
ORIGINAL RESEARCH
published: 01 October 2019

doi: 10.3389/fimmu.2019.02341

Frontiers in Immunology | www.frontiersin.org 1 October 2019 | Volume 10 | Article 2341

Edited by:

Liwu Li,

Virginia Tech, United States

Reviewed by:

Xiaohu Huang,

University of Maryland, Baltimore,

United States

Chaofeng Han,

Second Military Medical

University, China

*Correspondence:

Thierry Roger

thierry.roger@chuv.ch

†ORCID:

Thierry Roger

orcid.org/0000-0002-9358-0109

Specialty section:

This article was submitted to

Molecular Innate Immunity,

a section of the journal

Frontiers in Immunology

Received: 17 July 2019

Accepted: 17 September 2019

Published: 01 October 2019

Citation:

Heinonen T, Ciarlo E, Le Roy D and

Roger T (2019) Impact of the Dual

Deletion of the Mitochondrial Sirtuins

SIRT3 and SIRT5 on Anti-microbial

Host Defenses.

Front. Immunol. 10:2341.

doi: 10.3389/fimmu.2019.02341

Impact of the Dual Deletion of the
Mitochondrial Sirtuins SIRT3 and
SIRT5 on Anti-microbial Host
Defenses
Tytti Heinonen, Eleonora Ciarlo, Didier Le Roy and Thierry Roger*†

Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges,

Switzerland

The sirtuins SIRT3 and SIRT5 are the main mitochondrial lysine deacetylase

and desuccinylase, respectively. SIRT3 and SIRT5 regulate metabolism and redox

homeostasis and have been involved in age-associated metabolic, neurologic and

oncologic diseases. We have previously shown that single deficiency in either SIRT3

or SIRT5 had no impact on host defenses in a large panel of preclinical models of

sepsis. However, SIRT3 and SIRT5 may compensate each other considering that they

share subcellular location and targets. Here, we generated a SIRT3/5 double knockout

mouse line. SIRT3/5 deficient mice multiplied and developed without abnormalities.

Hematopoiesis and immune cell development were largely unaffected in SIRT3/5

deficient mice. Whole blood, macrophages and neutrophils from SIRT3/5 deficient mice

displayed enhanced inflammatory and bactericidal responses. In agreement, SIRT3/5

deficient mice showed somewhat improved resistance to Listeria monocytogenes

infection. Overall, the double deficiency in SIRT3 and SIRT5 has rather subtle impacts

on immune cell development and anti-microbial host defenses unseen in single deficient

mice, indicating a certain degree of overlap between SIRT3 and SIRT5. These data

support the assumption that therapies directed against mitochondrial sirtuins, at least

SIRT3 and SIRT5, should not impair antibacterial host defenses.

Keywords: sirtuin, innate immunity, cytokine, infection, sepsis, metabolism, macrophage, neutrophil

INTRODUCTION

The innate immune system plays a central role in host defenses. Innate immune cells among
which monocytes/macrophages, granulocytes and dendritic cells (DCs) sense microbial and danger
associated molecular patterns (MAMPs/DAMPs) through pattern recognition receptors (PRRs)
expressed at the cell surface, in the cytoplasm and in endosomes. The best characterized PRRs
belong to the families of Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like
receptors (NLRs), RIG-I-like receptors (RLRs), and cytosolic DNA sensors (1, 2). The binding of
MAMPs/DAMPs to PRRs activates intracellular signaling cascades that induce the production of
effector molecules involved in inflammation and host defense mechanisms, as well as the resolution
of inflammation and tissue repair (3, 4). Immune cells are plastic and adapt their metabolism and
responsiveness to their environment to execute their biological functions (5, 6).
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Sirtuins belong to the family of so-called histone deacetylases
(HDACs) that target lysine posttranscriptional modifications.
Classical HDACs (HDAC1-11) are Zn2+-dependent, while
sirtuins are NAD+-dependent lysine deacetylases. Sirtuins are
homologs to yeast Sir2 that gained tremendous attention when
it was shown to be activated upon caloric restriction and to
increase lifespan (7). The mammalian genome encodes for
seven sirtuins that target proteins by removing acetyl functional
groups, but also acyl, glutaryl, malonyl, and succinyl groups
as demonstrated lately (8). The list of targets of sirtuins has
increased dramatically over the years, and high throughput
proteomics analyses pinpointed to thousands of substrates for
sirtuins. Accordingly, sirtuins are involved in the regulation
of many biological and pathological processes and in the
development of metabolic, neurodegenerative, cardiovascular,
and oncologic diseases (9, 10).

SIRT3 and SIRT5 are mainly localized in the mitochondrial
matrix, where SIRT3 is the main deacetylase (11) and SIRT5
is the main desuccinylase (12, 13). Of note, SIRT5 also
catalyzes lysine demalonylation and deglutarylation (13, 14).
SIRT3 promotes glucose and fatty acid metabolism, urea
cycle and the activity of the electron transport chain. During
caloric restriction, SIRT3 regulates mitochondrial acetylome and
multiple metabolic pathways in the liver (15, 16). SIRT3 protects
from oxidative stress by activating the reactive oxygen species
(ROS) detoxifying enzyme superoxide dismutase 2 (SOD2)
and the redox controlling enzyme isocitrate dehydrogenase 2
(IDH2) (17, 18). Similar to SIRT3, SIRT5 activates enzymes
involved in ROS detoxification (i.e., SOD1, IDH1, and IDH2),
promotes mitochondrial functions and integrity and regulates
the urea cycle and other metabolic pathways (14, 19–25).
The genetic ablation of SIRT3 or SIRT5 in mice has been
associated with increased susceptibility to age-associated diseases
including insulin resistance, obesity, neurodegeneration, cardiac
dysfunction and fibrosis, while contrasting context-dependent
effects have been reported for tumorigenesis (10, 26–30).
Deficiencies in SIRT3 or SIRT5 have also been reported to
promote colitis, acute lung injury and ischemia reperfusion
injury (10, 31–36). Overall, targeting the activity of sirtuins and
particularly mitochondrial sirtuins is viewed as an attractive
therapeutic strategy to tackle the development of age-related
disorders (10, 28–30). Considering that inflammation is an
essential component of innate immune defenses, we analyzed
the impact of SIRT3 and SIRT5 deficiencies on the response of
mice subjected to a broad panel of preclinical models of bacterial
and fungal sepsis (37, 38). Neither SIRT3 nor SIRT5 was critical
to fight against infections. Additionally, SIRT3−/− mice were
not particularly susceptible to cecal ligation and puncture (CLP),
a stringent model of sepsis (39, 40). Hence, SIRT3 and SIRT5
appear to have a more prominent influence on chronic metabolic
and inflammation-related disorders than on infectious diseases
characterized by acute inflammatory reactions.

SIRT3 and SIRT5 share subcellular location and targets, so
they might compensate each other in single knockout mice. To
bypass this hurdle, we generated a SIRT3/5 deficient mouse line.
SIRT3/5−/− mice were fertile and developed without apparent
abnormalities. In vitro and in vivo investigations revealed

somewhat enhanced inflammatory and bactericidal responses
of whole blood, macrophages, and neutrophils and a moderate
improved resistance to Listeria monocytogenes in the double
knockouts. Altogether SIRT3 and SIRT5 have subtle, redundant
roles during antimicrobial host defenses. Overall, therapies
directed against mitochondrial sirtuins should not dramatically
impact on antimicrobial host defenses.

MATERIALS AND METHODS

Key Resources
See Supplementary Information.

Ethics Statement
Animal experiments were approved by the Service des
Affaires Vétérinaires, Direction Générale de l’Agriculture,
de la Viticulture et des Affaires Vétérinaires (DGAV), état
de Vaud (Epalinges, Switzerland; authorizations 876.9 and
877.9) and performed according to Swiss and ARRIVE
guidelines (http://www.nc3rs.org.uk/arrive-guidelines).

Mice
C57BL/6J mice were from Charles River Laboratories (Saint-
Germain-sur-l’Arbresle, France). SIRT3−/− and SIRT5−/−

C57BL/6J mice were described (41, 42) and obtained from
Prof. Johan Auwerx, Laboratory for Integrative and Systems
Physiology, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland. SIRT3−/− males were crossed with
SIRT5−/− females. Thirty-two SIRT3/5+/− females were crossed
with 16 SIRT3/5+/− males. Among the 205 F2 mice, 4 males
and 8 females were double knockout mice and used to establish
the SIRT3/5−/− mouse line. All mice used in this study were
7–14-week old, housed under specific pathogen-free conditions
and exempt of mouse hepatitis virus and murine norovirus. For
genotyping purposes, DNA was extracted and analyzed by PCR
using the Mouse Direct PCR Kit (Bimake, Houston, TX) and
primers pairs described in Supplementary Information.

Cells and Reagents
Bone marrow (BM) cells were cultured 7 days in IMDM or
RPMI 1640 supplemented with 100 IU/ml penicillin, 100µg/ml
streptomycin (Invitrogen, San Diego, CA), 10% heat inactivated
fetal bovine serum (Biochrom GmbH, Berlin, DE) and 50
U/ml macrophage colony-stimulating factor (ImmunoTools,
Friesoythe, Germany) or 30% L929 cell supernatant to generate
BM-derived macrophages (BMDMs) (43, 44). Cells were seeded
in half-area 96-well plates (2.5 × 104 cells/well), 96-well plates
(2 × 105 cells/well) and 6-well plates (3 × 106 cells/well)
without growth factors. Neutrophils were isolated from the bone
marrow using the Neutrophil isolation kit (Miltenyi, Bergisch
Gladbach, Germany) and plated in 96-well plates (105 cells/well).
Salmonella minnesota ultra pure lipopolysaccharide (LPS) was
from List Biologicals Laboratories (Campbell, CA), Pam3CSK4

from EMC microcollections GmBH (Tübingen, Germany), and
CpG ODN 1826 (CpG) and poly(I:C) from Invivogen (San
Diego, CA). Monosodium urate (MSU) crystals were prepared
as described (45). Listeria monocytogenes 10403 s was grown
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in brain heart infusion broth (BD Biosciences, Erembodegem,
Belgium). Bacteria were washed with 0.9% NaCl and adjusted at
1010 cfu/ml. When required, bacteria were heat-inactivated for
2 h at 70◦C.

RNA Analyses
RNA was extracted (RNeasy kit) and reverse transcribed
(QuantiTect reverse transcription kit) (Qiagen, Hilden,
Germany). PCRs were performed in triplicate with 1.25µl cDNA,
1.25 µl H2O, 0.62 µl primers [Supplementary Information and
(46)] and 3.12 µl KAPA SYBR Green Fast (Kapa Biosystems,
Wilmington, MA) using a QuantStudioTM 12K Flex system (Life
Technologies, Carlsbad, CA). Gene expression was normalized
to actin expression.

Western Blot Analyses
Total and nuclear proteins were extracted, submitted to
PAGE and transferred onto membranes as described (47,
48). Membranes were incubated with primary and secondary
HRP-coupled antibodies and revealed by chemiluminescence
[Supplementary Information and (49)]. Images were recorded
with a Fusion Fx system (Vilber Lourmat, Collégien, France). Full
length blots are presented in Supplementary Figure S1.

Flow Cytometry
Single cell suspensions from thymus, spleen and BM were
incubated with 2.4 G2 to block Fc receptors and stained
with antibodies described in Supplementary Information (50).
For hematopoietic stem cells (HSC) and progenitor cells,
lineage cocktail contained antibodies directed against CD45R
(B220), CD3e, CD11b, CD19, Ly6C/G, Ter119/Ly-76. Data were
acquired using an Attune Nxt flow cytometer (ThermoFisher,
Waltham, MA) and analyzed using FlowJo version 10.2
(FlowJo LLC, Ashland, OR). Gating strategies are presented in
Supplementary Figure S2.

ROS Measurement
BMDMs were plated in half-area black 96-well plates in RPMI
without phenol red (Invitrogen). Cells were incubated for 10min
at 37◦Cwith 5µMMitoSOX (Thermofisher). Stimuli were added
and fluorescence (Ex510, Em580) recorded using a Synergy plate
reader (BioTek, Winooski, VT). Neutrophils in HBSS without
calcium and magnesium (ThermoFisher) were incubated for 1 h
with 100 nM PMA (Enzo Life Sciences, Farmingdale, NY) and
5µM MitoSOX during the last 10min of incubation. ROS were
measured by flow cytometry.

Cytokine Measurement
Cytokines were quantified by ELISA
(Supplementary Information) or Luminex using a custom
ProCarta kit (ENA-78/CXCL5, G-CSF, IFNγ, IL-1α, IL-1β, IL-3,
IL-6, IL-10, IL-12p40, IL-17A, IL-18, IP-10/CXCL10, KC/CXCL1,
MCP-1/CCL2, MIP-1α/CCL3, MIP-2/CXCL2, TNF) (Invitrogen,
Carlsbad, CA) and a bioplex 200 system (Bio-Rad, Hercules,
CA) (51).

Metabolic Activity
The metabolic activity of BMDMs was measured using the XF
Cell Mito Stress, Glycolysis Stress andMito Fuel Flex Test Kits on

a 96-well format Seahorse XFe R© system (Agilent Technologies,
Santa Clara, CA) (46).

Neutrophil Killing and NETosis Assays
Neutrophils were incubated with live L. monocytogenes for 1 h in
RPMI medium. Serial dilutions of reaction mixtures were plated
on blood agar plates (BD Biosciences). Twenty-four hours later,
colonies were enumerated. To measure NETosis, neutrophils
were incubated for 3 h with 100 nM PMA and 5µM of the cell
impermeable dye Sytox green. Fluorescence (Em504, Ex523) was
recorded using the Synergy plate reader.

In vivo Models
Listeriosis was induced by challenging intravenously (i.v.) age
and sex-matched mice with a low (7.3 × 103 cfu) or a high (0.9–
1 × 105 cfu) inoculum of L. monocytogenes. Blood and organs
were collected 1–3 days post-infection to quantify bacteria and
cytokines and analyze cell populations. A model of endotoxemia
was developed by challenging mice intraperitoneally (i.p.) with
10mg/kg LPS. Body weight loss, severity score and survival were
registered at least twice daily (52, 53) by 2–3 operators. The
severity score was graded from 0 to 4 based on the mobility, the
posture, the appearance and the weight loss of mice (detailed
criteria were approved by the Service des Affaires Vétérinaires,
DGAV, and are available upon request). Mice were sacrificed
when they met a severity score of 4. A mice found dead was
assigned a score of 5.

Statistical Analyses
Groups were compared by variance analysis followed by
two-tailed unpaired Student’s t-test or a Mann-Whitney test
when appropriate. Survival was analyzed using the Kaplan-
Meier method. P < 0.05 was used to indicate statistical
significance. Analyses were performed using PRISM 8.0.1
(GraphPad Software, San Diego, CA).

RESULTS

SIRT3/5 Deficiency Has No Dramatic
Impact on Mouse Development and
Macrophage Metabolism
We generated a SIRT3/5 double knockout mouse line
(SIRT3/5−/−, see Materials and Methods) to study the
interaction between SIRT3 and SIRT5. Genomic-DNA based
PCR genotyping (Figure 1A) and Western blotting analyses
(Figure 1B) confirmed the truncation of the Sirt3 and Sirt5
genes and the absence of SIRT3 and SIRT5 protein expression
in SIRT3/5−/− mice. Fecundity and development were normal.
The size (Figure 1C) and the female/male sex ratio (Figure 1D)
of the litters as well as the weight of adult female and male
mice (Figure 1E) were like those of SIRT3/5+/+, SIRT3−/−,
and SIRT5−/− mouse lines. Autopsy did not reveal gross
abnormalities in SIRT3/5−/− mice.

The dual deletion of SIRT3 and SIRT5 was not compensated
by an increased expression of mRNA encoding for SIRT1,
SIRT2, SIRT4, SIRT6, and SIRT7 in bone marrow derived
macrophages (BMDMs) (Figure 1F). There was around
20% increase of total protein acetylation in SIRT3/5−/−
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FIGURE 1 | SIRT3/5 deficiency has no evident impact on mouse development and macrophage metabolism. (A) Genotyping of SIRT3/5+/+, SIRT3−/−, SIRT5−/−,

and SIRT3/5−/− mice by PCR. Genomic DNA was amplified by PCR using the primer pairs indicated on the right and reaction mixtures were electrophoresed through

(Continued)
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FIGURE 1 | agarose gels. (B) SIRT3, SIRT5, and tubulin expression in the liver of SIRT3/5+/+ and SIRT3/5−/− mice measured by Western blotting (Full blots are

presented in Supplementary Figure S1). (C,D) Size (C) and sex ratio (in percentage, D) of litters from SIRT3/5+/+, SIRT3−/−, SIRT5−/−, and SIRT3/5−/− mouse

lines. (E) Weight of adult SIRT3/5+/+ and SIRT3/5−/− female and male mice. (F) Sirtuin mRNA expression levels in SIRT3/5−/− BMDMs, expressed relative to the

mRNA levels in SIRT3/5+/+ BMDMs set at 100%. Data are means ± SD from one experiment performed with three mice analyzed in triplicate. (G) Acetyllysine levels

in total protein extracts from SIRT3/5+/+ and SIRT3/5−/− BMDMs were measured by Western blotting and imaging. Values were normalized to those obtained using

SIRT3/5+/+ BMDMs set at 1. Data are means ± SD from one experiment performed with three mice. P = 0.009. (H) Mrpl19 mRNA expression levels assessed by

RT-PCR and median fluorescence intensity (MFI) of MitoTracker measured by flow cytometry in SIRT3/5+/+ and SIRT3/5−/− BMDMs. Data are means ± SD from

four mice aged 10–12 weeks. (I) Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured using the Seahorse technology. OM,

oligomycin; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; AARot, rotenone+Antimycin A; Glu, glucose; 2-DG, 2-deoxyglucose. Data are means ±

SD from four mice aged 10–12 weeks analyzed in quadruplicate. (J) Mitochondrial fuel usage by SIRT3/5+/+ and SIRT3/5−/− BMDMs measured using the Seahorse

technology. (K) Acadl, Cpt1, Fabp4, Hadha, Hmgcr, Mvd, and Sqle mRNA expression levels were quantified by RT-PCR. Gene expression levels were normalized to

actin levels. A.U., arbitrary unit. Data are means ± SD from three mice aged 10–12 weeks analyzed in triplicate.

BMDMs (Figure 1G). SIRT3/5 deficiency did not alter the
mitochondrial mass, evaluated by measuring mitochondrial
ribosomal protein L19 (Mrpl19) mRNA levels and the
fluorescence intensity of the mitochondrial dye MitoTracker
(Figure 1H). The oxygen consumption rate (OCR), which
reflects mitochondrial respiration, was weakly increased in
SIRT3/5−/− BMDMs (Figure 1I). The extracellular acidification
rate (ECAR), a readout of the glycolytic activity, was not
affected in resting and LPS stimulated SIRT3/5−/− BMDMs
(Figure 1I and Supplementary Figure S3A). OCR and
ECAR were similarly affected in resting SIRT3−/− BMDMs
(Supplementary Figure S3B) and SIRT5−/− BMDMs (38). The
dependency, capacity, and flexibility of BMDMs to oxidize the
mitochondrial fuels glucose, glutamine and fatty acids were
identical for SIRT3/5+/+ and SIRT3/5−/− BMDMs (Figure 1J).
SIRT3/5+/+ and SIRT3/5−/− BMDMs expressed similar levels
of a number of genes encoding for molecules involved in the
fatty acid metabolism, i.e., Acadl (acyl-CoA dehydrogenase long
chain), Cpt1 (carnitine palmitoyltransferase 1), Fabp4 (fatty acid
binding protein 4), Hadha (hydroxyacyl-CoA dehydrogenase
trifunctional multienzyme complex subunit alpha), Hmgcr
(3-hydroxy-3-methylglutaryl-CoA reductase), Mvd (mevalonate
diphosphate decarboxylase) and Sqle (squalene epoxidase)
(Figure 1K). Finally, the OCR of SIRT3/5+/+ and SIRT3/5−/−

BMDMs was not different before and after addition of etimoxir,
an inhibitor of Cpt1 (88.0 vs. 85.5% inhibition in SIRT3/5+/+

vs. SIRT3/5−/− BMDMs; n = 6; P = 0.3). Hence, SIRT3/5
deficiency had no strong impact on basic metabolic parameters
of BMDMs.

SIRT3/5 Deficient Mice Have Minor
Abnormalities of Leukocyte Development
The bone marrow is the main source of hematopoietic
stem cells (HSC) and progenitors of immune cells during
adulthood (54, 55). The number of CD45+ hematopoietic
cells per leg (femur + tibia) was identical in SIRT3/5+/+,
SIRT3−/−, SIRT5−/−, and SIRT3/5−/− mice (Figure 2A), as
well as the composition of the HSC pool which is made
of lineage negative, Sca1 positive, c-kit positive (LSK) cells,
long-term (LT)-HSC, short-term (ST)-HSC, and multipotent
progenitors (MPP) (Figure 2B). Accordingly, the percentage
and the absolute number of T cells, B cells, neutrophilic
granulocytes and monocytes were similar in SIRT3/5+/+ and
SIRT3/5−/− mice, while some minor changes were observed
in SIRT3−/− and SIRT5−/− mice (decreased CD3+ T cells

and CD19+ B cells and increased monocytes) (Figure 2C
and Table 1).

SIRT3/5−/− mice, but not single knockout mice, showed
a slight reduction of thymus cellularity when compared to
SIRT3/5+/+ mice (SIRT3/5+/+ vs. SIRT3/5−/− mice: 12.7 ± 1.8
vs. 8.3 ± 1.2 million cells; P = 0.03). However, the proportion
of CD4/CD8 single positive, double positive and double negative
(DN1-DN4) thymocytes was comparable in all mouse lines
(Table 2). The size of the spleen (SIRT3/5+/+, SIRT3−/−,
SIRT5−/−, and SIRT3/5−/− mice: 6.1 ± 1.5, 5.3 ± 1.1, 7.3 ± 1.6,
and 7.0 ± 1.8 × 107 cells; P > 0.05 for all) and the proportion
of total T cells, B cells, dendritic cells (DCs), neutrophilic
granulocytes and monocytes were not affected in SIRT3/5−/−

mice (Table 3). Small, statistically significant, differences were
noticed between SIRT3/5+/+ and SIRT3/5−/− mice, i.e., reduced
percentages of effector memory CD4+ T cells (23.1 ± 3.3 vs.
17.2 ± 2.3% of CD4+ T cells), CD4−CD8− T cells (4.2 ± 0.9
vs. 3.0 ± 0.2% of CD3+ T cells) and conventional DC1 (cDC1,
35.4 ± 6.3 vs. 27.2 ± 3.0% of CD11c+ DCs) (Table 3). Like
SIRT3/5−/− mice, SIRT3−/− mice showed a reduced percentage
of cDC1, while SIRT5−/− mice showed an increased percentage
of Ly6Clow (alternative) monocytes at the expense of Ly6Chigh

(inflammatory) monocytes. Collectively, these results suggested
that the dual deletion of SIRT3 and SIRT5 had a subtle impact on
the development of immune cells.

SIRT3/5 Deficiency Increases the
Inflammatory Profile of Macrophages and
the Killing Activity of Neutrophils
Macrophages and neutrophils are proficient at sensing microbial
products and play key defense roles during infections. SIRT3
and SIRT5 single deficiency did not influence antimicrobial host
defenses (37, 38). Therefore, we asked whether dual deficiency
of SIRT3 and SIRT5 would reveal a phenotype unseen in single
knockouts. SIRT3/5+/+ and SIRT3/5−/− BMDMs were exposed
to LPS, CpG, and poly(I:C), which are sensed through TLR4,
TLR9, and TLR3, respectively. SIRT3/5−/− BMDMs produced
higher levels of TNF, IL-6, and IL-12p40 (as a trend for CpG-
induced IL-12p40) and lower levels of IL-10 than SIRT3/5+/+

BMDMs in response to LPS and CpG, while SIRT3/5+/+ and
SIRT3/5−/− BMDMs produced similar levels of TNF and IL-6
in response to poly(I:C) (Figure 3A).

To address whether the increased inflammation driven
by SIRT3/5-deficiency was linked to increased intracellular
signaling, we quantified by Western blotting the nuclear
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FIGURE 2 | SIRT3/5 deficient mice have a normal number of hematopoietic stem cells and progenitors in the bone marrow. (A) Number of CD45+ bone marrow cells

per leg of SIRT3/5+/+, SIRT3−/−, SIRT5−/−, and SIRT3/5−/− mice aged 10–14 weeks. (B) Percentage of lineage negative, Sca1 positive, c-kit positive (LSK) cells,

long-term (LT)-hematopoietic stem cells (HSC), short-term (ST)-HSC, multipotent progenitors (MPP), MPP2, MMP3, and MPP4 among BM cells. Data are means ±

SD from eight mice. (C) Number of CD19+, CD3+, Ly6G+, Ly6Chigh, or Ly6Clow cells per leg of SIRT3/5+/+ and SIRT3/5−/− mice.

TABLE 1 | Bone marrow leukocyte subsets.

SIRT3/5+/+

(n = 4)

SIRT3−/−

(n = 4)

SIRT5−/−

(n = 4)

SIRT3/5−/−

(n = 4)

CD3+ T cells 2.8 ± 0.4 1.9 ± 0.5 1.6 ± 0.4 2.8 ± 0.5

CD19+ B cells 17.6 ± 1.0 14.8 ± 1.1 16.9 ± 2.8 17.3 ± 1.2

Ly6G+ Ly6C− granulocytes 33.5 ± 4.2 39.4 ± 1.5 35.9 ± 4.3 34.6 ± 4.0

Ly6C+ Ly6G− monocytes 6.8 ± 0.4 9.7 ± 1.7 7.0 ± 1.4 8.0 ± 1.9

Ly6Chigh inflammatory/classical monocytes 93.8 ± 0.5 95.1 ± 0.3 93.2 ± 1.4 93.2 ± 0.8

Ly6Clow alternative/patrolling monocytes 6.2 ± 0.5 4.9 ± 0.3 6.9 ± 1.4 6.8 ± 0.8

Data are means ± SD of four mice (aged 10–14 weeks) per group and expressed as the percentage of total cells (CD3+, CD19+, Ly6G+, Ly6C+) or the percentage of parental cells.

Gray background: P < 0.05 vs. SIRT3/5+/+.

TABLE 2 | Thymic cell subsets.

SIRT3/5+/+

(n = 4)

SIRT3−/−

(n = 4)

SIRT5−/−

(n = 4)

SIRT3/5−/−

(n = 4)

CD4+ 13.0 ± 1.7 15.7 ± 0.7 16.1 ± 2.4 13.3 ± 1.6

CD8+ 2.4 ± 0.4 3.4 ± 0.1 3.3 ± 0.7 2.9 ± 0.5

CD4+ CD8+ 73.0 ± 1.6 67.4 ± 1.8 67.6 ± 3.2 71.9 ± 2.5

CD4− CD8− 7.9 ± 0.9 8.9 ± 2.2 8.7 ± 1.3 8.3 ± 2.3

DN1: CD25− CD44+ 10.6 ± 1.8 12.2 ± 5.4 9.1 ± 1.9 10.7 ± 2.7

DN2: CD25+ CD44+ 7.7 ± 1.1 8.9 ± 2.2 6.2 ± 1.2 6.4 ± 1.9

DN3: CD25+ CD44− 15.3 ± 2.1 16.8 ± 3.3 14.6 ± 2.2 16.0 ± 2.4

DN4: CD25− CD44− 66.4 ± 4.8 62.1 ± 10.9 70.1 ± 4.5 66.8 ± 6.7

Data are means ± SD of four mice (aged 7–8 weeks) per group and expressed as the percentage of total thymocytes (CD4+, CD8+, CD4+ CD8+, CD4− CD8−) or the percentage of

CD4− CD8− cells. No statistically significant differences in subsets’ percentages were detected.

translocation of NF-κB p65 and the phosphorylation of ERK1/2
and p38 MAPKs in BMDMs exposed for 0, 10, 30, and 60min to
LPS (Figure 3B). In SIRT3/5−/− BMDMs, there was an increased
NF-κB p65 nuclear content at baseline and, albeit not statistically
significant, after 30 and 60min of stimulation. The level of
phospho-ERK1/2 was also increased after 30min of exposure
to LPS. Overall, SIRT3/5 deficiency increased inflammatory

intracellular signaling pathways and inflammatory cytokine
production by BMDMs.

ROS activate the NOD-like receptor pyrin domain-
containing-3 (NLRP3) inflammasome that cleaves pro-IL-1β
into mature IL-1β that is secreted. Considering that SIRT3 and
SIRT5 activate enzymes playing a role in the detoxification
process of ROS (i.e., IDH1, IDH2, SOD1, and SOD2) (17–21),
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TABLE 3 | Splenic cell subsets.

SIRT3/5+/+

(n = 4)

SIRT3−/−

(n = 4)

SIRT5−/−

(n = 4)

SIRT3/5−/−

(n = 4)

CD3+ T cells 21.5 ± 2.6 23.3 ± 3.9 25.0 ± 4.2 24.4 ± 1.5

CD4+ 58.7 ± 4.8 56.0 ± 1.9 61.2 ± 2.0 60.9 ± 1.2

CD44low CD62Lhigh naïve 43.0 ± 12.6 48.4 ± 10.3 53.7 ± 8.1 49.5 ± 7.4

CD44high CD62Llow memory 23.1 ± 3.3 19.1 ± 2.7 20.2 ± 3.0 17.2 ± 2.3

CD8+ 29.6 ± 5.6 34.0 ± 1.8 31.7 ± 0.7 32.2 ± 0.7

CD44low CD62Lhigh naïve 70.4 ± 6.3 73.4 ± 4.7 71.4 ± 3.7 71.3 ± 5.1

CD44high CD62Llow memory 3.6 ± 0.9 3.5 ± 0.7 4.8 ± 1.2 3.9 ± 1.0

CD4− CD8− 4.2 ± 0.9 3.8 ± 0.5 3.3 ± 0.6 3.0 ± 0.2

CD4+ CD8+ 7.6 ± 4.3 6.2 ± 2.1 3.8 ± 1.3 4.0 ± 0.8

B220+ B cells 56.3 ± 3.5 52.4 ± 3.9 58.6 ± 1.1 53.5 ± 2.1

IgD− CD23+ mature 17.0 ± 5.3 18.0 ± 3.4 24.7 ± 2.9 16.7 ± 3.1

Non-IgD+/CD23+ immature 83.0 ± 5.3 82.0 ± 3.4 75.3 ± 2.9 83.3 ± 3.1

CD11c+ DCs 2.9 ± 0.4 3.0 ± 0.4 3.3 ± 0.1 2.8 ± 0.2

B220+ pDCs 19.1 ± 2.6 19.6 ± 4.8 21.0 ± 2.1 16.8 ± 1.6

B220− cDCs 79.7 ± 2.9 78.9 ± 5.1 77.8 ± 2.2 82.0 ± 1.8

cDC1 35.4 ± 6.3 27.7 ± 5.4 33.6 ± 2.8 27.2 ± 3.0

cDC2 55.1 ± 6.4 63.0 ± 6.2 55.9 ± 3.4 63.4 ± 4.1

Ly6G+ Ly6C− granulocytes 6.2 ± 5.5 5.5 ± 3.7 1.2 ± 0.3 5.9 ± 2.2

Ly6C+ Ly6G− monocytes 3.7 ± 1.1 3.9 ± 0.7 3.1 ± 0.5 4.7 ± 0.8

Ly6Chigh 34.1 ± 14.7 25.5 ± 6.4 19.1 ± 3.5 35.9 ± 1.8

Ly6Cint 26.0 ± 6.2 30.2 ± 4.0 33.2 ± 2.9 27.7 ± 1.7

Ly6Clow 33.5 ± 9.5 37.1 ± 3.5 42.3 ± 2.6 31.1 ± 0.9

Data are means± SD of four mice (aged 10–14 weeks) per group and expressed as the percentage of total splenocytes (CD3+ T cells, B220+ B cells, CD11c+ DCs, Ly6G+ granulocytes,

monocytes) or the percentage of parental cells. Gray background: P < 0.05 vs. SIRT3/5+/+.

we questioned whether SIRT3/5−/− BMDMs produce increased
levels of mitochondrial ROS (mtROS) and IL-1β. SIRT3/5+/+,
SIRT3−/−, SIRT5−/−, and SIRT3/5−/− BMDMs were exposed
to monosodium urate (MSU) crystals, a commonly used
activator of the NLRP3 inflammasome before measuring
mtROS (Figure 3C). MSU crystals induced mtROS equally in
SIRT3/5+/+ and SIRT5−/− BMDMs, 1.5-fold more in SIRT3−/−

BMDMs and 2-fold more in SIRT3/5−/− BMDMs. mRNA levels
of Idh1, Idh2, Sod1, and Sod2 were similar in SIRT3/5+/+ and
SIRT3/5−/− BMDMs (Figure 3D), in agreement with the fact
that sirtuins target the activity rather than the expression of
IDH1, IDH2, SOD1, and SOD2. As expected from the above,
SIRT3/5−/− BMDMs secreted higher levels of IL-1β than
SIRT3/5+/+ BMDMs (Figure 3E).

The role of sirtuins in the development and functions of
granulocytes is scarce and has not been reported for SIRT5
(56, 57). The mRNA expression levels of SIRT3 and SIRT5
decreased gradually from common myeloid progenitors (CMP)
to granulocyte-monocyte progenitor (GMP; 1.6-fold) and from
GMP to neutrophilic granulocytes (5.3–5.7-fold) (Figure 4A).
Compared to SIRT3/5+/+ mice, SIRT3/5−/− mice expressed
in the bone marrow statistically significantly more CMP (P
= 0.03) but not GMP (P = 0.06) (Figure 4B). Accordingly,
SIRT3/5−/− mice expressed normal numbers of neutrophilic
granulocytes in the bone marrow and spleen (Figure 2C
and Table 3). We then addressed whether SIRT3/5 deficiency
affected neutrophil functions. We setup a killing assay in which

neutrophils were incubated for 1 h with Listeria monocytogenes
before quantifying bacteria. As shown in Figure 4C, 115,
96, 77, and 66% of the starting inoculum were recovered
from assays using SIRT3/5+/+, SIRT3−/−, SIRT5−/−, and
SIRT3/5−/− neutrophils, respectively. Hence, the dual deletion
of SIRT3 and SIRT5 promoted the killing of L. monocytogenes
by neutrophils. This prompted us to analyze two main
mechanisms through which neutrophils kill bacteria, i.e., the
production of ROS and the release of neutrophil extracellular
traps (NETs). SIRT3/5−/− neutrophils, and to a lesser extent
SIRT3−/− and SIRT5−/− neutrophils, produced increased
levels of ROS when compared to SIRT3/5+/+ neutrophils
(Figure 4D). In contrast, SIRT3/5+/+, SIRT3−/−, SIRT5−/−,
and SIRT3/5−/− neutrophils produced similar amounts of NETs
(Figure 4E). Thus, the proficient killing of L. monocytogenes
by SIRT3/5−/− neutrophils was more likely related to an
increased generation of ROS than NETs. Lastly, we measured
by Luminex the cytokines released by whole blood exposed
to heat-killed L. monocytogenes. Fifteen of 17 mediators were
produced at measurable levels: CCL2, CCL3, CXCL1, CXCL5,
CXCL10, G-CSF, IFNγ, IL-1α, IL-1β, IL-6, IL-10, IL-12p40,
IL-17A, IL-18, and TNF. Going well along with an increased
inflammatory response of BMDMs (Figure 3), SIRT3/5−/−

whole blood produced more G-CSF and showed a trend toward
producing more IL-1α, IL-6, and IFNγ than SIRT3/5+/+ whole
blood (Figure 4F). The production of other cytokines was
not affected.
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FIGURE 3 | SIRT3/5 deficient macrophages display an enhanced proinflammatory profile. (A) SIRT3/5+/+ and SIRT3/5−/− BMDMs were exposed for 24 h to LPS

(10 ng/ml), CpG (1µg/ml), and poly(I:C) (10µg/ml). TNF, IL-6, IL-12p40, and IL-10 concentrations in cell culture supernatants were quantified by ELISA. Data are

means ± SD from one experiment performed with four mice. (B) SIRT3/5+/+ and SIRT3/5−/− BMDMs were exposed for 0, 10, 30, and 60min to LPS (10 ng/ml).

Nuclear (n) and total protein extracts were used to analyze NF-κB p65, and phosphorylated (p) and total ERK1/2 and p38. Signals were quantified by

(Continued)
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FIGURE 3 | imaging and results (ratio p65/actin, p-ERK1/2/ERK1/2, and p-p38/p38) expressed relative to the results obtained in resting SIRT3/5+/+ BMDMs set at

1. Data are means ± SD from one experiment performed with three mice. Full blots are presented in Supplementary Figure S1. (C–E) BMDMs were primed with

Pam3CSK4 (10 ng/ml) for 18 h and exposed (colored and white symbols) or not (black symbols) to MSU crystals for the indicated time (C) or 6 h (E). mtROS were

quantified using MitoSOX (C), Idh1, Idh2, Sod1, and Sod2 mRNA levels by RT-PCR (D) and IL-1β by ELISA (E). Gene expression levels were normalized to actin

levels. A.U, arbitrary unit. Data are mean ± SD of four mice aged 10–12 weeks analyzed in triplicate (C–E). *P < 0.05; **P < 0.01.

SIRT3/5 Deficiency Provides a Modest
Protection to Listeriosis
Myeloid cells play a crucial role in protecting from
L. monocytogenes infection (58, 59). Considering that SIRT3/5
deficiency increased L. monocytogenes killing by neutrophils
(Figure 4C) and cytokine production by macrophages and
to some extent by whole blood (Figures 3A, 4F), we tested
the relevance of these observations in vivo using a model of
listeriosis. Mice challenged intravenously with a high inoculum
of L. monocytogenes (0.9–1.5 × 105 cfu) exhibited signs of
disease 36–40 h post-infection and were severely sick after 65 h as
shown by elevated severity scores in most animals. SIRT3/5−/−

mice were not as ill as SIRT3/5+/+ mice (P = 0.01; Figure 5A)
and had 2.3-fold less L. monocytogenes in blood collected 48 h
after infection (SIRT3/5+/+ vs. SIRT3/5−/−: 3.5 ± 0.9 × 103

cfu/ml vs. 1.5 ± 0.3 × 103 cfu/ml; median ± SEM; P = 0.005)
(Figure 5B). In line with these observations, SIRT3/5−/− mice
had a modest, statistically significant, delayed mortality rate
compared to SIRT3/5+/+ mice (median survival of SIRT3/5+/+

vs. SIRT3/5−/−: 3.0 vs. 3.12 days; P = 0.01) (Figure 5C). Going
well along with an improved response to infection, SIRT3/5−/−

mice had significantly higher blood concentrations of TNF
at day 1 (P = 0.001), TNF and IL-1β at day 2 (P = 0.004
and 0.03) and KC/CXCL1 at day 3 (P = 0.05). Albeit not
statistically significant, the levels of G-CSF, IL-1α, MCP-1/CCL2,
MIP-2/CXCL2 at day 1, G-CSF, KC, MCP-1, and MIP-2 at day
2, and IL-1α, IL-1β, IL-6, IL-10, MCP-1, MIP-2, and TNF at
day 3 post-infection were 1.5–4.4-fold higher in SIRT3/5−/−

than in SIRT3/5+/+ mice (Figure 5D). As expected, 2 days
after the onset of infection, listeriosis induced a dramatic drop
of circulating leukocytes including B cells, T cells, neutrophils
and Ly6Chigh inflammatory monocytes that rebounded at day 3
(Figure 5E). No differences were observed between SIRT3/5+/+

and SIRT3/5−/− mice, suggesting that the reactivity rather than
the number of blood leukocytes conferred some protection to
SIRT3/5−/− mice during listeriosis. Interestingly, there was no
statistically significant difference of mortality when SIRT3/5−/−

and SIRT3/5+/+ mice were challenged with a low inoculum
(7.3 × 103 cfu) of L. monocytogenes responsible for <25% death
(Figure 5C). Finally, we tested the mouse lines in a model of
endotoxemia induced by an intraperitoneal challenge with
10mg/kg LPS. Surprisingly, there was no statistically significant
difference between the SIRT3/5+/+ and SIRT3/5−/− groups
(n= 21–22 mice per group; P = 0.1).

DISCUSSION

This is the first report about the impact of the dual deficiency of
SIRT3 and SIRT5 on immune cell development and antimicrobial

host defenses. Double knockout mice developed normally and
showed subtle, minor alterations of immune cell subpopulations
and host responses to infection. Together with the fact that
SIRT3−/− and SIRT5−/− mice are susceptible to bacterial sepsis
like wild-type mice (37–40), these observations strengthen the
development of pharmacological modulators of the activity of
mitochondrial sirtuins for clinical purposes.

Notwithstanding that SIRT3 and SIRT5 orchestrate
metabolism and oxidative stress responses, SIRT3 and SIRT5
whole body knockout mice have no macroscopic abnormalities
(41, 42). The SIRT3/5−/− mouse line we generated here
developed normally. No problem of fertility, sex distribution
and growth were noticed. Surprisingly, the metabolism of
SIRT3/5−/− BMDMs was similar to that of SIRT3/5+/+

BMDMs. Yet, the impact of SIRT3 and SIRT5 on metabolism
was mainly demonstrated in cells or tissues such as the liver and
the heart that are rich in mitochondrial sirtuins when compared
to macrophages (38, 41, 60). Another SIRT3/5−/− mouse line
has been recently generated. In line with our observations,
no developmental defects were reported. Moreover, these
SIRT3/5−/− mice were susceptible to streptozotocin-induced
hyperglycemia like controls, while showing only a modest inner
retinal dysfunction (61, 62).

Studies on the role of sirtuins in hematopoiesis and immune
cell development are scarce. SIRT3/5−/− mice had a normal
pool of HSCs and MPPs and a slightly increased number of
CMP (and GMP as a trend) in their bone marrow. The primary
and secondary immune organs of SIRT3/5−/− mice were largely
unaffected, according to absolute numbers and proportions of
immune cell subpopulations. There was only a slight reduction of
thymus size, which did not impact the proportion of thymocyte
subpopulations. This reminds the phenotype of SDHD-ESRmice
with deletion of the succinate dehydrogenase, subunit D gene
encoding for one of the subunits of the mitochondrial complex
II (63). SDHD mice have a thymic atrophy without perturbation
of thymocyte development. Overall, deficiencies in SIRT3, SIRT5,
and SIRT3/5 do not seem to have a dramatic impact on immune
cell development and/or functions [(37, 38) and present study].
Nonetheless, a role for these enzymes might come to light
under stress or stimulatory conditions, or in aged mice. For
example, SIRT1 shaped the T helper (Th) and T regulatory (Treg)
responses of naïve T cells (64–68). Furthermore, in SIRT1−/−

mice, the percentages of CD4+, CD8+, and CD4+CD8+ T cell
subpopulations were normal, but thymocytes were at increased
sensitivity to ionizing radiation induced DNA damaging (69).
Finally, SIRT3−/− mice of 18–24 months had a lower frequency
of bone marrow hematopoietic progenitors than mice of 12
weeks (70).

SIRT3/5−/− macrophages exposed to TLR agonists produced
more inflammatory cytokines and less IL-10 than SIRT3/5+/+
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FIGURE 4 | Increased killing of Listeria monocytogenes by SIRT3/5 deficient neutrophils. (A) Sirt3 and Sirt5 mRNA expression levels in common myeloid progenitors

(CMP), granulocyte-monocyte progenitor (GMP), and granulocytes. Data were extracted from BioGPS (http://biogps.org). (B) Number of CMP (Lin− c-kit+ CD34+

cells) and GMP (Lin− c-kit+ CD135+ CD34+ cells) per leg of SIRT3/5+/+, SIRT3−/−, SIRT5−/−, and SIRT3/5−/− mice aged 8–9 weeks. The gating strategies are

presented in Supplementary Figure S2. (C–E) Killing of bacteria (C) and production of mtROS (D) and NETs (E) by neutrophils. Neutrophils were incubated for 1 h

with L. monocytogenes (0.1 cfu/cell) (C), for 50min with PMA (100 nM) and MitoSOX (D) or for 3 h with PMA (100 nM) and SYTOX (E). Bacteria were enumerated and

results expressed relative to the initial inoculum set at 100% (C). *P < 0.05; ***P < 0.005. (F) G-CSF, IL-1α, IL-6, and IFNγ concentrations, determined by Luminex, in

blood from SIRT3/5+/+ and SIRT3/5−/− mice incubated with heat-killed L. monocytogenes for 24 h. The concentrations of CCL2, CCL3, CXCL1, CXCL5, CXCL10,

IL-1β, IL-10, IL-12p40, IL-17A, IL-18 and TNF were similar for SIRT3/5+/+ and SIRT3/5−/− blood.
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FIGURE 5 | SIRT3/5 deficiency confers some protection to listeriosis. (A–E) SIRT3/5+/+ and SIRT3/5−/− mice (n = 14–15 per group, aged 8–12 weeks) were

injected intravenously with 7.3 × 103 cfu (C, dashed lines) or 0.9–1.5 × 105 cfu L. monocytogenes (A–E, plain lines in C). (A) Severity scores were recorded. (B)

L. monocytogenes in blood collected 2 days post-infection. (C) Survival of mice. (D) Cytokines, quantified by Luminex, in blood collected 1, 2, and 3 days

post-infection (p.i.). The horizontal bar represents the median. Data are mean ± SD of four mice per group. P = 0.001 for TNF at day 1 p.i. 0.004 and 0.03 for TNF

and IL-1β at day 2 p.i. and 0.05 for KC at day 3 p.i. ENA-78, IL-3, IL-17A, and MIP-1α were not detected. (E) CD45+, CD19+, CD3+, Ly6G+ and Ly6Chigh

leukocytes in blood collected 1, 2, and 3 days post-infection. Each dot represents a mouse, and line and bars mean ± SD.

macrophages, contrary to SIRT3−/− and SIRT5−/− macrophages
that behaved like wild-type cells (37, 38). Accordingly, NF-κB
and MAPK signaling pathways were increased in resting and/or
LPS-stimulated SIRT3/5−/− macrophages. These data somehow
support the possibility that SIRT3 and SIRT5 compensate

each other in single knockout animals. Sirtuins are generally
considered to drive anti-inflammatory responses. However, as
nicely reviewed recently for SIRT1 (68), sirtuins may promote
proinflammatory and anti-inflammatory effects depending on
the context and whether myeloid or lymphoid cells are
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considered. For example, SIRT5 deficiency was associated with
both increased and decreased innate inflammatory response
in vivo (33, 71). More generally, contrasting observations
have been reported for most sirtuins (SIRT1-3, SIRT5-6).
Methodological differences may explain these differences when
studying monocytes/macrophages (37, 38, 46): the origin/fate of
the cells (BMDMs vs. peritoneum macrophages vs. established
macrophage cell lines, growth factors used for differentiation
and maturation state of macrophages), strategies to delete or
overexpress sirtuins or to modulate sirtuin activity (siRNA,
shRNA, expression vectors, full or cell-specific knockouts,
pharmacological activators, and inhibitors), readouts, and subtle
variations in NAD+ concentrations and circadian rhythm known
to affect sirtuin activity or expression.

The expression levels of SIRT3 and SIRT5 decreased gradually
from CMP to GMP and from GMP to granulocytes, which
mirror the decline of mitochondrial mass and mitochondrial
DNA during hematopoietic differentiation (72). Granulopoiesis
relies on the expression of CCAAT/enhancer binding protein
(C/EBP). The expression of SIRT1, which deacetylates C/EBPε

and represses neutrophil terminal differentiation (73), declines
during granulopoiesis (727± 13, 643± 20, and 307± 61 mRNA
arbitrary units in CMP, GMP, and granulocytes, respectively).
Thus, the downregulation of sirtuins seems to be a general
feature associated with neutrophil development. The fact that
neutrophil counts were normal and not increased in SIRT3/5−/−

mice suggests either the implementation of compensatory
mechanisms, possibly through SIRT1, or that SIRT3 and SIRT5
have a modest influence on granulopoiesis.

Neutrophils produce cytotoxic compounds that target
pathogenic bacteria and fungi but are harmful for host tissues
(74). Contrary to SIRT3/5+/+ neutrophils, and better than
SIRT3−/− and SIRT5−/− neutrophils, SIRT3/5−/− neutrophils
killed L. monocytogenes, which was associated with an augmented
production of ROS but not of NETs. In comparison, neutrophils
deficient in SIRT3 had a mild increase of intracellular ROS
but performed either normal or increased NETosis (56, 57).
SIRT1 deficiency did not impact on neutrophil functions,
and the role of the remaining sirtuins has not been reported.
Whereas, SIRT3−/− mice had increased neutrophil infiltration
in lungs during sterile injury (36, 75) and mycobacterial
infection impairing the survival of mice (76), SIRT5−/− had
reduced inflammation and ischemia/reperfusion brain injury
(77). Finally, SIRT3−/− and SIRT5−/− mice behaved like
wild-type mice in models of sepsis requiring neutrophils to fight
the infectious agents (37–40). Interestingly, SIRT3/5−/− mice
resisted better than SIRT3/5+/+ mice to acute listeriosis, showing
decreased signs of morbidity, reduced blood bacterial loads and
significant albeit modest delayed mortality. SIRT3/5−/− mice
expressed higher concentrations of cytokines but normal counts
of leukocytes in blood, suggesting that the reactivity rather
than the number of leukocytes protected SIRT3/5−/− mice
from listeriosis. Interestingly, SIRT3/5−/− mice were not more
resistant to mild listeriosis than their wild type counterparts, and
behaved like wild type mice in a model of endotoxemia. These
observations support the assumption that drugs targeting SIRT3
and SIRT5 should not have a deletary impact on host defenses,

which would contrast with drugs targeting classical HDACs that
strongly impaired innate immune defenses against infections in
preclinical models and clinical settings (78–84).

Overall, the double deficiency in SIRT3 and SIRT5 had
rather modest and subtle impacts on immune cell development
and anti-microbial host defenses. It might be that SIRT4,
the remaining mitochondrial sirtuin in SIRT3/5−/− mice,
compensated for SIRT3 and SIRT5 absence. Unfortunately,
whether SIRT4 affects immune responses has not been reported.
Considering the link between sirtuins, metabolism and age-
associated pathologies, it is possible that phenotypes will
emerge in aged mice or in mice submitted to metabolic stress.
SIRT3/5−/− mice should be tested in other preclinical models of
sepsis. Nonetheless, putting together the data from the present
study together with the fact that single deficiencies in SIRT3
and SIRT5 had no impact in a large panel of experimental
sepsis (37–40), one may foresee that therapies directed against
mitochondrial sirtuins or concomitant targeting of SIRT3 and
SIRT5 activity should have no deep impact on antibacterial
host defenses.
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Supplementary Figure S1 | Full blots used to extract the panels shown in

Figures 1B, 3B.

Supplementary Figure S2 | Gating strategies for flow cytometry analysis.

CD117 encodes for c-kit.

Supplementary Figure S3 | (A) Extracellular acidification rate (ECAR) by

SIRT3/5+/+ and SIRT3/5−/− BMDMs exposed to LPS (10 ng/ml) measured

using the Seahorse technology. (B) Oxygen consumption rate (OCR) and ECAR

by SIRT3/5+/+ and SIRT3−/− BMDMs measured using the Seahorse

technology. Data are means ± SD from three mice aged 10–12 weeks analyzed

in quadruplicate.
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