunofluorescently stained spheroids showing
DAPI (blue), FAM3C (GFP, green) and MiTF (Cy5, pink) (a). The expression of MITF (b) and FAM3C
(c) in spheroid cultures derived from CD-sorted populations of A549 and H1299 cell lines four days
after 5 Gy irradiation. Data are means ± SEM of more than three independent experiments. Where:
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

The basal (non-irradiated) expression of MITF in the CD44+ and CD133+ populations
of H1299 cells was significantly higher than in the same populations of A549 cells, which
demonstrated almost negligible expression (Figure 10b). The basal MITF expression in the
populations of CD44−/CD133− cells did not significantly differ between these two cell
lines. In response to IR, all sorted populations of the H1299 cell line indicated a reduction
in MITF expression, reaching significance in only the CD44+ and CD133+ populations of
H1299 cells and in the CD44−/CD133− populations of A549-derived cells.

NSCLC cells demonstrated peculiar behavior with respect to MITF-related FAM3C
expression. Indeed, compared to the A549-cell-line populations, the higher basal expression
of MITF in the CD44+ and CD133+ populations of H1299 cells was well correlated with the
increased cellular FAM3C expression in the same populations (Figure 10b,c). On the other
hand, more than a ten-fold reduction in MITF expression in the CD133+ cells in response
to 5 Gy IR downregulated FAM3C to only the basal level, which appeared to be the same
in all the sorted populations of both A549 and H1299 cells, irrespective of IR (Figure 10c).
These data suggest the importance of sustaining the tight control of intracellular FAM3C
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expression around a certain constitutive basal level in NSCLC cells. Collectively, our data
indicated the MITF–FAM3C axis operative in p53-deficient H1299 cells, specifically their
CD44+ and CD133+ populations, in response to IR stress.

4. Discussion

The ability of NSCLC cells to survive and to retain reproductive potential after radi-
ation underlies the tumor recurrences seen in patients. The appearance of relapse after
radiotherapy is associated with the presence of intratumoral populations of cancer stem-like
cells (CSC), which possess increased resistance to genotoxic stress. We aimed to address
the remaining open question of whether CSCs really have a unique set of pathways and
effectors of DDR response that ensure the survival of NSCLC cells after IR exposure. In
the present study, we analyzed key DNA-damage-response pathways and possible mes-
sengers of different fates of spheroid cultures of sorted CD44−/CD133−, CD44+ and
CD133+ isogenic subpopulations of A549 (p53wt) and H1299 (p53null) cells before and
after 5 Gy irradiation.

It was reported that, compared to A549 cells, the expression of CD44 and CD133, which
are widely accepted CSC marker proteins, on H1299 cells was significantly lower [24] and
higher [27], respectively. Nevertheless, our sorting data (Table 1) indicated that, compared
to A549, the H1299 cell line was enriched in constitutive subpopulations of cells carrying
CD44+ and CD133+ markers of cancer stem cells (CSCs).

In the present study, we demonstrated that in the absence of wild-type p53, CSC-like
(CD44+ and CD133+) cell subpopulations might be the predominant dormant mode of
escaping cell death after irradiation. As the relationship between CSCs and mutant p53
in lung adenocarcinoma is not well established, the question of whether the same role of
CD44+ and CD133+ cells in escaping p53 mutant NSCLC cell death after radiotherapy
remains to be addressed. In this regard, a quite recent observation indicated that triple-
negative expression cases (ALDH1A1-/ CD133−/mutant p53-) in lung-adenocarcinoma
patients were shown to have a much better prognosis than others [52]. This study also
suggests that the detection of CSC markers and mutant p53 by immunohistochemical stain-
ing may be effective in therapeutic strategies for lung adenocarcinoma, which indirectly
emphasizes the topicality of our study.

Apart from stimulating CSC formation (CD44+ or CD133+ cells), mutant or GOF p53
plays a significant role in the formation of polyploid giant cancer cells (PGCCs), which
express both normal and self-renewal stem-cell genes, such as OCT4, NANOG, SOX2, along
with CD44, and CD133 in ovarian and lymphoblastoid cancer cells [20,53]. In these studies,
in irradiation-resistant p53-mutated lymphoma cell lines (Namalwa and WI-L2-NS, mutant
p53-M237I) but not in their sensitive p53 wild-type counterparts (TK6), the low background
expression of OCT4 and NANOG was upregulated by ionizing radiation, with protein
accumulation evident in PGCCs. OCT4A and NANOG transcription being upregulated by
irradiation in cells lacking the wild-type p53 function indicates the potential functionality
of the pluripotency and self-renewal transcription network in the investigated lymphoma
cell lines [53]. Here, we demonstrated that the overall basal OCT4 expression in all the
sorted populations of the p53null H1299 cell line was higher than in the p53 wild-type A549
cells, reaching significance in the CD44+ over the CD44−/CD144- cells (Figure 2a). On the
contrary, the overall SOX2 expression level in H1299 cells was lower compared to A549 cells
(Figure 2b), with CD44+ subpopulations demonstrating significantly highest expressions in
both cell lines. These data demonstrate that CD44+ subpopulations contain more prominent
features of lung carcinoma CSCs. Being beyond the focus of the current study, the role
and potential functionality of CSC self-renewal transcription-network proteins in p53-
dependent p21-mediated NSCLC dormancy [54,55] decision after IR seems to be worthy of
investigating in our forthcoming studies.

CSC radioresistance is mainly attributable to enhanced DNA-repair mechanisms [7].
Compared to the CD44−/CD133− subpopulation, CSC-like CD44+ and CD133+ H1299
cells demonstrated significantly lower levels of γH2AX, indicating more efficient repair
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of DNA DSBs specific to CSCs 1 h after 5 Gy IR exposure (Figure 5). However, overall
γH2AX levels were higher than in every sorted subpopulation of A549 cells, which is in
agreement with our previous studies [13]. We proposed that such a discrepancy is a result
of additional H2AX phosphorylation caused by ATR after stalling of the replication fork.
Indeed, the basal level of ATR expression in all the sorted subpopulations of non-irradiated
H1299 cells was significantly (p < 0.05) higher than in the respective populations of A549
cells (Figure 5). The 5 Gy IR exposure further increased the levels of ATR expression over
basal levels only in the CD44−/CD133− and CD133+ subpopulations of A549 and H1299
cells, whereas it decreased only in the CD44+ subpopulation of A549 cells. The increase in
IR-induced levels of ATR/ATM-Chk1/Chk2- and ATM-Chk2-pathway activity in all the
sorted subpopulations of p53null H1299 cells and p53wt A549 cells, respectively, suggested
a more prominent arrest before mitosis in the CD44−/CD133− and CD133+, but not in the
CD44+ populations of H1299 cells.

In the absence of functional p53, H1299-derived cells diminished the fraction of
EdU+ cells to a lesser extent than A549-derived cells, suggesting that they entered the
DNA-replication phase of proliferation faster than p53wt A549-derived cells at 48 h after
irradiation (Figure 6a). In response to replication stress, replication protein A (RPA) binds
to the unstable single-stranded DNA (ssDNA), and the long stretches of RPA-coated ssDNA
adjacent to the double-stranded DNA (dsDNA) act as a platform to trigger the ATR/Chk1.
RPA has been shown to interact with Rad51 and Rad52, and to modulate their activities
and thus, promote DNA-DSB repair [56–58]. Chk1 and Chk2 may contribute differently to
the formation of Rad51 foci depending on the type of DNA damage. Thus, Chk1 depletion
leads to the loss of Rad51 localization to nuclear foci in response to replication arrest [59].
Cells lacking Chk2 also show an impairment in Rad51 nuclear localization, but only in the
presence of IR-induced DNA DSBs [59]. Therefore, in the absence of functional p53, the
increased ATR activity in H1299 cells after 5 Gy exposure together with the elevated levels
of both Chk1 and Chk2 (Figure 5) indicate that the γH2AX phosphorylation appears not
only at sites of “true” DNA DSBs, but also at sites of ssDNA caused by replication stress.

IR exposure of CD44−/CD133− and CD133+ A549-derived cells demonstrate the
onset of the ATM/Chk2 pathway and significantly augment p53-Ser15 phosphorylation.
Notably, basal and IR-induced p53-Ser15 phosphorylation did not change significantly in
any of the sorted subpopulations of p53null H1299 cells. In contrast, compared to non-
irradiated cells, 5 Gy IR exposure of A549 cells carrying p53wt significantly augmented
p53-Ser15 phosphorylation, being significantly (p < 0.001) higher in the CD44−/CD133−
population than in the CD44+ and CD133+ populations (Figure 5). However, in this
regard, p53-dependent gene expression, as measured by the induction of selected p53-
downstream genes, including the cell-cycle inhibitor p21, appears to be independent of
increased phosphorylation of p53 [60], suggesting that Ser15 phosphorylation is possibly
dispensable for p53 activity [61]. Ser15 phosphorylation is required for p53-dependent
gene expression which, given the case of the p21 promoter, suggests that this residue may
play a selective and promoter-context-dependent role in transactivation.

In turn, p21 inhibits the activity of cyclin-CDK2, CDK1, and CDK4/6 complexes, thus
regulating the cell-cycle progression during the G1 and S phases. In addition to growth
arrest, p21 can mediate cellular senescence via p53-dependent and independent pathways
and suppress apoptosis, as shown in a variety of mammalian cells and tissues [62]. In
response to 5 Gy exposure, CD44+ cells displayed the least (p < 0.05) p21 expression
compared to their basal (non-irradiated) values, as well as both basal and irradiated values
of the other sorted A549 cells. This p21 reduction seems likely to have been the consequence
of decreased ATR expression followed by subtle p53-Ser15 phosphorylation signaling only
in the CD44+ population of A549 cells. Additionally, the IR-induced DDR in the CD44+
subpopulations of A549 and H1299 cell lines was peculiar, i.e., these subpopulations
likely underwent ATR/Chk2- and ATR/ATM-Chk1/Chk2-pathway-mediated arrest before
mitosis, respectively. At the same time, none of these CD44+ populations of either cell
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line developed cell-cycle arrest due to the ATM/ATR-p53-p21 signaling-mediated cell-
dormancy pathway.

The essence of a stress response is to protect cells from stress. Our observed low re-
sistance of the CD44−/CD133− and CD133+ populations of H1299 cells to genotoxic and
extended nutritional stress was apparently related to cell’s ability to establish ATR/ATM-
Chk1/Chk2-pathway-mediated arrest before mitosis. Conversely, the higher resistance of
the same populations of A549 cells might be the anticipated consequence of IR-induced
ATM/ATR-p53-p21 signaling-augmented cell dormancy as the DDR. The activation of
ATR/Chk2-pathway-mediated arrest before mitosis is likely a sufficient stress response to en-
sure the survival of CD44+ subpopulations of A549 cell line under the same stress conditions.

Notably, irrespective of IR, all the sorted subpopulations of p53null H1299 cells formed
the spheroids in serum-free media, which is a feature previously attributed only to CSC-like
cells [63,64]. In contrast, neither CD44+, nor other sorted subpopulations of p53wt A549
cells exhibited spheroids, forming only amorphous aggregate cultures under the same
conditions. The observed overall reduced Ki67 expression in all the sorted subpopulations
of A549 cells (Figure 7) was likely due to the fact that Ki67 knockout 4T1 cells also lose their
ability to form spheroids in the absence of adhesion to a surface [65].

Intra- and extra-cellular FAM3C was found to be involved in biological processes such
as signal transduction and cell–cell communication, which enhances tumorigenicity and
metastasis in cancer, correlating with a shorter survival duration in patients with lung
cancer [66,67]. Melanoma-specific phenotype switching in which high-MITF-expressing
(MITFhigh) proliferative cells switch to a low-expressing (MITFlow) invasive state was accom-
panied by low and high expression levels of ILEI (ILEIlow and ILEIhigh), respectively [68].
In NSCLC, MITF indicated a substantial correlation with chemoresistance of A549 cells to
cisplatin [69]. In contrast to melanoma observation, compared to A549 spheroid cultures,
higher basal intracellular expression of MITF in CD44+ and CD133+ spheroid cultures
of H1299 cells were well correlated with their increased cellular FAM3C expression. On
the other hand, more than a ten-fold reduction in the MITF expression in CD133+ cells
in response to 5 Gy IR downregulated FAM3C to only the basal level, which appeared to
be the same in all the sorted populations of both A549 and H1299 cells irrespective of IR.
These data suggest the importance of sustaining the tight control of intracellular FAM3C
expression around a certain constitutive basal level in NSCLC cells. Collectively, our data,
for the first time, indicated the MITF–FAM3C axis operative in p53-deficient H1299 cells,
specifically their CD44+ and CD133+ populations, in response to IR stress, which warrants
further investigation.

The fate of spheroids containing sorted H1299 subpopulations was unfavorable,
whereas A549-derived aggregates remained viable even after IR exposure and prolonged
cultivation in serum-free media. Such H1299 cellular infirmity seems unlikely to be due
to the diminished fraction of DNA-replicating cells since, compared to A549 cells, all the
sorted H1299 subpopulations contained more EdU+ cells indicating faster S phase entrance
by 48 h after the onset of harsh stress conditions (Figure 6a). Previously, inhibition of the
ATR-CHK1 DDR pathway in expressed pancreatic ductal adenocarcinoma (PDAC) cells
resulted in ERK activation, which is a key downstream protein of KRAS [70]. Together with
ERK, Chk1 inhibition resulted in enhanced growth suppression and apoptosis of KRAS
expressing PDAC cells. In our study, which involved both KRAS-expressing NSCLC cell
lines, the ATR-Chk1 pathway was activated following 5 Gy irradiation in H1299 but not in
A549 cells. This might indicate that apoptosis induction following the mutual inhibition of
both ERK and Chk1 might be KRAS-independent. However, both ERK and Chk1 might be
suppressed in the absence of growth factors in serum-free spheroid cell culture, suggesting
that apoptosis might be the leading cause of H1299 spheroid degradation observed in our
study. Indeed, we and others have demonstrated that the survival of cancer cells after
IR stress relates to cell dormancy (either quiescence or SIPS), which is often associated
with the formation of giant cancer cells, either multinucleated (MGCC) and/or polyploid
(PGCC), in relation to their p53 status [39–41] and IR regimen [42]. In cancer, the rise in
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radiation resistance has been attributed to slow-cycling subpopulations being hardwired to
stress responses in order to promote cellular survival in harsh environments [71]. Hence,
we proposed that in response to genotoxic and nutritional stress, functional p53wt may
promote entering a safer, presumably more favorable “dormant” (SIPS, quiescence or their
combination) state, either to protect NSCLC cells (including PGCC/MGCCs) from death or
to augment their fitness in IR-stress environments irrespective of their stemness.

In an attempt to prove this assumption, we used single-cell high-content imaging and
analysis to quantify the integrated intensities (IIs) of both Ki67- and EdU-coupled fluores-
cent signals with respect to the cell nuclei area without IR, and at 24–48 h after 5 Gy IR.
Plotting the Ki67- and EdU-coupled IIs vs. nuclear-area size allowed for the evaluation of
all cells, including PGCC/MGCCs, regarding their cycling and DNA-replication capability,
respectively. Of note, it was genetically shown that Ki67 is not required for cell proliferation
in tumors, although it is required for all stages of carcinogenesis [72]. Moreover, Ki67 is
an essential mediator of ectopic heterochromatin formation and links heterochromatin
organization to cell proliferation. Heterochromatin reorganization caused by Ki67 down-
regulation does not interfere with cell-cycle progression or cell proliferation, but likely
contributes to the remodeling of gene expression [65]. At 48 h after irradiation, compared
to all the sorted subpopulations of p53null H1299 cells, the same populations of p53wt
A549 cells had significantly fewer cells (including MGCC/PGCCs) in the G2–S (highest
EdU-coupled fluorescence) phase of the cell cycle (Figure 6b, red dots, “PGCC area”). For
the first time, we demonstrated that PGCC/MGCC fractions featuring Ki67low phenotype
were progressively augmented only in the CD44+ and CD133+ A549 cells at 24–48 h after
irradiation (Figure 7, red dots, PGCC area). In contrast, PGCC/MGCC fractions of all sorted
H1299 cells were enriched mostly in cells featuring Ki67high phenotype, suggesting their
increase in cycling/heterochromatin reorganization capability after 24–48 h of exposure
(Figure 7, red dots, PGCC area). Notably, the least enrichment of Ki67low phenotype cells
was observed in CD44+ H1299 cells within the same period. Here, we demonstrated ap-
pearance of fractions of slow-(EdUlow/Ki67low, SCP) and rapid-cycling (EdUhigh/Ki67high,
RCP) populations in all sorted subpopulations of A549 and H1299 cells in response to IR
stress (Figure 8). Our data are consistent with recent report indicating the bifurcation of
Ki67 levels follows, and therefore is a consequence of, the proliferation-quiescence decision,
which is consistent with Ki67 being down-regulated in all five forms of quiescence [43].
Observed linear relationship between EdU- and Ki67-coupled fluorescence in both non-
irradiated and irradiated (blue and red dots, respectively on Figure 8) cells was the further
confirmation of the earlier conclusion that the variability of Ki67 expression is due to its
regulation through the cell cycle [47].

In all the sorted subpopulations of radioresistant H1299 cells, the fraction featuring
the RCP phenotype was significantly higher than that in the respective subpopulations
of A549 cells at 48 h after IR stress (Figure 8). Thus, the IR-induced reduction in the
fraction of p53wt A549 cells rapidly exiting/re-entering the cell cycle and/or reorganizing
heterochromatin/remodeling gene expression likely fortifies these cells against future
culturing under nutrient stress. These data corroborate previous findings that dormant
cancer cells escape treatment by avoiding the S phase, which is the target of chemo- and
radiotherapy [73], and the ability to enter spontaneous quiescence is beneficial not only
in genotoxic-stress conditions, but also in other diverse stress conditions, suggesting that
quiescence actively protects cells from exogenous stress [71]. In contrast, in the absence of
p53, CD44+ and CD133+ fractions of H1299 cells more frequently appeared to be exiting
from the “dormant” state by 48 h after 5 Gy exposure, which likely reduced the chances
of cell survival under the same subsequent stress. Thus, the reduced cancer-cell cycling,
proliferation, and/or reorganizing heterochromatin/remodeling gene expression seems to
be a core feature of cellular adaptation for the survival of genotoxic stress, and on a longer
timescale, of changing environments.

In the present study we showed the differential expression of DDR-pathway proteins
between CD44−/CD133−, CD44+ and CD133+ populations of A549 (p53wt) and H1299
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(p53null) cell populations. We did not find significant differences in proliferation activity
between the CD44+ and CD133+ and compared to CD44−/CD133− populations within a
cell type. Thus, our data indicated that DNA-DSB efficiency does not solely depend on the
expression of cell surface marker alone but rather on their p53 status.

A number of recent findings clearly support the idea that cancer-cell quiescence and
senescence are associated with different forms of dormancy that lead to distinct phenotypes
that are capable of driving tumor relapse, as reviewed elsewhere [74]. Of note, senescent and
terminally differentiated cells are also Ki67 negative or weakly express Ki67, the established
marker of cellular quiescence [47]. A clear-cut characterization of the dormancy (G0) state
that is associated with the non-proliferative conditions is quite difficult. These conditions
are progressive phenomena, and there is no unique event that represents a turning point
indicating that a cell has left the cell cycle and entered quiescence. A prerequisite for
acquiring the quiescent phenotype is to adjust the energy demand by reducing protein
synthesis, Ki67 in particular. The proteins produced before slowing down the protein
translation may still be present in G0-entry cells with residual Ki67 expression detected
in G0 cells [75]. Our data clearly indicate that CD133+ A549 spontaneously (without IR)
quiescent (SCP or Ki67low/EdUlow) cells are not a homogeneous population (Figure 8,
SCP area at 24 h). In addition to the main population, having both linearly connected
these proliferation and cell-cycling indicators, the SCP cells consist of cells having variable
Ki67 expression with constant EdUlow, and variable EdU-coupled fluorescence under
the constantly lowest Ki67 expression. These observations seem to be in line with the
earlier notion that high Ki67 expression may be counterselected in cancers, which would
fit with the finding that increased levels of Ki67 arrest cell proliferation [72]. The IR
treatment plausibly raises the proportion of quiescent cancer cells by killing the majority of
proliferating cancer cells and/or inducing the proliferating cancer cells to quiescence. Our
present data favor the last assumption.

SA-beta-gal is a lysosomal enzyme that has been widely used as a senescence marker.
The activity of SA-beta-gal is measured at pH 6.0, while physiologically, beta-galactosidase
is active at pH 4.0, which is the typical lysosomal acid environment [76]. During physiolog-
ical stress, the lysosomal pH may increase and thus activate SA-beta-gal until lysosomes
successfully cope with the stress stimulus [19]. Stalled replication forks may represent an
additional stress to IR-induced DNA damage in H1299 populations, leading to transitional
pH increase. It was previously shown that H1299 cells overexpressing p21waf acquired a
senescent phenotype, thus protecting p53-deficient cells from IR-induced apoptosis [77].
However, we did not notice any statistically significant difference between H1299 sub-
populations, neither in the control nor in irradiated cells, albeit all populations of the
non-irradiated H1299 cell line contained a significantly higher fraction of SA-beta-gal-
positive cells compared to A549 populations (Figure 9). The mechanism that triggers the
onset of basal senescence in the absence of functional p53 in sorted H1299 cells needs to be
further elucidated. Exposure to 5 Gy IR significantly reduced the SA-beta-gal+ fraction of
CD44−/CD133− population of H1299 cells, without any significant changes in both CD44+
and CD133+ populations at 24 h after IR. Despite p53-p21-MDM2 activation (Figure 4), the
SA-beta-gal+ fraction of CD44−/CD133− and Cd44+ populations of A549 cells demon-
strated a shallow increase, whereas the same fraction of the CD133+ population almost
disappeared. Notably, SA-beta-gal activity can be considered as senescence only after
several waves (the earliest one at 24 h after insult) of increase following a genotoxic event,
and a definitive senescent phenotype can be identified by evaluating the expression of Ki67,
pRPS6, and SA-beta-gal activity [19]. Nevertheless, we propose p21-mediated quiescence
is the predominant surviving pathway in CD44−/CD133− and CD133+ populations of
A549 cells. The loss of p21 compromises quiescence in normal fibroblasts and forebrain
stem cells [78,79]. The concomitant EdU and Ki67 analysis showed reduced integrated
nuclear intensity of A549 cells 24 and 48 h after irradiation (Figure 8). Thus, the presence
of functional p53 allows cells to enter a dormant or “quiescence” state, which favors the
survival of A549 cells following irradiation and serum-free cultivation. In contrast, p53null
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H1299 cells enter proliferation faster compared to A549 cells and thus undergo cell death in
serum-free conditions. Although the SA-beta-gal+ fraction was small at 24 h after IR, we
propose that cellular SIPS rather than “quiescence” is responsible for the temporary dor-
mant state of p53null H1299 cells, unfavorably reducing their fitness in spheroid cultures
under additional nutrient stress.

While the absence of functional p53 leads to the spontaneous formation of PGCCs
in H1299 cells, p53wt A549 cells demonstrate an increase in the proportion of polyploidy
only after IR exposure (Figure 6b). Prolonged incubation in favorable conditions causes
PGCCs to enter the cell cycle with the subsequent splitting or budding to give rise to
offspring of typical ploidy [20] (Figure 6b). At the same time, the presence of proliferating
PGCCs in p53null H1299 populations may indicate the onset of endoreplication, when
repeating G and S phases generate polyploid cells with multiple copies of DNA content [80].
Furthermore, PGCCs can give rise to regular-sized cancer-cell progeny through asymmetric
budding, which show expression of CSC markers CD44 and CD133 [20,81]. We propose
that the dormant PGCC might be the source of CSCs in NSCLC cells after IR exposure.

A limit of our study and for similar findings relies on the consideration that entering
quiescence or senescence is a continuous phenomenon and hence discrete conditions do not
exist. Despite the increasing number of studies suggesting that tumor relapse is due to slow-
cycling cells that persist after cancer treatment, further work is needed to fully demonstrate
that tumor recurrence indeed relies on non-targeted quiescent cancer cells. The quiescent
cells might adopt different states of dormancy, which should be further characterized by
developing genetic tools allowing for their labeling and tracking in vivo during tumor
recurrence, and by single-cell RNA-sequencing methodology. With additional validation,
placing tumors into these more finely divided categories could inform prognosis and the
selection of patient treatments, and could provide an additional readout of tumor responses
to ongoing treatments.

5. Conclusions

We demonstrated that in the absence of functional p53 (H1299), SIPS of CD44+ and
CD133+ cell subpopulations might be the predominant dormant mode of escaping cell
death after irradiation, while in A549 cells, functional p53 promotes the transition of these
cells into a dormancy in the form of quiescent or slow-cycling cells. In response to genotoxic
stress, compared to the H1299 cell line, all the subpopulations of A549 cells formed more
slowly-cycling PGCC/MGCCs followed by cell-cycle re-entry and the formation of therapy-
resistant clones with increased migratory and invasive activity. The obtained results are
important for the selection of therapeutic schemes for the treatment of patients with NSCLC,
depending on the functioning of the p53 system in tumor cells.

Author Contributions: Conceptualization, M.P., A.N.O. and S.L.; formal analysis, M.P., L.A., A.V.
and G.F.; investigation, M.P., L.A., T.B., A.C. and R.C.-N.; writing—original draft preparation, M.P.
and L.A.; writing—review and editing, A.N.O. and S.L.; visualization, M.P., L.A., A.V. and G.F.;
supervision, S.L. and A.N.O.; project administration, M.P.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation (RSF) project # 19-74-10096.
The APC was funded by the Russian Science Foundation (RSF) project # 19-74-10096. The GF work
was financed by the Ministry of Science and Higher Education of the Russian Federation within the
framework of state support for the creation and development of a World-Class Research Centers
“Digital Biodesign and Personalized Healthcare” N◦ 075-15-2020-917.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The materials and data are available from the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2022, 23, 4922 24 of 26

References
1. Prabavathy, D.; Swarnalatha, Y.; Ramadoss, N. Lung cancer stem cells-origin, characteristics and therapy. Stem Cell Investig. 2018,

5, 6. [CrossRef] [PubMed]
2. Leung, E.L.; Fiscus, R.R.; Tung, J.W.; Tin, V.P.; Cheng, L.C.; Sihoe, A.D.; Fink, L.M.; Ma, Y.; Wong, M.P. Non-small cell lung cancer

cells expressing CD44 are enriched for stem cell-like properties. PLoS ONE 2010, 5, e14062. [CrossRef] [PubMed]
3. Sodja, E.; Rijavec, M.; Koren, A.; Sadikov, A.; Korosec, P.; Cufer, T. The prognostic value of whole blood SOX2, NANOG and

OCT4 mRNA expression in advanced small-cell lung cancer. Radiol. Oncol. 2016, 50, 188–196. [CrossRef] [PubMed]
4. Upadhyay, V.A.; Shah, K.A.; Makwana, D.P.; Raval, A.P.; Shah, F.D.; Rawal, R.M. Putative stemness markers octamer-binding

transcription factor 4, sex-determining region Y-box 2, and NANOG in non-small cell lung carcinoma: A clinicopathological
association. J. Cancer Res. Ther. 2020, 16, 804–810. [CrossRef]

5. Pedregal-Mallo, D.; Hermida-Prado, F.; Granda-Diaz, R.; Montoro-Jimenez, I.; Allonca, E.; Pozo-Agundo, E.; Alvarez-Fernandez,
M.; Alvarez-Marcos, C.; Garcia-Pedrero, J.M.; Rodrigo, J.P. Prognostic Significance of the Pluripotency Factors NANOG, SOX2,
and OCT4 in Head and Neck Squamous Cell Carcinomas. Cancers 2020, 12, 1794. [CrossRef]

6. Guo, Y.; Liu, S.; Wang, P.; Zhao, S.; Wang, F.; Bing, L.; Zhang, Y.; Ling, E.A.; Gao, J.; Hao, A. Expression profile of embryonic stem
cell-associated genes Oct4, Sox2 and Nanog in human gliomas. Histopathology 2011, 59, 763–775. [CrossRef]

7. Schulz, A.; Meyer, F.; Dubrovska, A.; Borgmann, K. Cancer Stem Cells and Radioresistance: DNA Repair and Beyond. Cancers
2019, 11, 862. [CrossRef]

8. Tatin, X.; Muggiolu, G.; Sauvaigo, S.; Breton, J. Evaluation of DNA double-strand break repair capacity in human cells: Critical
overview of current functional methods. Mutat. Res. Rev. Mutat. Res. 2021, 788, 108388. [CrossRef]

9. Rahmanian, N.; Shokrzadeh, M.; Eskandani, M. Recent advances in gammaH2AX biomarker-based genotoxicity assays: A marker
of DNA damage and repair. DNA Repair (Amst.) 2021, 108, 103243. [CrossRef]

10. Babayan, N.; Vorobyeva, N.; Grigoryan, B.; Grekhova, A.; Pustovalova, M.; Rodneva, S.; Fedotov, Y.; Tsakanova, G.; Aroutiounian,
R.; Osipov, A. Low Repair Capacity of DNA Double-Strand Breaks Induced by Laser-Driven Ultrashort Electron Beams in Cancer
Cells. Int. J. Mol. Sci. 2020, 21, 9488. [CrossRef]

11. Kinner, A.; Wu, W.; Staudt, C.; Iliakis, G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context
of chromatin. Nucleic Acids Res. 2008, 36, 5678–5694. [CrossRef]

12. Pustovalova, M.; Alhaddad, L.; Blokhina, T.; Smetanina, N.; Chigasova, A.; Chuprov-Netochin, R.; Eremin, P.; Gilmutdinova,
I.; Osipov, A.N.; Leonov, S. The CD44high Subpopulation of Multifraction Irradiation-Surviving NSCLC Cells Exhibits Partial
EMT-Program Activation and DNA Damage Response Depending on Their p53 Status. Int. J. Mol. Sci. 2021, 22, 2369. [CrossRef]

13. Pustovalova, M.; Alhaddad, L.; Smetanina, N.; Chigasova, A.; Blokhina, T.; Chuprov-Netochin, R.; Osipov, A.N.; Leonov, S. The
p53-53BP1-Related Survival of A549 and H1299 Human Lung Cancer Cells after Multifractionated Radiotherapy Demonstrated
Different Response to Additional Acute X-ray Exposure. Int. J. Mol. Sci. 2020, 21, 3342. [CrossRef]

14. Gralewska, P.; Gajek, A.; Marczak, A.; Rogalska, A. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy
of high-grade ovarian cancer. J. Hematol. Oncol. 2020, 13, 39. [CrossRef]

15. Roninson, I.B. Tumor cell senescence in cancer treatment. Cancer Res. 2003, 63, 2705–2715.
16. Gewirtz, D.A.; Holt, S.E.; Elmore, L.W. Accelerated senescence: An emerging role in tumor cell response to chemotherapy and

radiation. Biochem. Pharmacol. 2008, 76, 947–957. [CrossRef]
17. Fuhrmann-Stroissnigg, H.; Santiago, F.E.; Grassi, D.; Ling, Y.; Niedernhofer, L.J.; Robbins, P.D. SA-beta-Galactosidase-Based

Screening Assay for the Identification of Senotherapeutic Drugs. J. Vis. Exp. 2019, 148, e58133. [CrossRef]
18. Zorin, V.; Zorina, A.; Smetanina, N.; Kopnin, P.; Ozerov, I.V.; Leonov, S.; Isaev, A.; Klokov, D.; Osipov, A.N. Diffuse colonies of

human skin fibroblasts in relation to cellular senescence and proliferation. Aging (Albany N. Y.) 2017, 9, 1404–1413. [CrossRef]
19. Alessio, N.; Aprile, D.; Cappabianca, S.; Peluso, G.; Di Bernardo, G.; Galderisi, U. Different Stages of Quiescence, Senescence, and

Cell Stress Identified by Molecular Algorithm Based on the Expression of Ki67, RPS6, and Beta-Galactosidase Activity. Int. J. Mol.
Sci. 2021, 22, 3102. [CrossRef]

20. Zhang, S.; Mercado-Uribe, I.; Xing, Z.; Sun, B.; Kuang, J.; Liu, J. Generation of cancer stem-like cells through the formation of
polyploid giant cancer cells. Oncogene 2014, 33, 116–128. [CrossRef]

21. Fujiwara, T.; Bandi, M.; Nitta, M.; Ivanova, E.V.; Bronson, R.T.; Pellman, D. Cytokinesis failure generating tetraploids promotes
tumorigenesis in p53-null cells. Nature 2005, 437, 1043–1047. [CrossRef] [PubMed]

22. Nair, J.S.; Ho, A.L.; Schwartz, G.K. The induction of polyploidy or apoptosis by the Aurora A kinase inhibitor MK8745 is
p53-dependent. Cell Cycle 2012, 11, 807–817. [CrossRef] [PubMed]

23. White-Gilbertson, S.; Lu, P.; Norris, J.S.; Voelkel-Johnson, C. Genetic and pharmacological inhibition of acid ceramidase prevents
asymmetric cell division by neosis. J. Lipid Res. 2019, 60, 1225–1235. [CrossRef] [PubMed]

24. Hu, B.; Ma, Y.; Yang, Y.; Zhang, L.; Han, H.; Chen, J. CD44 promotes cell proliferation in non-small cell lung cancer. Oncol. Lett.
2018, 15, 5627–5633. [CrossRef]

25. Hassn Mesrati, M.; Syafruddin, S.E.; Mohtar, M.A.; Syahir, A. CD44: A Multifunctional Mediator of Cancer Progression.
Biomolecules 2021, 11, 1850. [CrossRef]

26. Bertolini, G.; Roz, L.; Perego, P.; Tortoreto, M.; Fontanella, E.; Gatti, L.; Pratesi, G.; Fabbri, A.; Andriani, F.; Tinelli, S.; et al. Highly
tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. USA
2009, 106, 16281–16286. [CrossRef]

http://doi.org/10.21037/sci.2018.02.01
http://www.ncbi.nlm.nih.gov/pubmed/29682513
http://doi.org/10.1371/journal.pone.0014062
http://www.ncbi.nlm.nih.gov/pubmed/21124918
http://doi.org/10.1515/raon-2015-0027
http://www.ncbi.nlm.nih.gov/pubmed/27247551
http://doi.org/10.4103/jcrt.JCRT_213_18
http://doi.org/10.3390/cancers12071794
http://doi.org/10.1111/j.1365-2559.2011.03993.x
http://doi.org/10.3390/cancers11060862
http://doi.org/10.1016/j.mrrev.2021.108388
http://doi.org/10.1016/j.dnarep.2021.103243
http://doi.org/10.3390/ijms21249488
http://doi.org/10.1093/nar/gkn550
http://doi.org/10.3390/ijms22052369
http://doi.org/10.3390/ijms21093342
http://doi.org/10.1186/s13045-020-00874-6
http://doi.org/10.1016/j.bcp.2008.06.024
http://doi.org/10.3791/58133
http://doi.org/10.18632/aging.101240
http://doi.org/10.3390/ijms22063102
http://doi.org/10.1038/onc.2013.96
http://doi.org/10.1038/nature04217
http://www.ncbi.nlm.nih.gov/pubmed/16222300
http://doi.org/10.4161/cc.11.4.19323
http://www.ncbi.nlm.nih.gov/pubmed/22293494
http://doi.org/10.1194/jlr.M092247
http://www.ncbi.nlm.nih.gov/pubmed/30988134
http://doi.org/10.3892/ol.2018.8051
http://doi.org/10.3390/biom11121850
http://doi.org/10.1073/pnas.0905653106


Int. J. Mol. Sci. 2022, 23, 4922 25 of 26

27. Le, H.; Zeng, F.; Xu, L.; Liu, X.; Huang, Y. The role of CD133 expression in the carcinogenesis and prognosis of patients with lung
cancer. Mol. Med. Rep. 2013, 8, 1511–1518. [CrossRef]

28. Yamashita, N.; Oyama, T.; So, T.; Miyata, T.; Yoshimatsu, T.; Nakano, R.; Matsunaga, W.; Gotoh, A. Association between CD133
Expression and Prognosis in Human Lung Adenocarcinoma. Anticancer Res. 2021, 41, 905–910. [CrossRef]

29. Luo, W.; Li, S.; Peng, B.; Ye, Y.; Deng, X.; Yao, K. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their
correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS ONE 2013, 8, e56324. [CrossRef]

30. Gilazieva, Z.; Ponomarev, A.; Rutland, C.; Rizvanov, A.; Solovyeva, V. Promising Applications of Tumor Spheroids and Organoids
for Personalized Medicine. Cancers 2020, 12, 2727. [CrossRef]

31. Okaichi, K.; Nose, K.; Kotake, T.; Izumi, N.; Kudo, T. Phosphorylation of p53 modifies sensitivity to ionizing radiation. Anticancer
Res. 2011, 31, 2255–2258.

32. Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001, 15, 2177–2196. [CrossRef]
33. Xiao, Z.; Chen, Z.; Gunasekera, A.H.; Sowin, T.J.; Rosenberg, S.H.; Fesik, S.; Zhang, H. Chk1 mediates S and G2 arrests through

Cdc25A degradation in response to DNA-damaging agents. J. Biol. Chem. 2003, 278, 21767–21773. [CrossRef]
34. Siliciano, J.D.; Canman, C.E.; Taya, Y.; Sakaguchi, K.; Appella, E.; Kastan, M.B. DNA damage induces phosphorylation of the

amino terminus of p53. Genes Dev. 1997, 11, 3471–3481. [CrossRef]
35. Lakin, N.D.; Hann, B.C.; Jackson, S.P. The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of

p53. Oncogene 1999, 18, 3989–3995. [CrossRef]
36. Tibbetts, R.S.; Brumbaugh, K.M.; Williams, J.M.; Sarkaria, J.N.; Cliby, W.A.; Shieh, S.Y.; Taya, Y.; Prives, C.; Abraham, R.T. A role

for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999, 13, 152–157. [CrossRef]
37. Loughery, J.; Cox, M.; Smith, L.M.; Meek, D.W. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at

p53-responsive promoters. Nucleic Acids Res. 2014, 42, 7666–7680. [CrossRef]
38. He, G.; Siddik, Z.H.; Huang, Z.; Wang, R.; Koomen, J.; Kobayashi, R.; Khokhar, A.R.; Kuang, J. Induction of p21 by p53 following

DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene 2005, 24, 2929–2943. [CrossRef]
39. Puck, T.T.; Marcus, P.I. Action of x-rays on mammalian cells. J. Exp. Med. 1956, 103, 653–666. [CrossRef]
40. Mirzayans, R.; Andrais, B.; Scott, A.; Wang, Y.W.; Murray, D. Ionizing radiation-induced responses in human cells with differing

TP53 status. Int. J. Mol. Sci. 2013, 14, 22409–22435. [CrossRef]
41. Mirzayans, R.; Andrais, B.; Scott, A.; Wang, Y.W.; Kumar, P.; Murray, D. Multinucleated Giant Cancer Cells Produced in Response

to Ionizing Radiation Retain Viability and Replicate Their Genome. Int. J. Mol. Sci. 2017, 18, 360. [CrossRef] [PubMed]
42. Alhaddad, L.; Pustovalova, M.; Blokhina, T.; Chuprov-Netochin, R.; Osipov, A.N.; Leonov, S. IR-Surviving NSCLC Cells Exhibit

Different Patterns of Molecular and Cellular Reactions Relating to the Multifraction Irradiation Regimen and p53-Family Proteins
Expression. Cancers 2021, 13, 2669. [CrossRef] [PubMed]

43. Miller, I.; Min, M.; Yang, C.; Tian, C.; Gookin, S.; Carter, D.; Spencer, S.L. Ki67 is a Graded Rather than a Binary Marker of
Proliferation versus Quiescence. Cell Rep. 2018, 24, 1105–1112.e1105. [CrossRef] [PubMed]

44. Pereira, P.D.; Serra-Caetano, A.; Cabrita, M.; Bekman, E.; Braga, J.; Rino, J.; Santus, R.; Filipe, P.L.; Sousa, A.E.; Ferreira, J.A.
Quantification of cell cycle kinetics by EdU (5-ethynyl-2′-deoxyuridine)-coupled-fluorescence-intensity analysis. Oncotarget 2017,
8, 40514–40532. [CrossRef]

45. Mittwoch, U. Nuclear sizes in a human diploid-triploid cell culture. Nature 1968, 219, 1074–1076. [CrossRef]
46. Spencer, S.L.; Cappell, S.D.; Tsai, F.C.; Overton, K.W.; Wang, C.L.; Meyer, T. The proliferation-quiescence decision is controlled by

a bifurcation in CDK2 activity at mitotic exit. Cell 2013, 155, 369–383. [CrossRef]
47. Sobecki, M.; Mrouj, K.; Colinge, J.; Gerbe, F.; Jay, P.; Krasinska, L.; Dulic, V.; Fisher, D. Cell-Cycle Regulation Accounts for

Variability in Ki-67 Expression Levels. Cancer Res. 2017, 77, 2722–2734. [CrossRef]
48. Terzi, M.Y.; Izmirli, M.; Gogebakan, B. The cell fate: Senescence or quiescence. Mol. Biol. Rep. 2016, 43, 1213–1220. [CrossRef]
49. Cho, S.; Hwang, E.S. Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol. Cells 2012, 33,

597–604. [CrossRef]
50. Lee, B.Y.; Han, J.A.; Im, J.S.; Morrone, A.; Johung, K.; Goodwin, E.C.; Kleijer, W.J.; DiMaio, D.; Hwang, E.S. Senescence-associated

beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 2006, 5, 187–195. [CrossRef]
51. Kurz, D.J.; Decary, S.; Hong, Y.; Erusalimsky, J.D. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal

mass during replicative ageing of human endothelial cells. J. Cell Sci. 2000, 113, 3613–3622. [CrossRef]
52. Yamashita, N.; So, T.; Miyata, T.; Yoshimatsu, T.; Nakano, R.; Oyama, T.; Matsunaga, W.; Gotoh, A. Triple-negative expression

(ALDH1A1-/CD133-/mutant p53-) cases in lung adenocarcinoma had a good prognosis. Sci. Rep. 2022, 12, 1473. [CrossRef]
53. Salmina, K.; Jankevics, E.; Huna, A.; Perminov, D.; Radovica, I.; Klymenko, T.; Ivanov, A.; Jascenko, E.; Scherthan, H.; Cragg, M.;

et al. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells.
Exp. Cell Res. 2010, 316, 2099–2112. [CrossRef]

54. Jackson, T.R.; Salmina, K.; Huna, A.; Inashkina, I.; Jankevics, E.; Riekstina, U.; Kalnina, Z.; Ivanov, A.; Townsend, P.A.; Cragg,
M.S.; et al. DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma
cells. Cell Cycle 2013, 12, 430–441. [CrossRef]

55. Huna, A.; Salmina, K.; Erenpreisa, J.; Vazquez-Martin, A.; Krigerts, J.; Inashkina, I.; Gerashchenko, B.I.; Townsend, P.A.; Cragg,
M.S.; Jackson, T.R. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide.
Cell Cycle 2015, 14, 2969–2984. [CrossRef]

http://doi.org/10.3892/mmr.2013.1667
http://doi.org/10.21873/anticanres.14843
http://doi.org/10.1371/journal.pone.0056324
http://doi.org/10.3390/cancers12102727
http://doi.org/10.1101/gad.914401
http://doi.org/10.1074/jbc.M300229200
http://doi.org/10.1101/gad.11.24.3471
http://doi.org/10.1038/sj.onc.1202973
http://doi.org/10.1101/gad.13.2.152
http://doi.org/10.1093/nar/gku501
http://doi.org/10.1038/sj.onc.1208474
http://doi.org/10.1084/jem.103.5.653
http://doi.org/10.3390/ijms141122409
http://doi.org/10.3390/ijms18020360
http://www.ncbi.nlm.nih.gov/pubmed/28208747
http://doi.org/10.3390/cancers13112669
http://www.ncbi.nlm.nih.gov/pubmed/34071477
http://doi.org/10.1016/j.celrep.2018.06.110
http://www.ncbi.nlm.nih.gov/pubmed/30067968
http://doi.org/10.18632/oncotarget.17121
http://doi.org/10.1038/2191074a0
http://doi.org/10.1016/j.cell.2013.08.062
http://doi.org/10.1158/0008-5472.CAN-16-0707
http://doi.org/10.1007/s11033-016-4065-0
http://doi.org/10.1007/s10059-012-0042-1
http://doi.org/10.1111/j.1474-9726.2006.00199.x
http://doi.org/10.1242/jcs.113.20.3613
http://doi.org/10.1038/s41598-022-05176-0
http://doi.org/10.1016/j.yexcr.2010.04.030
http://doi.org/10.4161/cc.23285
http://doi.org/10.1080/15384101.2015.1056948


Int. J. Mol. Sci. 2022, 23, 4922 26 of 26

56. Park, M.S.; Ludwig, D.L.; Stigger, E.; Lee, S.H. Physical interaction between human RAD52 and RPA is required for homologous
recombination in mammalian cells. J. Biol. Chem. 1996, 271, 18996–19000. [CrossRef]

57. Stauffer, M.E.; Chazin, W.J. Physical interaction between replication protein A and Rad51 promotes exchange on single-stranded
DNA. J. Biol. Chem. 2004, 279, 25638–25645. [CrossRef]

58. Van Komen, S.; Petukhova, G.; Sigurdsson, S.; Sung, P. Functional cross-talk among Rad51, Rad54, and replication protein A in
heteroduplex DNA joint formation. J. Biol. Chem. 2002, 277, 43578–43587. [CrossRef]

59. Bahassi, E.M.; Ovesen, J.L.; Riesenberg, A.L.; Bernstein, W.Z.; Hasty, P.E.; Stambrook, P.J. The checkpoint kinases Chk1 and Chk2
regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene 2008, 27, 3977–3985.
[CrossRef]

60. Cox, M.L.; Meek, D.W. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse
stimuli. Cell Signal 2010, 22, 564–571. [CrossRef]

61. Thompson, T.; Tovar, C.; Yang, H.; Carvajal, D.; Vu, B.T.; Xu, Q.; Wahl, G.M.; Heimbrook, D.C.; Vassilev, L.T. Phosphorylation of
p53 on key serines is dispensable for transcriptional activation and apoptosis. J. Biol. Chem. 2004, 279, 53015–53022. [CrossRef]
[PubMed]

62. Abbas, T.; Dutta, A. p21 in cancer: Intricate networks and multiple activities. Nat. Rev. Cancer 2009, 9, 400–414. [CrossRef]
[PubMed]

63. Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al.
The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704–715. [CrossRef] [PubMed]

64. Ishiguro, T.; Ohata, H.; Sato, A.; Yamawaki, K.; Enomoto, T.; Okamoto, K. Tumor-derived spheroids: Relevance to cancer stem
cells and clinical applications. Cancer Sci. 2017, 108, 283–289. [CrossRef]

65. Mrouj, K.; Andres-Sanchez, N.; Dubra, G.; Singh, P.; Sobecki, M.; Chahar, D.; Al Ghoul, E.; Aznar, A.B.; Prieto, S.; Pirot, N.; et al.
Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc. Natl. Acad. Sci. USA 2021, 118,
e2026507118. [CrossRef]

66. Schmidt, U.; Heller, G.; Timelthaler, G.; Heffeter, P.; Somodi, Z.; Schweifer, N.; Sibilia, M.; Berger, W.; Csiszar, A. The FAM3C
locus that encodes interleukin-like EMT inducer (ILEI) is frequently co-amplified in MET-amplified cancers and contributes to
invasiveness. J. Exp. Clin. Cancer Res. 2021, 40, 69. [CrossRef]

67. Zhu, Y.; Pu, Z.; Wang, G.; Li, Y.; Wang, Y.; Li, N.; Peng, F. FAM3C: An emerging biomarker and potential therapeutic target for
cancer. Biomark Med. 2021, 15, 373–384. [CrossRef]

68. Noguchi, K.; Dalton, A.C.; Howley, B.V.; McCall, B.J.; Yoshida, A.; Diehl, J.A.; Howe, P.H. Interleukin-like EMT inducer regulates
partial phenotype switching in MITF-low melanoma cell lines. PLoS ONE 2017, 12, e0177830. [CrossRef]

69. Li, W.; Qin, X.; Wang, B.; Xu, G.; Zhang, J.; Jiang, X.; Chen, C.; Qiu, F.; Zou, Z. MiTF is Associated with Chemoresistance
to Cisplatin in A549 Lung Cancer Cells via Modulating Lysosomal Biogenesis and Autophagy. Cancer Manag. Res. 2020, 12,
6563–6573. [CrossRef]

70. Klomp, J.E.; Lee, Y.S.; Goodwin, C.M.; Papke, B.; Klomp, J.A.; Waters, A.M.; Stalnecker, C.A.; DeLiberty, J.M.; Drizyte-Miller, K.;
Yang, R.; et al. CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment.
Cell Rep. 2021, 37, 110060. [CrossRef]

71. Min, M.; Spencer, S.L. Spontaneously slow-cycling subpopulations of human cells originate from activation of stress-response
pathways. PLoS Biol. 2019, 17, e3000178. [CrossRef]

72. Sobecki, M.; Mrouj, K.; Camasses, A.; Parisis, N.; Nicolas, E.; Lleres, D.; Gerbe, F.; Prieto, S.; Krasinska, L.; David, A.; et al. The cell
proliferation antigen Ki-67 organises heterochromatin. elife 2016, 5, e13722. [CrossRef]

73. Ryl, T.; Kuchen, E.E.; Bell, E.; Shao, C.; Florez, A.F.; Monke, G.; Gogolin, S.; Friedrich, M.; Lamprecht, F.; Westermann, F.; et al.
Cell-Cycle Position of Single MYC-Driven Cancer Cells Dictates Their Susceptibility to a Chemotherapeutic Drug. Cell Syst. 2017,
5, 237–250.e238. [CrossRef]

74. Santos-de-Frutos, K.; Djouder, N. When dormancy fuels tumour relapse. Commun. Biol. 2021, 4, 747. [CrossRef]
75. Roche, B.; Arcangioli, B.; Martienssen, R. Transcriptional reprogramming in cellular quiescence. RNA Biol. 2017, 14, 843–853.

[CrossRef]
76. Debacq-Chainiaux, F.; Erusalimsky, J.D.; Campisi, J.; Toussaint, O. Protocols to detect senescence-associated beta-galactosidase

(SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 2009, 4, 1798–1806. [CrossRef]
77. Wang, Y.; Blandino, G.; Givol, D. Induced p21waf expression in H1299 cell line promotes cell senescence and protects against

cytotoxic effect of radiation and doxorubicin. Oncogene 1999, 18, 2643–2649. [CrossRef]
78. Perucca, P.; Cazzalini, O.; Madine, M.; Savio, M.; Laskey, R.A.; Vannini, V.; Prosperi, E.; Stivala, L.A. Loss of p21 CDKN1A impairs

entry to quiescence and activates a DNA damage response in normal fibroblasts induced to quiescence. Cell Cycle 2009, 8, 105–114.
[CrossRef]

79. Kippin, T.E.; Martens, D.J.; van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation
leading to exhaustion of their proliferation capacity. Genes Dev. 2005, 19, 756–767. [CrossRef]

80. Shu, Z.; Row, S.; Deng, W.M. Endoreplication: The Good, the Bad, and the Ugly. Trends Cell Biol. 2018, 28, 465–474. [CrossRef]
81. Niu, N.; Mercado-Uribe, I.; Liu, J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer

cells. Oncogene 2017, 36, 4887–4900. [CrossRef] [PubMed]

http://doi.org/10.1074/jbc.271.31.18996
http://doi.org/10.1074/jbc.M400029200
http://doi.org/10.1074/jbc.M205864200
http://doi.org/10.1038/onc.2008.17
http://doi.org/10.1016/j.cellsig.2009.11.014
http://doi.org/10.1074/jbc.M410233200
http://www.ncbi.nlm.nih.gov/pubmed/15471885
http://doi.org/10.1038/nrc2657
http://www.ncbi.nlm.nih.gov/pubmed/19440234
http://doi.org/10.1016/j.cell.2008.03.027
http://www.ncbi.nlm.nih.gov/pubmed/18485877
http://doi.org/10.1111/cas.13155
http://doi.org/10.1073/pnas.2026507118
http://doi.org/10.1186/s13046-021-01862-5
http://doi.org/10.2217/bmm-2020-0179
http://doi.org/10.1371/journal.pone.0177830
http://doi.org/10.2147/CMAR.S255939
http://doi.org/10.1016/j.celrep.2021.110060
http://doi.org/10.1371/journal.pbio.3000178
http://doi.org/10.7554/eLife.13722
http://doi.org/10.1016/j.cels.2017.07.005
http://doi.org/10.1038/s42003-021-02257-0
http://doi.org/10.1080/15476286.2017.1327510
http://doi.org/10.1038/nprot.2009.191
http://doi.org/10.1038/sj.onc.1202632
http://doi.org/10.4161/cc.8.1.7507
http://doi.org/10.1101/gad.1272305
http://doi.org/10.1016/j.tcb.2018.02.006
http://doi.org/10.1038/onc.2017.72
http://www.ncbi.nlm.nih.gov/pubmed/28436947

	Introduction 
	Materials and Methods 
	Cell Lines and Culture Conditions 
	Cell Sorting 
	Irradiation 
	Western-Blotting Analysis of OCT4 Expression 
	Immunofluorescence Analysis of SOX2 Expression 
	Spheroids Culture 
	Immunofluorescence Analysis of FAM3C and MiTF Expression in Tumor Spheroids 
	Click-iT™ EdU Alexa Fluor 488 Proliferation Assay 
	Immunofluorescence Analysis of Ki67 
	Cell-Signaling Multiplex Assay 
	Analysis of Senescence-Associated -Galactosidase-Positive Cells 
	MTT Assay 
	Statistics 

	Results 
	Sorting Strategy of CD44+ and CD133+ Cells 
	Expression of Stem-Cell Transcription Markers in CD-Sorted Populations of NSCLC Cells 
	Spheroid Formation 
	Irradiation-Induced Changes in Metabolic Activity (MTT Test) 
	DNA Damage Response Pathway Profiling in CD-Sorted Populations of NSCLC Cells 
	Proliferation-Related Activity in CD-Sorted Populations of NSCLC Cells 
	The Proportion of SA-Beta-Gal Positive Cells in Response to IR 
	Possible Molecular Messengers of Spheroid’s Response to IR 

	Discussion 
	Conclusions 
	References

