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In the last few decades, cognitive theories for explaining human spatial relational

reasoning have increased. Few of these theories have been implemented as

computational models, however, even fewer have been compared computationally

to each other. A computational model comparison requires, among other things, a

still missing quantitative benchmark of core spatial relational reasoning problems. By

presenting a new evaluation approach, this paper addresses: (1) developing a benchmark

including raw data of participants, (2) reimplementation, adaptation, and extension of

existing cognitive models to predict individual responses, and (3) a thorough evaluation

of the cognitive models on the benchmark data. The paper shifts the research focus of

cognitive modeling from reproducing aggregated response patterns toward assessing

the predictive power of models for the individual reasoner. It demonstrate that not all

psychological effects can discern theories. We discuss implications for modeling spatial

relational reasoning.

Keywords: spatial cognition, cognitive models, individual human reasoner, mental model, predictive task

1. INTRODUCTION

Please read the following two assertions and draw an inference (preferably without using any map):

(1) Frankfurt is south-west of Amsterdam.
Amsterdam is north-east of Paris.
What is the spatial relation between Frankfurt and Paris?

You can’t say anything about the relation, given only the above information. In the process of finding
an answer to this question you may have formed a mental model of the cities according to the
relations in your mind. In a second step, you may have inspected your mental model and have
possibly searched for alternative models.

Cognitive psychology provides theories specifying such mental processes. Core predictions of
these cognitive theories are tested experimentally, i.e., if participants in psychological experiments
demonstrate the predicted behavior by the theories. Example 1 above is a so-called indeterminate
problem, as no conclusion with a single cardinal relation between the cities Frankfurt and Paris
can be determined by reasoning about the premises only. A determinate problem in contrast is
for instance:

(2) Frankfurt is south-east of Berlin.
Berlin is south-east of Stockholm.
What is the spatial relation between Frankfurt and Stockholm?

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.626292
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.626292&domain=pdf&date_stamp=2021-10-13
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:marco.ragni@hsw.tu-chemnitz.de
https://doi.org/10.3389/fpsyg.2021.626292
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.626292/full


Ragni et al. Predictive Power of Spatial Models

Because you can derive from the premises the conclusion
“Frankfurt is south-east of Stockholm.”

Theories such as the theory of mental models (e.g., Johnson-
Laird and Byrne, 1991) or the preferred mental model theory
(Ragni and Knauff, 2013) predict that indeterminate problems
(1) are more difficult than determinate problems (2). This
depends on the underlying cognitive processes in both theories:
the theory of mental models explains this effect by the need
to construct more models in the indeterminate case and the
theory of preferred models by the need to construct and vary
a preferred model and its associated costs in the computational
model PRISM. Such theoretically derived predictions are
evaluated experimentally, i.e., the theoretical prediction holds,
if there is a statistically significant difference in error rates
between indeterminate and determinate problems. The statistical
analysis often aggregates across both, problems and participants.
Psychological experiments have been, conducted to test predicted
effects such as the figural effect, the continuity effect, and the
preference effect (Knauff et al., 1998; Ragni and Knauff, 2013).

Can we, however, assume that these effects and cognitive
processes—that are supported by group-level data aggregation—
do generalize to the level of individuals or is it possible that
they cannot be observed in individuals (cf., Kievit et al., 2016;
Fisher et al., 2018)? There is a potential danger, unless shown
otherwise, that computational models do model well an effect
supported by aggregating responses, which is not observable in
any individual’s reasoning process. At the same time an effect
that can be identified in some individuals might not be visible
in the aggregation.

Applied to the spatial problem above, general cognitive
processes such as forming, inspecting, and searching for
alternative models might be employed by most reasoners.
However, there might be substantial differences between
participant’s in the way how they form their model and how they
search for alternative models. We argue that cognitive theories
need to focus on predicting an individual’s response, as this
can avoid many of the group-to-individual problems we have
described above. But, to assess theories, data sets can be differ.
So a second question is, are some data sets more suitable than
others to test the predictive power of computational models?
Hence, the goal of this paper is to comprehensively assess the
predictive power of spatial relational reasoning models for the
individual reasoner and to provide an assessment of the usability
of existing data.

To analyze the predictive performance of the models, we
have recently devised the Cognitive Computation for Behavioral
Reasoning Analysis (CCOBRA) framework1. It has been used for
recent model analyses in syllogistic (e.g., Brand et al., 2019, 2020;
Dietz Saldanha and Schambach, 2020; Riesterer et al., 2020a,b),
conditional (Ragni et al., 2019b), spatial reasoning (Ragni et al.,
2019a; Todorovikj and Ragni, 2021), belief revision (Brand et al.,
2021;Mannhardt et al., 2021), andmodels for fake news detection
(Borukhson et al., 2021). It is driven by the idea that a model
needs to face the same experimental setting and needs to be
presented with the same reasoning problems in the same order

1https://github.com/CognitiveComputationLab/ccobra

as the participant received them. Consequently, the model given
all the information, needs then to generate the participant’s
conclusion. If the model is able to predict this participant’s
conclusion, then the computational model is a model of that
specific participant for that problem. As a consequence, if
the model captures the cognitive processes of the participant
accurately in the spatial domain, then we can expect a model to
provide accurate predictions. If the predictive performance of a
model is low, we can conclude that the theoretical accounts are
inadequate representations of the cognitive reasoning processes.

To analyze the predictive performance of existing models,
we need to take several steps: First, we need raw response
data of each participant containing the specific spatial reasoning
problem, how it has been presented, and which conclusion the
participant has drawn. If there is variety in the type of spatial
reasoning problems, e.g., by including data sets focusing on
different types of relations such as cardinal directions (e.g., north,
north-west, east) or one-dimensional relations (e.g., left and
right), a comprehensive benchmark can be formed to analyze
models’ general ability to account for human spatial reasoning
ability. Second, the method for model evaluation will rely on
assessing how good the individual participant can be predicted
by the models. To compute this, we will employ the predictive
model evaluation settings provided by CCOBRA. Third, and
maybe most importantly, implemented models for psychological
theories of spatial reasoning are required. In particular, in order
to evaluate their predictive ability, the implementations have to
be able to provide precise predictions about the conclusions,
experimental participants would infer. Finally, to evaluate a
models’ full predictive potential, it might be necessary to extend
models in order to improve their ability to capture the inter-
individual differences. For instance, if reasoning operates on the
generation of mental representations of the premises, models
may account for individual differences by either constructing
none, some, or all possible alternative models. This flexibility
allows them to decide which strategy is optimal for predicting
responses given by a specific individual.

The paper is structured as follows: In the next section, an
empirical section, we present the domain of spatial relational
reasoning on selected problems and results. In section 3, a
technical section, we will introduce the state of the art of cognitive
models, their implementation and adaptation, and the predictive
task we have used for their evaluation. Section 4 presents and
discusses the results of our analysis and a general discussion
about the predictive task in spatial relational reasoning concludes
the paper.

2. SPATIAL RELATIONAL REASONING
PROBLEMS, EFFECTS, AND BENCHMARK

Example (1) in the introduction shows a typical spatial relational
reasoning problem. This example consists of three terms, in
this case cities, and two cardinal direction relations in-between
them. In principle in those tasks, any spatial entity, such as
objects on a table, geographical regions, or even stars can be
in one or many infinitely relations such as left-of, contained
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TABLE 1 | Term orders underlying the four different figures.

Figure Assertion 1 Assertion 2

I A← B B← C

II A← B C→ B

III B→ A B← C

IV B→ A C→ B

Please note that ← represents the relation “is to the left of” and → the relation “to the

right of.”

in, above, and so on. In most experiments participants have
either to generate a conclusion (production task) or to check
if a possible conclusion holds (verification task). A production
task requires more cognitive processes than a verification task,
because at first a putative conclusion has to be found which
needs then to be verified. In both cases, an initially constructed
mental representation—the preferredmental model—may be key
for explaining the specific conclusion inferred for the problem
(for more background see, Ragni and Knauff, 2013).

A first psychological investigation of reasoning about spatial
problems goes back to Störring (1908). Since then a broad
variety of problems have been investigated. Among the most
core and classical features count the figural effect (Ehrlich and
Johnson-Laird, 1982), the continuity effect (Knauff et al., 1998),
the preference effect (Knauff et al., 1995), and the small-large scale-
relations effect (e.g., Potter, 1995), formore phenomena see Ragni
(2008). In the following, we introduce these effects in greater
detail. Additionally, since data sets collected for the investigation
of these effects serves as the foundation for our analyses later
on, we also describe the experimental settings in which they
were obtained. As our focus is on individual responses, we
do, however, not report aggregated statistics beyond the given
responses. While it is desirable to have a broad range of different
effects and raw data, the search was limited by the availability of
raw data. Most studies have been conducted more than a decade
ago and so inmost cases only aggregated data have been available.

2.1. The Figural Effect
Consider the three-term problem “A is left of B” and “B is left of
C”. There are four ways, called figures, that allow to reformulate
this three-term problem using the relations right or left leading
to the same spatial arrangement A-B-C. Table 1 represents these
four figures, the formulation above with left-left is called Figure
I, “A is left of B” and “C is right of B” is called Figure II and
so on. Studies by Ehrlich and Johnson-Laird (1982) and Knauff
et al. (1998) for spatial reasoning with interval relations show
differences between the figures in performance.

2.1.1. Experimental Data—Procedure, Materials,

Design, and Results
The first data set (3ps.csv)1 contains a total of 33 participants
in an unpublished online Amazon’s Mechanical Turk2 study
conducted in 2011. Each participant received 16 problems. Each

2http://www.mturk.com

TABLE 2 | The four-term-problems in the experiment by Knauff et al. (1998) with

the reported error rates (in percentage correct).

Assertion

Order of assertion 1 2 3

Continuous A–B B–C C–D

Semi-continuous B–C C–D A–B

Discontinuous C–D A–B B–C

Participants were presented with colored intervals and had to specify all relations between

A–D, A–C, and B–D. Please note that—represents a given interval relation that can be

translated to “is to the left of” or “to the right of.”

problem consisted of three spatial relational assertions, with the
first two being Assertion 1 and Assertion 2 like inTable 1with the
variables being replaced by common fruit names. The third was a
putative conclusion of the first and last objects. The participants
received each assertion self-paced, which disappeared with the
on-set of the next assertion. They had to press the keys “y,” for
“yes, the set of assertions is consistent” and “n” for “no, the
set of assertions is not consistent,” where a set of assertions is
considered consistent if the putative conclusion does not logically
contradict the other assertions. Out of the 16 problems, eight
problems were consistent and another eight were inconsistent.
The assertion reading times, response times, and given responses
were recorded. The correctness of the participants was high
(Mdn = 88%, MAD = 13), indicating that there were
no major difficulties for participants in finding the logical
response. All figures except of Figure III (75%, SD = 25) were
solved by the participants correctly, indicating a non-measurable
figural effect. Since the figural effect is relevant in syllogistic
reasoning too, we still incorporate it in the benchmark for
this analysis.

2.2. The Continuity Effect
The way information is presented can make it easier for
participants to draw inferences (cp. Table 2). Consider the
continuous presentation of each term in the following premise
order “A is left of B” and “B is left of C” and “C is left of
D.” Such problems are easier to process than semi-continuous
problems, e.g., “B is left of C” and “C is left of D” where the third
premise is: “A is left of B.” The second and the third premise
have no term together, so the third premise can only be related
via the term “B” to the first premise. The discontinuous problems
present four different terms in the first two premises, which can
accordingly not be related. Knauff et al. (1998) conducted an
experiment to test the empirical differences between continuous,
semi-continuous, and discontinuous orders of spatial assertions
(cp. Table 2), following the general approach outlined in Ehrlich
and Johnson-Laird (1982).

The study of Knauff et al. (1998) reports an increase in mean
error rates from continuous (M = 39.7%), semi-continuous
(M = 40.1) to discontinuous order (M = 50%). This effect has
been replicated in Nejasmic et al. (2011).
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2.2.1. Experimental Data—Procedure, Materials,

Design, and Results
The second data set (4ps.csv) contains a total of 30 participants,
who received 24 consistent and 24 inconsistent problems, which
are tested with the same sample as before from the same
population as before. Each problem consisted of three assertions
presented in continuous, semi-continuous, or discontinuous
assertion order. The fourth assertion was a putative conclusion
of the first and last introduced object in the premises. For
about 25% of the problems, the conclusion could be rather easy
falsified, as the converse of the conclusion was one premises.
These problems served as a filter for participants, not deliberately
trying to solve the problems but just randomly guessing or just
following a heuristic considering the relation of the outmost
terms. The participants received self-paced each assertion, which
disappeared with the on-set of the next assertion. Hence, it
followed the separate stage paradigm (Potts and Scholz, 1975).
Participants had to press “y,” for “yes, the set of assertions is
consistent” and “n” for “no, the set of assertions is not consistent.”
For this analysis, no participants were excluded. The median
correctness was high (Mdn = 73%, MAD = 15). The error
rates were lowest for continuous (Mdn = 17%, MAD = 17),
higher for semi-continuous (Mdn = 25%, MAD = 17), and
highest for discontinuous assertions (Mdn = 33%, MAD = 8).
The descriptive results are in line with the results reported in
the literature.

2.3. Preference Effect
Reconsider the cardinal direction problem (1). What happens
if more than one relation is possible? Are some preferred?
This research question has been investigated for determinate
and indeterminate problems. This effect has been identified
for spatial relations as diverse as left and right (Ragni et al.,
2007), for interval relations (Rauh et al., 2005), for topological
relations (Knauff and Ragni, 2011), and for the eight cardinal
directions (north, north-east, east, south-east, south, south-west,
west, north-west; Ragni and Klein, 2012).

2.3.1. Experimental Data—Procedure, Materials,

Design, and Results
The third dataset (carddir.csv) contains 49 participants from an
Amazon’s Mechanical Turk study which was conducted in 2018
Ragni et al. (2019b). Participants received 64 spatial reasoning
problems with cardinal directions. All problems were of the
form “A r1 B. B r2 C.” with each r1 and r2 being one of the
eight cardinal direction relations north, north-east, east, south-
east, south, south-west, west, and north-west. Instead of A, B, and
C different buildings based on their frequency in the English
language were used.

The task for the participants was to give a relation that holds
between C and A by selecting a conclusion out of the eight
options obtained from combining the terms that only occurred
in one of the premises by using one of the cardinal direction
relations. The premises were presented sequentially in a self-
paced procedure. The order of the problems was randomized
separately for each participant. Participants responded by
pressing the respective key/s (e.g., “nw” for north-west). Note that

the task did not allow responding that all relations are possible,
such as in the case of problems with opposite relations in both
premises such as northwest and southeast, so the participants
had a force-choice-task having to choose a preferred option
instead. The results that in almost all cases participants preferred
a relation can be found in Table 3.

2.4. Small-Large-Scale-Relations Effect
This effect distinguishes between the construction principles for
small-scale relations such as “left” which is used for scenarios of
objects on tables or in rooms and large-scale relations such as the
cardinal direction relation “West.” An example problem in the
verification paradigm is as follows:

(3) Left of the apricot is the pear.
Left of the pear is the fig.
Left of the pear is the kiwi.
Left of the kiwi is the cherry.

Is the following arrangement a model of the premises?
Fig Cherry Kiwi Pear Apricot [ff-strategy model]

for small-scale relations. Two other models for the premise are:

Cherry Kiwi Fig Pear Apricot [f ff-strategy model ]
Cherry Fig Kiwi Pear Apricot [mix-strategy model ]

The presented model can be constructed by the first-fit-strategy
(Ragni and Knauff, 2013). This strategy is applied in premise 3
“Left of the pear is the kiwi.” in this case the kiwi is inserted in-
between the pear and the fig, so on the first-fit position. The same
is repeated with the cherry and the fig (premise 4). The first-free-
fit strategy would have inserted the kiwi left of the fig. A mix
strategy model combines both the ff and fff-insertion strategies.
For large-scale relations instead of fruits, the fruit trees have
been used.

2.4.1. Experimental Data—Procedure, Materials,

Design, and Results
The fourth dataset (smalllarge.csv) contains 51 participants that
took part in a study in 2018 with the same sample as before.
The first four premises introduce again information about the
spatial relationship between terms. The experiment featured a
set of four structurally distinct problems and used a set of 24
models to verify. Each of the problem-arrangement combination
was presented twice resulting in a total of 48 problems for the
participants to solve. The goal for the participants was to check
their own mental representation of the relationships with the
presented putative model and to decide whether it was consistent
or inconsistent with the premise information. To make the
model accessible in CCOBRA, however, it is encoded as a set
of four assertions representing a relational model. The median
correctness is 79% (MAD = 17), which is comparable to the
experiments investigating the figural effect and the continuity
effect. The preference effect is visible on the aggregate level, as
not all models are equally likely accepted. The mean percentages
are: for the first-free-fit strategy (small: 79%; large: 83%), the
mix-strategy model (small: 74%; large: 72%), and the model
constructed with the ff-strategy (small: 67%; large: 63%). This
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TABLE 3 | The aggregated preferred relation given by the participants for C− A, for the premises Ar1B and Br2C (Ragni et al., 2019a).

Rows correspond to Ar1B, columns to Br2C.

order fff ≥ mix ≥ ff holds on the individual level for 61% for
small scale and 57% for large-scale relations.

3. COGNITIVE MODELS, THE PREDICTIVE
TASK, AND CCOBRA

3.1. Cognitive Models for Spatial Relational
Reasoning
First conceptual models have been proposed in the second
half of the 20th century (e.g., Mani and Johnson-Laird, 1982),
first implemented theories have been provided about 30 years
ago (Johnson-Laird and Byrne, 1991; Rips, 1994). While there
exists a large variety of models for spatial reasoning (for an
overview see Friemann and Ragni, 2018), most models have
been assessed so far only on the reproducibility of effects such
as the four presented above. Few of the existing cognitive
models have been tested on predicting individual data. In
Ragni et al. (2019a), five cognitive models for spatial reasoning
were analyzed on the cardinal direction data set: The Spatial
Probabilistic Model (Ragni and Becker, 2010), Verbal Spatial
Reasoning Model (Krumnack et al., 2010), the Spatial Artificial
Neural Network (Ragni and Klein, 2012), PRISM (Ragni and

Knauff, 2013), and the Dynamic Field Theory (DFT, Kounatidou
et al., 2018). The models demonstrated a similar predictive
performance. In the following analysis, we focus on mental
model approaches and apply the selection criteria from Ragni
et al. (2019a): (i) the cognitive model has been developed
for general spatial reasoning, (ii) the model already has an
implemented version or is easily implementable, (iii) the model
offers explanations for basal principles of spatial reasoning. This
includes the model-based approaches PRISM and an extension
of the Verbal Spatial Reasoning Model that have demonstrated
highest performance on the cardinal direction data. A third
model, the Spatial Reasoner (Johnson-Laird and Byrne, 1991)
satisfies these criteria too.

3.1.1. SpatialReasoner
The SpatialReasoner, a Lisp program called “space-6”3, is an
implementation of the mental model theory for spatial relational
reasoning (Johnson-Laird and Byrne, 1991). The program assigns
to each term in a spatial premise a three dimensional Cartesian

3http://modeltheory.org/programs/space-6.lisp
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coordinate. For indeterminate spatial descriptions, it asserts two
spatial objects in the same place “temporarily in the course of
searching for models that refute conclusions.” as described in the
source code of the algorithm.

Consider the premises “The A is to the left of the B” and “The
C is to the right of the B.” The first premise will result in the
creation of a new model with “A” on the left side of “B.” Hence,
the coordinates of “A” will be assigned to the default coordinates
of (0, 0, 0). “B” is on the right side of “A,” so the coordinates
of “B” are (1, 0, 0) in the model. With the second premise, “C”
will be inserted into the existing model. The program searches
the first free coordinates that satisfy the relation between “B”
and “C.” This results in “C” being inserted into the model at
coordinates (2, 0, 0).

With these premises, an initial mental model is constructed. In
a second step it is inspected to search for implicit relation, like
“A is left of C,” which is called an initial or putative conclusion.
For indeterminate problems (e.g., Example 1 above) alternative
models can be searched for to falsify the previous conclusion.

The LISP-based implementation has been extended to account
for different spatial relations, different objects, and to be able
to predict an individuals conclusion to be compliant with the
CCOBRA evaluation framework4. The SpatialReasoner original
purpose was to integrate premises into a mental model that is
then returned and to check conclusions. The SpatialReasoner,
however, provides information about the success of integrating a
new premise. SpatialReasoner checks the consistency of the new
premise in terms of the mental model constructed thus far. While
integrating a new premise into given premises, we extracted and
interpreted the following cases from SpatialReasoner:

1. Truth, a new premise follows validly from the previous
premises.

2. Falsity, a new premise is inconsistent with the previous
premises.

3. Weak falsification, the constructed model was previously true.
4. Weak truthification, the constructed model was previously

false. However, by reinterpreting the previous premises, a
mental model consistent with all premises, including the new
one, is found.

Interpreting these assertions about the model-based validity of
premises allows us to transform SpatialReasoner into a predictive
model. Our Python-based SpatialReasoner model directly

4Source code of the implementation: https://github.com/nriesterer/

pyspatialreasoner.

communicates with the original LISP-based SpatialReasoner
implementation and thus ensures that its predictions are
still in line with the original authors’ intentions. To extract
SpatialReasoner’s assertion, it first concatenates the problem’s
premises with the putative conclusion in order to arrive at
a problem formulation consisting of a series of premises for
SpatialReasoner to attempt to integrate into a single mental
model. Extracting the assertion about the problem’s validity
from the LISP-output, our model then proceeds to interpret it
for generating the binary prediction about validity or falsity of
the problem. To do so, we implemented four model variants
representing possible individual characteristics:

• SpatialReasoner-skeptical considers only conclusion
candidates necessarily following from the premises, i.e.,
corresponding to the first of SpatialReasoner’s validity
assertions introduced above.
• SpatialReasoner-credulous is located at the other end of the

spectrum and accepts all conclusions that can possibly follow,
i.e., all of SpatialReasoner’s assertions except for the second
one.
• SpatialReasoner-initial only considers conclusions as true that

initially appeared valid, i.e., SpatialReasoner’s first and third
assertion.
• SpatialReasoner-adapted represents an individualized model

that selects the variant fitting best to a participant’s responses.

3.1.2. PRISM
PRISM is the implementation of the preferred mental model
theory (Ragni and Knauff, 2013) and simulates human
performance in spatial reasoning tasks. It consists of a spatial
working memory structure operationalized by a spatial array
and a spatial focus which inserts spatial objects into the array,
inspects the array to find new spatial relations, and, if necessary,
relocates spatial objects. It consists of four parts: I, the input
mechanism, which reads the premises from an external device,
a set O of object names, a spatial focus F, that operates on a
spatial array and can move right, left, forward, and backward,
and C, the control process, which is responsible for the control
of the focus and other executive functions. Let us consider
the example premise “The pliers are to the left of the saw.”
PRISM assumes a discrete space representation, which can be
represented by a multidimensional array and constructs a mental
model successively by inserting one object after the other by
using a focus. Hence, the focus that is initially at position
(0,0) inserts an icon of “the pliers” and by processing the
next part of the premise, moves to the right and inserts an
icon of “the saw.” Figure 1 provides PRISM’s control process
and a visualization of constructing a mental model out of the
given premises.

For indeterminate problems like (1) above, it constructs
the most parsimonious mental model of the premises given
the number of operations of the spatial focus. Depending
on the premise type, it integrates the terms of the premise
accordingly (see Figure 1). This model is called the preferred
mental model. The model construction principles differ from
the initial model the spatial reasoner generates and so
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FIGURE 1 | PRISMs model construction process demonstrated on the example premise “the pliers are to the left of the saw.”

different putative conclusions are drawn. The preferred model
is varied according to minimal changes (cp. Ragni and
Knauff, 2013) to find alternative models. Conclusions are
generated or verified based on the preferred mental model.
This behavior may lead to logically incorrect answers and
fits well to typical errors and performance rates of human
subjects (Ragni et al., 2007; Ragni and Brüssow, 2011). The
focus introduces a general measure of difficulty based on
the number of necessary focus operations (rather than the
number of models). Individual differences can be explained
by differences in the construction of the preferred mental

model and, if and how many, alternative models are taken
into account.

3.1.3. Verbal Spatial Reasoning Model
The Verbal Spatial Reasoning Model (Krumnack et al., 2010,
2011) suggests that individuals construct a queue of spatial
objects in their mind. They distinguish between the “general
structure of verbal models and the most efficient process of
constructing these models” (Krumnack et al., 2011, p. 379).
It is understood as an operationalization of mechanisms of
language processes as proposed by Polk and Newell (1995). The
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most efficient process is determined by a mental cost metric.
This metric is defined based on the insertion, breaking of,
and searching in the direction of links between spatial objects:
breaking a link costs more than creating one, and searching has a
culturally dependent left-right preference (e.g., Maass and Russo,
2003).

As an example, consider the following premises (taken from
Krumnack et al., 2011):

The apple is to the left of the mango.
The apple is to the left of the pear.

and the conclusions “The mango is to the left of the pear” and
“The pear is to the left of the mango.”

The main assumption of the verbal reasoning approach is the
existence of a “queue” of objects. Thereby the queue describes the
order of the object, but the interpretation of the order depends
on the respective relation at hand (e.g., it can be an order by
size, value, position, etc). The queue is constructed by creating
directed links between the objects, which allow to traverse the
queue from the beginning in order to access the objects. This
leads to the following rules for the construction:

1. The first object inserted in the queue, is the starting point of
the queue.

2. The second object is linked to the first object. The relation
determines the interpretation and the implicit direction of all
following objects.

By applying these rules, two possible models can be constructed
from the first premise:

apple*→mango
apple←mango*

where the asterisk (*) denotes the starting point. For the second
premise, the object “pear” has to be inserted. There are two rules
for the insertion (Krumnack et al., 2010, 2011):

1. If the new object is to be placed behind an object of the queue
it will be inserted at the end of the queue.

2. If the new object is to be placed in front of an object of the
queue it will be inserted into the queue directly in front of this
object.

The application of the rules lead to the following possible
queues:

apple*→mango→ pear
apple← pear←mango*

To decide which of the possible models are preferred, the
cognitive cost of each model is estimated. For the first model, a
new link has to be created in order to connect “pear” to “mango.”
For the second model, the already existing link between “mango”
and “apple” needs to be removed in addition to connecting
“pear,” leading to higher overall costs. For both models, however,
a different conclusion can be followed: “The mango is to the
left of the pear” follows from the first model, while the second
conclusion “The pear is to the left of the mango” follows from
the latter. It was shown that the first conclusions was easier to

accept, which indicates that the model with lower cognitive cost
was indeed preferred (Krumnack et al., 2011).

As the model by Krumnack et al. (2010) has been developed
for one-dimensional spatial relational problems only (e.g., left-
right), it has been extended for spatial reasoning with cardinal
directions by combining the different dimensions in a Cartesian
coordinate system way (Ragni et al., 2019a): For the vertical and
horizontal plane respectively a direction encoding is added to
each link, with positive values for “north” and “east,” and negative
ones for “south” and “west.” If the angle between the direction
of the new relation and the queue direction is >90◦, the new
object is inserted before the reference object, otherwise at the end
of the queue. To predict a response the model sums up all the
direction encodings between the two objects in the queue and
decodes them into cardinal directions.

Each presented computational model shares key features
with the other models: They all build mental models and
there are similar processes for model construction, inspection,
and variation. But the models differ in some aspects: PRISM
has specific processes on constructing a preferred mental
model in contrast to the SpatialReasoner, the VerbalReasoner
differs that objects are linked and there is a preferred order.
Finally, the SpatialReasoner (cp. the variants we describe
above) allows for differences in the inference mechanisms.
A comparison on the individual participant allows to have
a fine-grained analysis, i.e., which strategies of constructing
a model, or which inference mechanism is used by this
specific person.

3.2. The Predictive Cognitive Modeling
Task
The goal of the evaluation presented in this paper is to investigate
the predictive capabilities of the current state of the art in
modeling spatial relational reasoning.

Our analysis is based on the coverage task (Riesterer et al.,
2020a), an evaluation setting in which models are assessed
based on their ability to predict the specific responses given
by participants in the experimental setting. In doing so,
models are evaluated based on their ability to accurately
reflect the human reasoning processes. Crucially, in the
coverage setting, the models are provided with the exact
problem-response data they are subsequently supposed to
predict beforehand.

To analyze model performances in a standardized fashion,
the Cognitive Computation for Behavioral Reasoning Analysis
(CCOBRA) framework is used1. CCOBRA is a framework (for
an overview over its core flow, see Figure 2), which enables the
comparison of cognitivemodels in various domains including the
spatial relational domain. One of themain goals of the framework
is to evaluate models with respect to their ability to predict actual
reasoning behavior observed in psychological experimentation,
i.e., on the level of individual responses. Hence, the data required
by CCOBRA are experimental problems and the corresponding
participant responses. In a training phase, models are given the
possibility to search for a parameter configuration that optimally
captures the individual reasoner to predict. Consequently, if a
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FIGURE 2 | The CCOBRA-framework to evaluate the predictive power of

cognitive theories.

reasoner’s response behavior fits into the configuration space
spanned by the model, it is able to reproduce, or “cover,”
the reasoner’s behavior. If, however, the model is unable to
provide an adequate parameterization capturing the reasoner’s
behavior, it will provide inaccurate response predictions and thus
receive a low coverage score. Because substantial inter-individual
differences are to be expected in reasoning behavior, CCOBRA
allows models to rely on three different types of fitting functions
in order dynamically tailor their inferential mechanisms to
specific reasoners.

First, pre-train provides a set of experimental data (i.e.,
problems and their corresponding responses) that excludes the
participant for which predictions are to be generated. This data
can be used by the model to adjust itself prior to the actual
evaluation. This resembles the training phase of modernmachine
learning methods. The later prediction phase then tests the
model’s ability to generalize from the training examples to novel
reasoning behavior. Second, pre-train-person is a second pre-
training phase that occurs before the prediction phase in which
exemplary data for the individual is supplied to be predicted
for. In doing so, the model is provided with a first glance at
the behavior it is subsequently expected to reflect. Finally, an
adaption phase is performed after a prediction has been generated
by the model. In this phase, a model is provided with the true
response to the problem it has just generated a prediction for.
This allows models to continuously fine-tune their inferences
to match an individual’s behavior as closely as possible. Since
our analyses are based on the coverage setting, only pre-train
and pre-train-person are used. Importantly, during the pre-train-
person phase, models are provided with the exact problem-
response pairs they are subsequently expected to predict. This
allows them to determine an optimal parameterization for
the individual.

Since CCOBRA aims at simulating the experimental setting,
models need to be able to provide precise response predictions.
In particular, this means that if a model is based on probabilistic
principles, a singular response needs to be determined similar
to the human reasoner who might be forced to select a
singular response even if they are unconsciously assessing

the likelihood of different response options to be valid.
However, this focus on precise response predictions allows
CCOBRA to evaluate arbitrary models irrespective of their
formal foundation.

CCOBRA approaches model evaluation from the perspective
of benchmarks. Given experimental datasets consisting of
problems and responses, CCOBRA allows for an evaluation
of cognitive model performance in a standardized manner.
At the end of the evaluation, the results, i.e., the obtained
response predictions as well as corresponding accuracy scores
are returned in conjunction with visualizations representing the
model performances.

4. RESULTS

In this section we put the different cognitive computational
models to the test. In addition to the cognitive models,
five baseline models are introduced to provide reference
performances that allow a better interpretation of the cognitive
model performances. First, the RandomModel generates
responses by randomly selecting one of the possible responses,
i.e., true or false in verification tasks or one of the response
choices in production tasks. In doing so, it serves as a lower
baseline for all models that claim to incorporate insight
into spatial reasoning processes should exceed. Second, the
Most-Frequent Answer model (MFA) generates predictions
by selecting the response most frequently selected by the
participants in the training data. This means that the MFA
serves as an upper bound of performance for models that do not
incorporate inter-individual differentiation and thus dynamicity
in their response behavior. Third, the TransitiveClosure
model is a purely logical model that generates all possible
relations consistent to the premises by repeatedly applying
the transitive rule to the relations obtained thus far. Note
that for verification tasks that only ask participants to validate
a conclusion, the performance of TransitiveClosure will
just reflect the correctness of the participants’ responses.
However, when multiple correct response options are available,
the model performance drops, as it will select one of the
correct options at random. Finally, we included two models,
BestModel and Optimal that artificially attempt to provide
an estimate of the optimal performance achievable by the
current cognitive models. To this end, BestModel selects the
optimal cognitive model for each participant and uses it to
generate predictions. Optimal determines the best cognitive
model on the level of individual problems, which means
that it generates the correct prediction for a problem if at
least one of the cognitive models is able to generate the
correct prediction.

4.1. Data Set 1: The Figural Effect
In the case of the figural data, the Optimal model is able
to predict about 88% (median) of the participants responses
(cp. Figure 3). The performance of the models is except of
the RandomModel identical (cp. Figure 3). In fact, comparing
the results with the TransitiveClosure demonstrates that all
existing models do replicate the logical correct answer. This
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FIGURE 3 | The predictive performance of the cognitive computational models and baseline models on the figural effect data set (3ps.csv). Predictive accuracy is

defined as the ratio between the number of correct predictions of individual participants’ responses and the total number of predictions. Dots represent the predictive

accuracy for individual participants.

FIGURE 4 | The predictive performance of the cognitive computational models and baseline models on the continuity effect data set (4ps.csv). Predictive accuracy is

defined as the ratio between the number of correct predictions of individual participants’ responses and the total number of predictions. Dots represent the predictive

accuracy for individual participants.

shows that the difference among the models does not contribute
anything to explain inter-individual differences. This indicates
that there are still cognitive processes, being either reasoning or
guessing principles, that are not captured by models. However,
the good performance of the MFA also indicate that the

participants do not show a lot of variance in this task, with the
majority of participants also giving the logical correct answer.
Therefore, the task seems to be too easy to allow a differentiation
of the models, as the results are mostly dominated by the
correct answer.
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4.2. Data Set 2: The Continuity Effect
The Optimal model shows the upper bound for the predictive
task of about 76% (median) for the continuity data (cp. Figure 4).
The performance of the models is, except of the RandomModel,
again very similar. SpatialReasoner-adapted has the highest
performance with amedian of 76%with PRISM, VerbalReasoner,
SpatialReasoner-skeptical, SpatialReasoner-initial, and
TransitiveClosure with 75%. In this case, the models again
do most often just predict the logical responses given by
the participants. This indicates that there are still cognitive
processes, being either reasoning or guessing principles, that
are not captured by models. This and the previous data set are
not distinguishing between the models, they are not diagnostic
in the sense that they can enlighten underlying differences of
the models.

In a next step, we analyzed the predictive performance of the
cognitive models with respect to the subcondition continuous,
semi-continuous, and discontinuous, but the performance
was identical.

4.3. Data Set 3: The Preference Effect
The Optimal model shows again the upper bound for the
predictive task as 82% (median) for the preference effect for
cardinal direction (cp. Figure 5). In this case the “oracle”
clearly outperforms the cognitive models. The preference
effect in the cardinal direction shows more variation in the
models, the best performance is demonstrated by PRISM and
VerbalReasoner which both achieve 71.9%. Both models, PRISM
and VerbalReasoner differ in their predictions. This explains why
both contribute to the higher performance of the Optimal model.
The SpatialReasoner does not perform as well, SpatialReasoner-
initial (with 57.1%) indicating that the SpatialReasoners model
construction process does not yet capture the preference effect in
reasoning with cardinal directions.

4.4. Data Set 4: The Small-Large-Scale
Relation Effect
The Optimal model again shows the upper bound for predictive
task as 100% (median) for the small-large-scale relation effect
(cp. Figure 6). This demonstrates that the existing cognitive
models already capture most of the cognitive processes
participants apply. The highest performance of 79.1% in between
the Optimal model and the MFA show PRISM, SpatialReasoner-
adapted and -credulous. It is notable that VerbalReasoner drops
from its previous high performance which was often close to the
best models in the other benchmark data. The TransitiveClosure
baseline model ranges at 73.4%, indicating that participants
showed a high dependency on logics in this task.

4.5. The Contribution of the Cognitive
Models to the Optimal Model
Data set 2 (the continuity effect) and data set 4 (small-large-
scale relation) differ with respect to the models’ contribution
to the optimal model as can be seen in Figure 7. The heatmap
for data set 2 shows that almost all models contribute the same
amount of conclusions to the optimal model. This is different
for data set 4. PRISM and SpatialReasoner-credulous have a high

congruency as can be seen in the heatmap (cp. Figure 7). In
contrast, SpatialReasoner-skeptical provides the most distinctly
different set of responses. This indicates that both approaches
provide predictions that are able to accommodate different parts
of the behavioral patterns contained in the data, i.e., the varying
cognitive processes in human reasoners.

5. GENERAL DISCUSSION

Cognitive modeling has so far focused on explaining group-
level data such as the aggregated responses of individuals. How
good existing computational models for spatial reasoning can
predict the respective conclusions of any individual reasoner is
unknown. The goal of this article is to focus on the individual
reasoner. We identified and analyzed first data sets for the
inclusion in a benchmark, we adapted and individualized existing
computational models, and evaluated themodels on the data sets.
The models were evaluated on spatial relational descriptions. The
task of the participants was to process the spatial information and
to produce or verify a conclusion or possible mental model.

Refined cognitive models demonstrated a predictive power for
any individuals conclusion of about 80% (median) across data
sets. Data sets that include more complex effects with respect
to the cognitive processes and tasks, such as the preference and
small-large-scale relation effect were able to better differentiate
between the models than information presentation effects, than
the continuity or figural effect. In fact, for both problems the
tasks were so easy that an instantiation of a logical model
(TransitiveClosure) performed identical. Hence, not only more
data and effects for developing a benchmark is necessary, but
data in which participants significantly deviate from logical
approaches are required. The Heatmap in Figure 7 demonstrates
that for the Small-Large-Scale data set the three models
SpatialReasoner (with its variants), PRISM, and VerbalReasoner,
despite being developed in that order, can differ significantly.
Especially enriching models such as the SpatialReasoner with
different inference mechanisms can lead to a large difference
in their predictive performance (cp. Figures 6, 7). Given
that different individuals can apply different (weak) inference
mechanisms, this allows to individualize models better.

This fine-grained analysis of the features were only possible
by considering each individual responses of each participant. It
eliminates the preprocessing of data and goes beyond a pure
aggregated statistical evaluation. Aggregation can help to identify
general effects, at the same time it does not guarantee that these
general effects can be found in an individual (Kievit et al., 2016;
Fisher et al., 2018).

5.1. What Are Limitations of the
Benchmark Set?
Overall, there are only marginal differences between models
for the first two data sets, and so models cannot be evaluated
meaningfully. From a benchmark and modeling point of
view, the data set is not diagnostic. Nothing changes in
evaluating subconditions in the continuity effect: there are
only slight differences between the performance within models,
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FIGURE 5 | The predictive performance of the cognitive computational models and baseline models on the preference effect data set (carddir.csv). Predictive

accuracy is defined as the ratio between the number of correct predictions of individual participants’ responses and the total number of predictions. Dots represent

the predictive accuracy for individual participants.

FIGURE 6 | The predictive performance of the cognitive computational models and baseline models on the small-large-scale relations effect data set (smallarge.csv).

Predictive accuracy is defined as the ratio between the number of correct predictions of individual participants’ responses and the total number of predictions. Dots

represent the predictive accuracy for individual participants.

most models behave very similar. It is different with the
Small-Large-Scale Relation dataset, e.g., VerbalReasoner in
particular behaves differently than the other models. This,
however, is not due to the small-scale and large-scale effect.
Evaluated based on each models’ respective contribution to

the Optimal model, it shows that high performing models
(e.g., SpatialReasoner-credulous) outperform models such as
VerbalReasoner on both subconditions. It would have been
desirable to have more and larger data sets, but raw data of
most publications that date some time back is not yet accessible.
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FIGURE 7 | Heatmap that visualizes how often the models were optimal together and for the same problem (left: Data set 2—continuity effect; right: Data set

4—Small-Large-Scale). Note that the heatmaps are not symmetrical: if the model of the current line was optimal, how often was the model in the respective column

also optimal.

If the tasks require more than the acceptance or rejection of
a conclusion (conclusion-verification tasks), but to generate
many possible responses (like in cardinal directions), then a
higher discrimination rate between models is possible. Hence,
conclusion generation tasks with several possible conclusions
is—from the perspective of computational model comparisons—
preferred over conclusion verification tasks with a dichotomous
response set.

5.2. What Are Limitations of the Existing
Cognitive Models?
The first two data sets analyze the impact the presentation
of spatial information has on the way how humans generate
conclusions. Assessing the cognitive models demonstrate their
congruence with classical logic, i.e., they do not contribute more
explanation power than logic. This indicates that existing models
need to be extended with more cognitive processes to capture
more of the given responses of participants. Additionally, given
the uniformity in the models’ prediction on these data, it seems
that more research effort is necessary to understand why and how
humans deviate in these rather simple tasks from logics. This
changes with the preference effect and smalllarge data set. Here
the models differ more and different strategies lead to a better
assessment of the individual model contribution. So these data
sets are suited better to capture the indeterminacy in the models.
The cognitive processes in models are not yet fully modularized.
To built more adaptive and dynamic models it is an advantage to

identify atomic cognitive operations (cp. for syllogistic reasoning,
Bischofberger and Ragni, 2021).

So far many publications in the psychology of spatial
reasoning have focused on reporting general effects on the
aggregated level. But a core result of our analysis is that not
all identified effects in psychological experiments are helpful
in evaluating models. So far, many model’s prediction are
congruent with each other in explaining effects, such as the figural
and continuity effect. From a modeling perspective, this either
indicates that many models are similar, that core effects are not
suitable for separating different models well. A further point is,
as the figural effect demonstrates, that sometimes individuals
do not differ on tasks. The current approach, that we need to
identify more and more effects experimentally remains unclear—
as there theoretically can be infinitemany possible effects. In turn,
we argue for a different approach, that we have outlined here:
We propose that future models need to focus more and more
on predicting any individual’s conclusion. This avoids illusions
of effects due to aggregation, gives a precise understandable
measure of how good a model performs, allows to compare
and reject models based on how good they just predict this
individual’s conclusion, and offers the possibility to identify
missing cognitive processes of models that are not yet considered
in models. The predictive modeling task calls for a further
joint effort and true interdisciplinary approach where the best
of cognitive psychology, machine learning, and classical AI are
combined to predict and understand why and how an individual
derives a conclusion.
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