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Abstract: In this paper, a novel kind of method to monitor corrosion expansion of steel 

rebars in steel reinforced concrete structures named fiber optic coil winding method is 

proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. 

Firstly, a strain calibration experiment is designed and conducted to obtain the strain 

coefficient of single mode fiber optics. Results have shown that there is a good linear 

relationship between Brillouin frequency and applied strain. Then, three kinds of novel 

fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding 

packaging schemes are designed. Sensors were embedded into concrete specimens to 

monitor expansion strain caused by steel rebar corrosion, and their performance was 

studied in a designed electrochemical corrosion acceleration experiment. Experimental 

results have shown that expansion strain along the fiber optic coil winding area can be 

detected and measured by the three kinds of sensors with different measurement range 

during development the corrosion. With the assumption of uniform corrosion, diameters of 

corrosion steel rebars were obtained using calculated average strains. A maximum 

expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis 

model was established and the evaluation formula to evaluate mass loss rate of steel rebar 

under a given corrosion rust expansion rate was derived. The research has shown that three 

kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of 
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reinforced concrete structures with good sensitivity, accuracy and monitoring range, and 

can be applied to monitor different levels of corrosion. By means of this kind of monitoring 

technique, quantitative corrosion expansion monitoring can be carried out, with the virtues 

of long durability, real-time monitoring and quasi-distribution monitoring. 

Keywords: fiber optic; Brillouin sensor; corrosion sensor; fiber optic coil; steel reinforced 

concrete structure; structural health monitoring 

 

1. Introduction 

Steel corrosion has become a major problem worldwide, especially for structures exposed to 

aggressive environments. This problem has reached alarming proportions in the past three decades, 

leading to very high repair costs, sometimes even above the initial construction cost, or in extreme 

situations, to the final collapse of the structures [1-4]. Figure 1 shows the schematic diagram of the 

corrosion process of the reinforcing steel rebar in concrete [5]. Concrete normally provides a high 

degree of protection to the reinforcing steel against corrosion, by virtue of the high alkalinity  

(pH > 13.5) of the pore solution. Under high alkalinity, steel rebar remains passivated. However, when 

sufficient chloride ions (from de-icing salts or from seawater) have penetrated to the steel rebar in 

concrete or as the pH value of the pore solution drops to low values due to the carbonation process, the 

protective film on the steel rebar surface is destroyed and the reinforcing steel is depassivated. 

Corrosion in the form of rust formation and loss in cross-section of the rebar in the presence of oxygen 

and water (humidity) then occur. The corrosion of steel in concrete is essentially an electrochemical 

process [6-8]. 

Figure 1. Schematic diagram of reinfo0rcing steel corrosion in concrete as an electrochemical process. 

 

Although the corrosion mechanics of the reinforcing steel are well-known, finding out the corrosion 

status of the structure in service is very urgent in practical engineering structures. Over the past two 

decades, structural health monitoring (SHM) has gained worldwide acceptance as an economical way 

to obtain real-time data on the health, and subsequently the safety and serviceability of infrastructure 

systems [9]. Corrosion monitoring can provide much valuable information to SHM, the accurate 

monitoring of corrosion status of the steel rebar embedded in concrete in service life has been a 

technical challenge for a long time [10]. 
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Recently, kinds of novel corrosion sensors have been applied in the health monitoring of large-scale 

civil structures such as buildings, dams, tunnels, river levees and other structures [11-13]. Among them, 

the fiber optical corrosion sensors are currently attracting considerable research interest in SHM owing 

to their distributed sensing ability, long sensing distance, high sensitivity, good durability, immunity to 

electromagnetic interference and other advantages [14,15]. Fuhr and Huston developed the fiber optical 

chloride detector, whose sensing mechanism relies on spectroscopic analysis of a chemical reaction of 

chloride and reagents [16]. Bennett designed a prototype optical fiber sensor for monitoring corrosion 

on large steel structures where the sensor works by pulling a multimode fiber into a tight bend and 

securing it with a “corrosion fuse” [17]. Li proposed a Fiber Optic Corrosion Sensor (FOCS) 

fabricated by electroplating a Fe-C alloy film onto an optical fiber core within the sensing region [18]. 

The research mentioned above needs extra packaging structures or sensing materials to transfer 

corrosion related parameters to fiber optic and make sensitive parameters detectible, which will 

inevitably affect durability and stability of corrosion sensors. 

Distributed fiber optical Brillouin sensing is a cutting-edge technique in the field of structural health 

monitoring for infrastructures. Because of its advantages, such as distributed measurement ability, 

corrosion resistance, good durability, etc., it has become a hot field of scientific research around the 

world. In recent years, its widespread applications in field works have made important contributions to 

the safe operation of structures. The Brillouin Optical Time Domain Reflectometer/Analysor 

(BOTDR/A), which is based on the propagation of a train of incident pulses and Brillouin 

back-scattering that occurs when light is transmitted through an optical fiber [19-22], can conduct 

continuous monitoring of the temperature and strain distributed over long distances [23,24]. The 

successful applications in different areas show that fiber optical Brillouin sensing technique offers a 

bright prospect owing to its distinct capability to monitor temperature and strain distribution along the 

sensing fiber optic [25]. 

Because of the long durability and electromagnetic interference immunity of the optical Brillouin 

sensing technique, the development fiber optical Brillouin corrosion sensors would be promising if 

proper sensing packaging methods can be found. The distributed strain sensing ability offers the 

opportunity to use the fiber optic coil winding method to directly measure the expansion strain caused 

by corrosion. The sensing packaging structure will be simple and no extra sensing materials and no 

complex packaging structure is needed. Based on fiber optical Brillouin technique, we propose a novel 

kind of fiber optic coil winding method to monitor the steel rebar corrosion expansion in reinforced 

concrete structures. Three kinds of novel Brillouin corrosion expansion sensors were designed and 

tested in this paper, in order to monitor corrosion development during long term service life of steel 

reinforced concrete structures. 

2. Basic Principle of the Fiber Optical Brillouin Sensing Technique 

The fiber optical Brillouin sensing technique is based on the Brillouin scattering phenomena. Fiber 

optics are utilized both as sensing elements and signal transmission media. When a short light pulse is 

launched into and transmitted along the fiber, the frequency of the Brillouin backscattering light can be 

measured at the same end. The time interval between sending the pulse and arrival of the backscattered 

light provides the spatial information, while the frequency of the backscattering light provides 
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information of the temperature or strain distributed along the fiber optic. The backscattered Brillouin 

frequency is shifted from the incident light frequency because of the temperature variation and strain 

variation along the optic fiber. The Brillouin frequency shift is determined by the following equation: 

2 /  (2.1)

where fB is Brillouin frequency shift, n is refractive index of fiber, va is the acoustic wave velocity and λ 

is wavelength of incident light.  

The relationship between the Brillouin frequency shift at a certain location along the fiber and its 

corresponding temperature and strain change can be described as the following equation: 

Δ Δ  (2.2)

where ΔT is temperature change, kft is temperature coefficient, kfε is strain coefficient of Brillouin 

frequency shift, Δε is strain change and C is a constant. 

In the case of pure strain variations, there will be no temperature variations, so the relation can be 

simplified as: 

Δ  (2.3)

As a result, by measuring the Brillouin frequency shift we have access to the local temperature and 

strain conditions along the fiber optic. 

3. Experiments 

3.1. Strain Calibration Experiment 

Single mode fiber optics with sensing lengths of 1 m and 2 m were studied, and strain calibration 

experiments were designed and conducted to obtain the strain coefficients for monitoring corrosion 

expansion strain. In the experiments, a steel tube with 5 cm of diameter was used to support fiber optics 

with sensing lengths of 1 m or 2 m, respectively, as Figure 2 shows.  

Figure 2. Setup of the strain calibration experiments. 
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Weight was loaded and unloaded using weights ranging from 0 to 200 g, in increments of 50 g. Two 

load cycles were conducted for each kind of test length. Spatial resolution of 1 m, and a sampling 

interval of 0.41 m was used for every experiment. The Brillouin frequency was measured using BOTDA 

analyzer in every load step.  

Diameter of fiber optic is 0.125 mm, and Young’s modulus is 0.72 × 105 N/mm2. According to elastic 

theory, there should be uniform strain distribution along the test length of fiber. When the weight of 50 g 

is loaded at the end of fiber, the strain change along the fiber is 558 με. 

3.2. Design Principle of Brillouin Corrosion Expansion Sensors 

When corrosion happens, the volume of the steel rebar will increasingly expand due to the rust 

product accumulation on the surface of the steel rebar. Rust depth is reported as two to six times of the 

volume of steel lost during the corrosion process [1,2], as shown in Figure 3. 

Figure 3. The corrosion process in the reinforced concrete; (a) without corrosion; (b) little 

amount of corrosion; (c) corrosion made concrete broken. 

 
(a)  

 
(b)  

 
(c) 

Therefore, we wind the single mode fiber optic around the polished steel rebar into a fiber optic coil, 

with a little pretension, as Figure 4 shows. Then the fiber optic will be stretched when the volume of the 

steel rebar expands due to corrosion. Meanwhile, the tension strain change of the fiber optic coil in 

corrosion area can be monitored using the BOTDR/A analyzer, thus the corrosion process in the steel 

reinforced concrete structure can be monitored. Three kinds of Brillouin corrosion expansion sensors: 

BCES-I, BCES-II, BCES-III, were designed based on this principle. Different detailed packaging schemes 

were proposed for the three kinds of sensors to test the sensitivity for corrosion expansion monitoring. The 

single mode fiber optic used is Corning G.657A/B, with a minimum bending curve radius of 7.5 mm, 

which will keep optical losses at a very low level after dozens of fiber optic coils ares winded. 

Figure 4. Basic packaging structure of the Brillouin corrosion expansion sensor. 
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3.3. Design of BCES-I 

The design scheme of BCES-I is illustrated in Figure 5 and the corresponding sensor packaging 

method follows the steps described below: (1) polish the surface of a 20 mm-length part of a steel rebar 

with diameter of 22 mm (Φ 22), after which the diameter in polishing area decreased to 18.5 mm;  

(2) wind about 50 turns of single mode fiber optic into coils and guarantee the close contact of the fiber 

optic and steel rebar. The total winding length of the fiber optic is about 3.0 m; (3) fix both ends of the 

fiber on the rebar with epoxy glue, and draw out the fiber optic along the steel rebar; (4) put one layer of 

porous soft material outside the optical fiber to prevent damage to the fiber optic coil winding; (5) add 

chain link fence outside the porous soft material layer to resist impacts and the vibration effects of 

casting concrete; (6) fix the chain link fence firmly on the deformed steel rebar with fine iron wire. 

Figure 5. Packaging structure of BCES-I.  

 

The single mode fiber optic was wound around the polished steel rebar directly. There was nothing 

between the fiber optic and corrosion rust; so any corrosion expansion caused by rust accumulation 

will be detected by the fiber optic coil winding. Porous soft material and chain link fence was not only 

used to protect the fiber optic, but also to make the penetration of chlorides more easier than with 

concrete material alone. The BCES-I sensor was designed to detect the steel rebar corrosion expansion 

at early stage. 

3.4. Design of BCES-II 

The design scheme of the BCES-II unit illustrated in Figure 6 makes the following changes based on 

BCES-I: (1) a porous soft material was added on the surface of the steel rebar and then waterproof 

lubricating film and fiber optic were wound; (2) the sensing optical fiber was coated with epoxy glue so 

that the optical fiber can deform in a coordinated fashion as a whole. 

Figure 6. Packaging structure of BCES-II.  
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Single mode fiber optic was wound around the lubricating film layer. Corrosion expansion will act 

on the lubricating film layer first, and then on the fiber optic coil windings. Epoxy glue was used to 

provide better protection of the fiber optic. Because of the existence of lubricating film, the expansion 

strain along the winded fiber optic will be more even. Sensor BCES-II was designed to detect the steel 

rebar corrosion over a relatively big measurement range. 

3.5. Design of BCES-III 

The design scheme of BCES-III is illustrated in Figure 7. It incorporates the following changes 

compared to BCES-I: (1) porous soft material was added on the polished steel rebar plus two 

polytetra-fluoroethylene (PTFE) gaskets whose internal surfaces closely contact the porous material layer; 

(2) thin lubricating film is wound on the PTFE gaskets, so as to minimize the stress accumulation generated 

in the contact area of the optical fiber and PTFE gaskets and thus guarantee compatible deformation of the 

sensing fiber after corrosion and expansion of the steel rebar; (3) the sensing fiber optic is wound around 

the lubricant film and the fiber coated with epoxy glue so that the fiber deforms uniformly as a whole. 

Figure 7. Packaging structure of BCES-III.  

 

Single mode fiber optic was wound around the lubricating film layer on the outside of PTFE gaskets. 

Corrosion expansion will act successively on the porous soft material layer, PTFE gaskets, lubricating 

film layer and finally on fiber optic coil windings. The BCES-III sensor was designed to detect the 

steel rebar corrosion expansion over a relatively big measurement range. 

3.6. Accelerating Corrosion Experiment System 

In order to study the sensitivity of the developed Brillouin corrosion expansion sensors, an 

electrochemical corrosion acceleration experiment system, shown in Figure 8, was built to accelerate 

the steel rebar corrosion process in concrete specimens. In the system, the steel rebar was the anode and 

the stainless steel plate was the cathode. When electric current was applied, the circuit between the steel 

rebar and the plate was conducted by Cl , which will continuously transport Cl  ions in the solution to 

the surface of the rebar. Cl  is one of the most important factors influencing the corrosion of the steel 

rebar, and therefore this kind of experimental setup can accelerate the rate of corrosion enormously. 

During the experiment, the mass concentration of the solution of NaCl is 5.0%, and a constant voltage or 

constant current source was applied. 

Before the experiment, the corrosion sensors were embedded into concrete specimens by concrete 

casting, and concrete specimens with embedded BCES-I sensors [sensor names: S.1 (I), S.2 (I)] were 
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numbered specimens No. 1 and No. 2, respectively. The specimen with BCES-II [sensor name: S.3 (II)] 

was numbered No. 3, and the specimen with BCES-III [sensor name: S.4 (III)] was numbered No.4, as 

shown in Figure 9; the size of all concrete specimens was 100 mm × 100 mm × 300 mm. Concrete 

ultimate strength was 30 MPa. The cement used was P.O 32.5, and the concrete mass mix ratio was 

cement-water-sand-aggregate = 1:0.53:1.64:3.49. Only one sensor was embedded into each concrete 

specimen, placed along the axis of the specimen. After casting, the specimens were steam cured for 7 

days, and then they were kept at room temperature at 22 °C for 3 days before they were tested. 

Figure 8. Schematic diagram of the electrochemical corrosion acceleration experiment system. 

 

Figure 9. Concrete specimens with embedded sensors. 

 

The BOTDA analyzer used in the experiments is a DiTest STA202-C instrument manufactured by 

the Omnisens Company. It was used to collect monitoring data during the experiments, whose sampling 

interval was 0.41 m, spatial resolution 1.0 m, and strain resolution is 2 με. The BOTDA analyzer was 

set up to automatically scan the fiber optic circuit every one hour during the experiments. 

The experiments were divided into two parts and the fiber optic circuit is shown in Figure 10. 

Experiment one involved conducting the corrosion monitoring experiment of specimens No. 1 and 

No. 2. In the experiment, the fiber optics of S.1 (I) and S.2 (I) were connected together into one fiber 
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optic circuit, and therefore quasi-distributed corrosion monitoring was conducted. A constant voltage 

source device was applied to supply electrical current. Voltage between the plate and the end of each 

specimen is 31.5 V. Experiment two was with specimens No. 3 and No. 4. Similarly, S.3 (II) and S.4 (III) 

were connected together into one fiber optic circuit. But in this case a constant current source was used, 

and the currents through the two specimens were 0.17 and 0.20 A, respectively. 

Figure 10. Fiber optic circuit of the corrosion monitoring experiments. 
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4. Experimental Results and Discussion 

4.1. Strain Calibration Experiment 

In the fiber optic circuit, only the sensing fiber optic with length of 1 m and 2 m is under extension 

load. There is signal change of the Brillouin frequency in the sensing fiber area, and no apparent signal 

change is found in any other part of fiber optic circuit, as Figure 11 shows. The signal peak grows 

gradually as loads from 0 g to 200 g were added in increments of 50 g. The maximum value at each 

signal peak is used to calibrate the strain coefficient. 

Figure 11. Brillouin frequency results of Load cycle 1 with sensing length of 1 m. 
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There were very good linear relationships between strain and Brillouin frequency, when the test 

lengths are 1 m and 2 m, as Figure 12 shows. Also, good linear relationships between strain loaded and 

Brillouin frequency are found. An average strain coefficient of 0.048 MHz/με was obtained. 

Figure 12. (a) Strain sensitivity result of sensor with length of 1 m; (b) Strain sensitivity 

result of sensor with length of 2 m. 

 
(a) (b) 

The strain calibration experimental results show that single mode fiber optics with sensing lengths 

of 1 m and 2 m can serve as strain sensors. The strain coefficients obtained with the two kinds of 

length show very good agreement. There is very good linearity of the results with the BOTDA 

analyzer using the spatial resolution of 1 m and sampling interval of 0.41 m.  

4.2. Result Analysis of BCES-I 

The electrochemical corrosion acceleration experiment was conducted on the two specimens No. 1 

and No. 2 continuously until the signal of sensing fiber of S.1 (I) became so weak that the BOTDA 

analyzer could not detect it. Experiment 1 lasted for 35 h. A large crack caused by corrosion was found 

on surface of specimen No. 1 after the experiment.  

Figure 13 shows the relationship between distances, time and expansion strain measured by 

BOTDA analyzer.  

Figure 13. The expansion strain results of S.1 (I) and S.2 (I). 
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In Figure 13, there are two expansion strain peaks at the distance 41–42 m and 48–49 m, where the 

fiber optic coil windings of sensor S.1 (I) and S.2 (I) are located in the fiber optic circuit of the 

experimental system. Results reveal that S.1 (I) and S.2 (I) can monitor the strain distribution in the 

fiber optic coil winding area caused by the steel rebar corrosion expansion in the specimens. No 

apparent strain change was detected in other locations of the fiber optic. Expansion strains increase 

steadily over time, which illustrates that the degree of corrosion grows gradually over time. 

Furthermore, the average strains of the fiber optic coil windings of S.1 (I) and S.2 (I) and the 

straight-line fitting results were obtained, as shown in Figure 14. Because the voltage and the mass 

concentration of NaCl solution were constant and ignoring the non-uniform distribution of Cl  in the 

solution, steel corrosion expansion will increase linearly. In Figure 14, the R2 values (square of 

correlation coefficient) of the corresponding fitted lines were 0.935 and 0.945, respectively, which 

shows that the average strain curves had good linearity during the corrosion monitoring experiment. 

The BCES-I monitoring results perfectly reflect the increasing trend of the linear development of steel 

corrosion, which indicates that this kind of sensor can monitor the real progress of steel corrosion, 

effectively. 

Figure 14. The average strains of sensor S.1 (I) and S.2 (I). 
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of steel rebars. The resistance of concrete will change a little in the experiment, so if the voltage is 

constant, the current will change during the experiment, and then corrosion speed of steel bars will 

change a little accordingly. Theoretically, the fitted lines should go through the origin of coordinates, 

however, as can be seen in Figure 14, neither of the fitted lines does, which is due to the reason that the 
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the maximum strains reach 1,297 με and 658 με, separately. 
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With the assumption of even corrosion during the experiment, there will be one layer of rust outside 

of the steel rebar with uniform thickness and also a linear relationship between circumference and 

diameter of the steel rebar with corrosion. The diameter of steel rebar with corrosion in sensor S.1 (I) and 

S.2 (I) can be calculated according to the average expansion strain result, as shown in Figure 15. Results 

show that diameter of sensor S.1 (I) increases to 18.524 mm, with a 0.024 mm increment compared to its 

initial status. The diameter of sensor S.2 (I) increases to 18.512 mm, with a 0.012 mm increment. 

Figure 15. Steel rebar diameter monitored of sensor S.1 (I) and S.2 (I). 

 

After the experiment, an obvious crack was found across three planes on the surface of specimen 

No.1, as Figure 16 shows. The crack ran from the bottom to the side plane and its length reaches  

68 mm at the side plane. For practical applications, in most cases a crack with this length would 

severely threaten the safety of the structure. After the experiment, no apparent crack appears on the 

surface of specimen No. 2. Crack observation results showed good agreement with the expansion strain 

and diameter results. 

Figure 16 The crack on specimen No.1. 

 
 

The steel corrosion in specimen No.1 and No.2 after experiment one is shown in Figure 17. There is 

obvious corrosion rust distributed between the steel rebar and fiber optic coil windings. 
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Figure 17. (a) The steel corrosion of S.1 (I) in the specimen No. 1; (b) The steel corrosion 

of S.2 (I) in the specimen No. 2. 

 
(a) 

 
(b) 

Results of experiment one show that the advantages of BCES-I in the monitoring of steel rebar 

corrosion expansion can be summarized as follows: 

(1) The high sensitivity of BCES-I guarantees that the corrosion expansion strain of steel rebar can 

be monitored accurately and effectively. The corrosion signals were detected even within an 

hour after the experiment started, which reveals that early corrosion of steel rebars can be 

monitored effectively by this kind of sensor. 

(2) The steel corrosion expansion monitoring range of BCES-I is quite wide, from the beginning of 

corrosion to the appearance of large cracks in the specimen, which can satisfy the need of 

practical engineering applications. 

(3) BCES-I has good linearity and, it can carry out the real-time, quasi-distributed and quantitative 

steel corrosion monitoring. 

The following disadvantages of BCES-I in the steel rebar corrosion expansion monitoring can be 

mentioned: 

(1) The sensing fiber optic coil winding of BCES-I has direct contact with the surface of the steel 

rebar, which leads to the fact that fiber optic is vulnerable when corrosion rust accumulates and 

large cracks of concrete appear; therefore, the sensor is not applicable to the condition of serious 

corrosion. 

(2) When the temperature varies greatly, the measured results are influenced a lot, and thus it is  

not applicable to environments with great variations of temperature, and some form of 

temperature compensation technique should be considered in future work. The improvement 

plan of BCES-I is to develop temperature compensation so that it can be applied in a 

temperature-varying environment. 

4.3. Results Analysis of BCES-II 

Electrochemical corrosion accelerating experiment two was conducted on specimens No. 3 and No. 4 

continuously until the signal of sensing fiber optic became so weak that the BOTDA analyzer cannot 

detect it. The experiment lasted for 502 h (more than 20 days), which resulted in serious corrosion of 

specimens. Large cracks were found in two specimens. Figure 18 shows the relationship between 

distances, time and expansion strain of S.3 (II) measured by the BOTDA analyzer. 
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Figure 18. Corrosion expansion strain results of S.3 (II) in experiment two. 

 
 

In Figure 18, there clearly exists one strain peak in the fiber optic coil winding area, whose location 

in the fiber optic circuit is from 42.5 to 43.5 m. Result reveals that S.3 (II) can monitor the steel rebar 

corrosion expansion strain in the specimen. Because of the presence of a porous soft material layer and 

lubricating film between steel rebar surface and fiber optic coil winding, the expansion strain 

distribution along the sensing fiber became more even, and the peak became a little flat in comparison 

with BCES-I. No strain variation was measured along the fiber optic which is not located in the 

winding area. Expansion strain increased over time, which illustrates that the degree of corrosion grows 

gradually over time. Average expansion strain in the fiber optic coil winding area of S.3 (II) was 

calculated, as shown in Figure 19.  

Figure 19. The average expansion strain result of S.3 (II). 
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steel rebar, and reduce the micro bending caused by corrosion rust accumulation. Simultaneously, a 

small space in the porous material and tiny gaps between packaging layers will reduce the sensitivity 

of BCES-II, as BCES-�only detected steel corrosion expansion after about 100 h, and then expansion 

strain increases linearly. The delay of corrosion expansion monitoring is also partially due to the epoxy 

glue’s protection from corrosion. 

With the assumption of even corrosion during the experiment, the diameter of the steel rebar in sensor 

S.3 (II) was calculated according to the average strain result, as shown in Figure 20. Results show that 

the diameter of sensor S.3 (II) increases to 18.605 mm, with a 0.105 mm increment over the initial status. 

Figure 20. Monitored diameter of sensor S.3 (II). 

 

After the experiment, obvious cracks across five planes appeared on the surface of specimen No. 3. 

The largest crack width along the length of the specimen is more than 3 mm on the bottom plane, and 

the cracks caused by corrosion have severely affected the specimen No. 3, from which it can be 

indicated that the measurement range of BCES-II is quite wide, and thus it can be applied to monitor 

serious steel corrosion in the concrete, as shown in Figure 21. The condition of the steel rebar after 

corrosion in specimen No. 3 is also severe. 

Figure 21. (a) the large cracks of specimen No.3; (b) Corrosion of the steel bar in specimen No.3. 
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From the analysis of the results of experiment two, the conclusions of the assessment and analysis of 

BCES-II are the following: compared with BCES-I, the relative low sensitivity of BCES-II makes it 

useless to accurately monitor the early corrosion of steel bars. However, the corrosion monitoring range 

of BCES-II is quite wide, and maximum expansion strain of steel rebar monitored reaches 5,690 με. 

Thus, it can be applied to monitor serious steel corrosion conditions in the concrete. The advantages of 

BCES-II are its big monitoring range, small packaging size, and its disadvantages are that its porous 

material make the sensor less sensitive compared to BCES-I. 

Analysis of problems: the high porosity of the porous material layer of the BCES-II leads to the fact 

that expanding rust after corrosion must fill up the pores of the porous material layer before causing the 

expansion strain of the sensing fiber. Thus when the steel rebar corrosion is not serious enough, the 

sensor cannot detect any corrosion signal. At the same time, the sensing fiber does not have direct 

contact with the steel rebar under the protection of the porous material layer; thereby it is not easily 

damaged during the corrosion process. The improvement plan of the BCES-II is to reduce the thickness 

of the porous material layer so as to increase its sensitivity of steel corrosion monitoring, or to find some 

other kind of packaging materials with better compatibility with concrete materials. Meanwhile, it is 

better to apply the sensor to monitoring serious corrosion conditions. 

4.4. Results Analysis of BCES-III 

In Figure 22, there clearly exists one expansion strain peak at the fiber optic coil winding area, 

whose location in the fiber optic circuit is from 48.0 to 49.0 m. The results reveal that S.4 (III) can 

monitor the steel rebar corrosion expansion strain in the specimen. Because of the presence of a porous 

soft material layer, lubricating film and PTFE gaskets between the steel rebar surface and fiber optic 

coil winding, the expansion strain distribution along the sensing fiber became more even, and the peak 

became more flat with in comparison to BCES-II. 

Figure 22. Corrosion strain results of S.4 (III). 

 

The average expansion strain of S.4 (III) was calculated, as shown in Figure 23. The result shows 

that two phases of corrosion occur in the S.4 (III), the first one reduced the fiber strain gradually while 

the second one does the opposite. The main reasons for this can be justified as follows: in the first phase, 



Sensors 2011, 11              

 

 

10814

the rust product fills the pores of the porous material layer and the diameter of the steel bar decreased. 

Then, under the action of the initial pretension applied on the fiber optic coil winding during the sensor 

packaging procedure, the two PTFE gaskets move relatively to be closer to each other, until the porosity 

was filled up. Accordingly, the strain of the fiber decreases gradually. 

Figure 23. Average strain monitored of sensor S.4 (III). 

 

The second phase: during this phase, the rust product is left on the surface of the steel rebar. Under the 

action of rust expansive pressure, the two PTFE gaskets move relatively to be away from each other. 

Accordingly, the strain of the fiber increases gradually. Figure 23 shows that the average strain of  

S.4 (III), which shows a visible growing trend after a decline at the beginning stage, and reaches the 

peak of 4,610.7 με and the bottom of −2,126.7 με. A maximum expansion strain of 6,738 με was 

monitored. The delay of corrosion expansion monitoring is also partially due to the epoxy glue’s 

protection from corrosion. 

Therefore, BCES-III expands the corrosion monitoring range greatly comparing to BCES-I, which 

mainly attribute to the PTFE gaskets and soft porous material that isolate the sensing fiber from the 

surface of steel rebars. Simultaneously, there exist the similar problem with BCES-II that the 

sensitivity of BCES-III declines. 

After the experiment, obvious cracks across four planes were found on the surface of specimen  

No. 4. The largest crack width is more than 2.5 mm on the bottom plane, and the cracks severely 

damaged the specimen, as shown in Figure 24, from which it can be indicated that the measuring range 

of BCES-III is enormously wide, and thus it can be applied to monitor serious steel corrosion in 

concrete. The corrosion conditions of the steel rebar in this specimen were the most severe among  

all four specimens. 

From the results mentioned above, the comprehensive assessment and analysis of BCES-III can be 

summarized in the following: compared with BCES-I, the relative low sensitivity of BCES-III makes it 

useless to accurately monitor the early corrosion of steel bars, making it similar to BCES-II. The 

corrosion monitoring range of BCES-III is enormously wide. Thus, it can be applied to monitor more 

serious steel corrosion in the concrete than BCES-II. The main advantage of BCES-III is its big 

monitoring range, however its disadvantages are that the PTFE gaskets make the sensor less sensitive 
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compared to BCES-II, and there are tiny gaps between PTFE gaskets and the porous material. Also the 

packaging size is big, which will have influence on the local interface between steel rebar and 

concrete. 

Figure 24. (a) The large cracks of the specimen No.4; (b) Corrosion of the steel rebar in 

specimen No.4. 

 
(a)

 
(b) 

The improvement plan of BCES-III is to remove the porous material layer of the sensor or reduce its 

thickness so as to increase its sensitivity of the steel corrosion monitoring, or to replace the PTFE 

material with some other kind of material with better compatibility. Meanwhile, it is better to apply the 

sensor to monitor serious corrosion conditions. 

4.5. Mass Loss Rate Estimate 

4.5.1. Derivation of the Evaluation Formula of Corrosion Mass Loss Rate 

The corrosion mass loss rate evaluation formula was derived to estimate mass loss using the 

monitored expansion strain. The evaluation formula is only applicable to the assessment of monitoring 

results of BCES-I and BCES-II, and the following basic assumptions are made during the derivation: 

(1) Thickness of the fiber layer is rather small, approximately 1/72 of the diameter of the polished 

bar; therefore the fiber layer has little effect on the measurement results and thus its thickness is 

ignored during the derivation. 

(2) Thickness of the lubricating film and the porous material layer is quite small compared with that 

of fiber layer; hence it is ignored during the derivation. 

(3) All the rust produced during steel corrosion of the polished steel rebar remains inside the fiber 

layer (or lubricating film) without spilling out. 

(4) The cross sections of the steel rebar after corrosion are circular during the whole monitoring 

process with the presupposed uniform corrosion. 

(5) Temperature in the laboratory is constant; thus the measured results are not influenced by 

temperature. 

Suppose the diameter of the polished rebar before corrosion is D, the diameter after corrosion is D1, 

the diameter including the rust layer after corrosion is D2, density of the steel bar is ρ, volume 

expansibility of the rust after corrosion is η, mass-loss rate of the steel bar after corrosion is δ, average 
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tension strain along the optical fiber length in winding area is ε, then the derivation of the assessment 

formula of steel corrosion is as following: 

The mass-loss rate of the steel bar at the monitoring position after corrosion is: 

 (4.1)

It is simplified to: 

 (4.2)

Equation (4.2) can be transformed into: 

1  (4.3) 

The stain of the sensing fiber satisfies: 

 (4.4)

It can be simplified to: 

 (4.5)

The diameter of the steel bar satisfies the relationship: 

π π (4.6)

It can be simplified to: 

 (4.7)

Equation (4.7) can be transformed into: 

1 (4.8)

It can be further transformed into: 

∙ 1 (4.9)

Under the condition that the corrosion of the bar is not too severe, it’s safely assumed that: 

2 (4.10)

Substituting Equations (4.2), (4.3), (4.5), (4.10) into Equation (4.9), the following equation can be 

obtained: 
2
1

 (4.11)

Equation (4.11) is the mass loss rate evaluation formula of monitoring results of BCES-I and 

BCES-II. Assuming that volume expansion rate η is constant during the process of steel corrosion, and 

the value is 2, then the mass loss rates of the steel rebar of BCES-I and BCES-II over time can be 

obtained using Equation (4.11), as shown in Figures 25 and 26, which indicate that BCS-I and BCES-II 

can quantitatively assess mass loss rate through the evaluation formula. Mass loss rates of S.1 (I), S.2 (I) 

and S.3 (II) are 0.259%, 0.126% and 1.14%. 
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Figure 25. Mass loss rate results of S.1 (I) and S.2 (I).  

 

Figure 26. Mass loss rate results of S.3 (II).  

 

5. Conclusions and Future Work 

The purpose of the research was to detect the corrosion expansion strain, and expansion diameter 

using the fiber optical Brillouin sensing technique which is durable and stable, and this will make the 

long term corrosion monitoring and evaluation possible. A novel kind of method named fiber optic coil 

winding method was proposed, discussed and tested to monitor corrosion expansion of steel rebar in 

steel reinforced concrete structures. Our strain calibration experimental result shows that there are 

good linear relationships between Brillouin frequency and strain applied. Average strain along the 

fiber optic coil winding can be monitored precisely using a BOTDA analyzer. Three kinds of fiber 

optical Brillouin expansion corrosion sensors suitable for different phases of steel corrosion in concrete 

structures with different sensitivity were developed in this paper, and their performance was tested in 

an electrochemical corrosion acceleration experiment system. BCES-I has a rather high sensitivity that 

it is able to detect signals of steel corrosion just at the beginning of the experiment, and average 

tension strain increased over time with good linearity, which reveals that early corrosion of steel rebar 

can be monitored accurately by this kind of sensor. The monitoring range of BCES-I is relative small, 

and it is thus suitable for detecting corrosion expansion at early stages. BCES-II has a relative low 
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sensitivity compared with BCES-I, however the larger monitoring range with a maximum expansion 

strain of 5,690 με compensates for this to make it suitable for application in the serious corrosion 

situations. BCES-III has the lowest sensitivity but the largest monitoring range (maximum strain 6,738 με) 

of the three kinds of fiber optical Brillouin sensors. It can perform steel corrosion monitoring where 

there may exist an extremely corrosive environment. Furthermore, under the even corrosion 

assumption, diameter change caused by corrosion can be obtained through the average monitored 

expansion strain, which can be used to evaluate local corrosion damage directly. Finally, a mass loss 

rate evaluation formula was derived to help BCES-I and BCES-II estimate of mass loss rate. The 

studies show that distributed fiber optical Brillouin sensing technique using the fiber optic coil winding 

method can be used to effectively monitor and accurately evaluate quantitatively the steel corrosion in 

reinforced concrete structures.  

There are still some work that needs further discussion and study in the future to make the corrosion 

monitoring more practical, such as temperature compensation technique, packaging structure 

optimization, and establishment of a distributed sensing network. 
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