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Abstract

Background: The static Modes of Transmission (MOT) model predicts the annual fraction of new HIV infections acquired
across subgroups (MOT metric), and is used to focus HIV prevention. Using synthetic epidemics via a dynamical model, we
assessed the validity of the MOT metric for identifying epidemic drivers (behaviours or subgroups that are sufficient and
necessary for HIV to establish and persist), and the potential consequence of MOT-guided policies.

Methods and Findings: To generate benchmark MOT metrics for comparison, we simulated three synthetic epidemics
(concentrated, mixed, and generalized) with different epidemic drivers using a dynamical model of heterosexual HIV
transmission. MOT metrics from generic and complex MOT models were compared against the benchmark, and to the
contribution of epidemic drivers to overall HIV transmission (cumulative population attributable fraction over t years, PAFt).
The complex MOT metric was similar to the benchmark, but the generic MOT underestimated the fraction of infections in
epidemic drivers. The benchmark MOT metric identified epidemic drivers early in the epidemics. Over time, the MOT metric
did not identify epidemic drivers. This was not due to simplified MOT models or biased parameters but occurred because
the MOT metric (irrespective of the model used to generate it) underestimates the contribution of epidemic drivers to HIV
transmission over time (PAF5–30). MOT-directed policies that fail to reach epidemic drivers could undermine long-term
impact on HIV incidence, and achieve a similar impact as random allocation of additional resources.

Conclusions: Irrespective of how it is obtained, the MOT metric is not a valid stand-alone tool to identify epidemic drivers,
and has limited additional value in guiding the prioritization of HIV prevention targets. Policy-makers should use the MOT
model judiciously, in combination with other approaches, to identify epidemic drivers.
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Introduction

Policy-makers routinely select and prioritize subgroups to target

interventions with a goal to mitigate local HIV epidemics [1,2].

Epidemic drivers are defined as subgroups or behaviors that are

necessary and sufficient to enable HIV to establish and persist in a

region [3]. Identifying those at highest risk of acquiring and

transmitting HIV lets us design and focus interventions on

behaviours that disproportionately sustain HIV spread [1,4].

However, there are concerns that the most widely used tool to

appraise HIV epidemics and help focus country-specific HIV

prevention [5–8] – the UNAIDS ‘‘Modes of Transmission’’

(MOT) model [8,9] - may not consistently identify epidemic

drivers and therefore, may not adequately guide prevention[10].

The MOT is a static mathematical model that predicts the

annual distribution of new HIV infections acquired by different

risk-groups, herein referred to as the ‘‘MOT metric’’ [6,8,9] - a

quantity often referred to as the current ‘‘source of HIV

infections’’ [5,11] and sometimes mistakenly interpreted to mean

the highest-ranking subgroup ‘‘drives the epidemic’’ [7,11,12].

The MOT metric is used by policy-makers to inform prevention

by identifying subgroups predicted to acquire the largest fraction

of new HIV infections in the coming year. In many cases, the

model predicts that most new HIV infections are acquired by low-

activity groups in stable partnerships [13,14], even in concentrated

epidemics driven by commercial sex [10,14]. This apparent

contradiction raises three key concerns about the utility of the

MOT model to identify epidemic drivers and to adequately inform

prevention efforts [5,10].

First, the structural simplicity of the generic MOT template has

been criticized because it does not account for differential

infectiousness by HIV stages, because heterogeneity in risk is

limited to a few mutually exclusive subgroups (female sex workers

[FSWs], clients, men who have sex with men, people who inject
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drugs, individuals with multiple partnerships, main or spousal

partners of those engaged in high-risk behaviours, and the

remaining low-activity population), and because individuals have

only one type of HIV exposure (injecting drug use or sex) or

partnership (commercial, casual, or spousal sex) [9]. Although the

generic MOT can be modified to reflect the local setting in more

detail if sufficient technical expertise and data is available [8,14],

none of the published MOT analyses have incorporated multiple

HIV exposures, and only five have modified the generic MOT

with additional subgroups [13–18]. An overly-simplified model

structure may produce biased MOT estimates, and partly explain

why the generic MOT model does not identify epidemic drivers

[14].

Second, using biased or implausible input parameters may

produce biased MOT metric estimates [5,10,19]. Because the

MOT model is not calibrated to observed HIV prevalence or

incidence, we cannot determine if our parameter combinations

reliably reproduce the observed HIV epidemic trends. For

example, input parameters such as population size and behavior

of high-risk groups are often lacking or underestimated [10,20,21],

which may partly explain why MOT models fail to identify

epidemic drivers [10,19].

Third, the MOT metric itself may be inadequate to identify the

real epidemic drivers because it measures the short-term

distribution of those who get infected, rather than those who

transmit HIV infection. The MOT model does not capture the

longer chains of secondary (indirect) transmissions due to high-risk

behaviours [5], and does not account for the sexual life-course of

individuals whose risk-taking behavior may change over time (in

the absence of intervention) [10]. Hence, even reliable unbiased

estimates of the MOT metric may underestimate the contribution

of high-risk behaviors to overall HIV transmission, especially in

the long-term as the number of secondary transmitted events

increases over time [22–24].

Despite its extensive use in guiding policy[6], the MOT model

has never been formally validated as a tool to prioritize HIV

prevention efforts. Recent studies showed large differences in

MOT metric estimates across data quality [10] and model

complexity[14], but were unable to determine which estimates

were closer to the truth because they did not use an independent

reference benchmark [10,14]. Therefore, we performed a com-

parative modelling analysis to objectively validate estimates of the

MOT metric and the utility of the MOT model as a tool to

identify epidemic drivers, and to select and prioritize HIV

Figure 1. Sexual structure of the dynamic model, complex MOT model, and generic MOT model. (A) In the dynamical model, the
population is divided into four different activity classes based on the frequency of yearly partner change (FSWs/clients, two multiple partnership
classes, and a low-activity class). Four partnership types are possible: commercial (regular or occasional), casual, or main. In the dynamical model,
males and females who engage in higher-risk activity (commercial or casual sex) cease higher-risk activity and enter into the low-activity population
reflecting a turn-over in each of the higher-risk activity groups (solid black lines). Multiple concurrent exposures are possible, and subpopulations are
linked via bridging groups (individuals with multiple exposures). The partnerships are therefore shown with double-headed arrows to represent
bridging between groups. (B) The complex Modes of Transmission model (cMOT) divides the population into the same activity classes as the
dynamical model. The cMOT allows for multiple exposures to HIV (i.e. multiple types of partnerships). For visibility, only partnerships where infections
are acquired by males are shown. Infections acquired by males and by females are counted separately, and partnerships are therefore shown with
single-arrows to represent the lack of bridging between groups. Secondary infections and movement between risk-groups are not possible. (C) The
generic Modes of Transmission model (gMOT) uses a simplified sexual structure, and only partnerships where infections are acquired by males are
shown. In the gMOT, only one type of HIV exposure or partnership is possible, and subgroups are amalgamated in keeping with the generic MOT
template [8,9]. Infections acquired by males and by females are counted separately. As with the cMOT, single-headed arrows are used to represent
different partnerships without bridging between groups. Hence, indirect transmission via bridging populations and secondary infections, and
movement between risk-groups are not possible. MOT (modes of transmission); FSWs (female sex workers).
doi:10.1371/journal.pone.0101690.g001
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prevention targets as follows. We developed a complex dynamical

mathematical model to simulate synthetic data from three

epidemiologic contexts (concentrated, mixed, and generalized

HIV epidemics). We used the synthetic data to generate our

benchmark MOT metrics and to identify the epidemic drivers in

each epidemic type. The MOT model was then applied to the

same synthetic data to derive different estimates of the MOT

metric using increasingly complex MOT models. In the absence of

an empirical gold standard, using synthetic data is the best and

only option to objectively compare the MOT metric against a

known benchmark, and answer the following questions: (1) are

structural simplicity, biased parameters, or the use of a static

model leading to unreliable MOT metrics which underestimate

the importance of epidemic drivers, or is it the MOT metric itself

that limits the validity of the MOT model in identifying epidemic

drivers; (2) even if we could estimate the unbiased MOT metric, is

this information useful for focusing HIV prevention?

Methods

We developed four mathematical models. To generate the

synthetic data, we developed a dynamical model of heterosexual

HIV transmission with a relatively complex sexual structure and

four HIV stages reflecting variation in CD4 level and HIV

infectivity (4-stage dynamical model, Figure 1a, Figure S1). We

then developed three models to generate the comparator MOT

metrics: a 1-stage dynamical model with uniform HIV infectivity

that was otherwise exactly the same as the 4-stage dynamical

model; and a pair of static MOT models (a complex MOT

[cMOT, Figure 1b] and the generic MOT [gMOT, Figure 1c]).

The synthetic data generated by the 4-stage dynamical model was

used to parameterize the other three models (1-stage dynamical,

cMOT, and gMOT). For example, the HIV prevalence inputs for

the cMOT and gMOT were the prevalence outputs from the 4-

stage dynamical model at the start of each year. Key differences

between models are outlined in Table 1. See Text S1 for model

equations and parameters.

Dynamical models
The compartmental, deterministic model divides the synthetic

population into four activity classes, including FSWs and their

male clients (Figure 1, Table 2). Movement from high- to low-

activity classes were included, reflecting, for example, the

retirement of FSWs (Figure 1, Text S1). Individuals formed at

least one of four types of sexual partnerships (Figure 1). The model

included baseline male circumcision (reduced HIV susceptibility in

males), and co-factor effects of a concomitant sexually transmitted

infection (herpes simplex virus type 2).

MOT models
The cMOT matches the sexual structure of the dynamical

model allowing for multiple HIV exposures and partnerships

Table 1. Differences between the models.

4-stage DM
(synthetic epidemics) 1-stage DM

Complex MOT
(cMOT)

Generic MOT
(gMOT)

Input parameters Calibrated Same as 4-stage
DM, except for HIV
infectivity

Same as 1-stage DM Same as 1-stage DM

Biological structure

Differential HIV infectivity by stage of HIV Yes No No No

STI co-factor increases HIV susceptibility per sex-act Yes Yes Yes Yes

STI co-factor increases HIV infectivity per sex-act Yes Yes Yes No

Condom-use reduces HIV transmission Fraction of
partnerships where
condoms are used

Same as 4-stage
DM

Same as 4-stage DM Fraction of sex acts
protected

Sexual structure

Multiple HIV exposures Yes Yes Yes No

Turn-over between risk-groups Yes Yes No No

Subgroup size See Table 2 Same as 4-stage
DM

Same as 4-stage DM Aggregate the two MP
classes

Subgroup sexual behaviours See Table 2 Same as 4-stage
DM

Same as 4-stage DM Weighted average of
the two types of
commercial
partnerships, and
two MP groups

Secondary, or indirect transmission events Yes Yes No No

Can the model provide the following information?

The distribution of new HIV infections acquired by
different subgroups (MOT metric)?

Yes Yes Yes Yes

What is the fraction of new HIV infections transmitted
from a given subgroup?

Yes Yes Yes Yes

Estimate contribution of specific partnerships/risk-groups
to overall transmission in the total population, over t years?

PAFt PAFt No No

DM (dynamical model). MOT (Modes of Transmission model). PAFt (population attributable fraction over t years) reflects the contribution of each type of partnership to
overall transmission. MP (multiple partnership). STI (sexually transmitted infection; in this study, only HSV-2 is considered).
doi:10.1371/journal.pone.0101690.t001
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Table 2. Epidemiologic context and parameters.

Concentrated Mixed Generalized

Epidemiologic features

Setting used to generate synthetic epidemics Belgaum, India Kisumu, Kenya Lesotho

Epidemic drivers Commercial sex Commercial sex and multiple
partnerships

Multiple partnerships

Level of condom-use among epidemic drivers High ($75%) [35,36] Medium (30–58%) [37] Low (40%) a

Population size

Clients (% of adult males in 2005) 17.0 [10] 8.7 [38] 1.9[39]

Total MP males (High-frequency, Intermediate-frequency; %
of adult males in 2005)

9 (2,7)a [20,40,41] 23 (7,15)a [38] 23(3,21) a [39,42]

FSWs (% of adult females in 2005) 0.8[41] 3.0 [43,44] 0.8[45]

Total MP females(High-frequency, Intermediate-frequency;
% of adult females in 2005)

5(1,4)a [20,40,41] 23 (7,15)a [38] 23(2,21)a [39,42]

Duration of time spent in each higher-activity class (years)

FSW 8 [46] 1 [47] 1a

Clients 20 [48] 10 10

MP (assumption) b 10 10 10

Fraction who form casual partnerships (%)

FSWs, and currently low-activity 0 0 0

Clients 10a 43 [49] 40a

MP 100 100 100

Fraction with a main partnership (%)

FSWs 50 [46] 80 [47,50] 70a c

Clients 65[48] 72 [49] 70a c

MP 65[40] 50 [38] 70a c

Currently low-activity 100 100 100

Partner frequency by partnership type (per year)

FSWs (occ. commercial, reg. commercial, main) 500 [46], 40[46], 1 104 [47,50], 7.8a, 1 40, 1a, 1

Clients (occ. commercial, reg. commercial, casual, main) 24 [48], 2.4, 3, 1 36a, 3.6a, 5, 1 2 a, 0.8a, 20, 1

High-frequency MP (casual, main) d 3 [41], 1 6a, 1 20a, 1

Intermediate-frequency MP (casual, main) d 2 [41], 1 2a, 1 3 a, 1

Currently low-activity (main) 1 1 1

Number of sex acts per year and consistent baseline
condom-use (%) within each partnership type

Main 104 [40], 10% [40] 104a, 10% [51] 124a, 10% [39]

Casual 12a, 40%a [40] 48a, 30% [51] 52a, 40% [39]

Regular commercial 18a, 75% [46] 14a, 55% [50–54] 12a, 40% [39]

Occasional commercial 1, 85% [46] 1, 58% [51–54] 1, 58% [45]

Proportion of clients that form regular commercial
partnerships with FSWs (%)

40 [46] 80a 5a

Prevalence of sexually transmitted infection (HSV-2) (%)

Clients, ex-clients 60.0 [41,48] 58.0 [54,55]_ENREF_40 50.0 [55,56]

MP, ex-MP males 18.0 [40] 58.0 [53,54] 50.0 [55,56]

Always low-activity males 13.0 [40] 34.0 [54] 34.0 [55,56]

FSW, ex-FSW 80.0 [41,46] 94.0 [47] 65.0 [55,56]

MP, ex-MP females 18.0 [40] 67.7 [54] 65.0 [55,56]

Always low-activity females 13.0 [40] 67. 7 [54] 65.0 [55,56]

aCalibrated estimate.
bThe duration of high-risk sex in the MP class was assumed to be approximately one-third of the total duration of sexual activity. The total duration of sexual activity was
assumed to be 34 years in all regions.
cLesotho: range (45–80) used for model calibration and set to equal levels across higher-risk groups to minimize the number of parameters to fit.
dWhen calibrating for the two MP groups, the weighted average for partner frequency was restricted to 2–3 (Belgaum), or 2–8 (Kisumu/Lesotho) [39,42,57].
MP (multiple partnership) groups. FSW (female sex workers).HSV-2 (herpes simplex virus type 2).
doi:10.1371/journal.pone.0101690.t002
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(Figure 1b, Table 1). In keeping with the generic template, our

gMOT merges subgroups and partnerships, and does not allow for

multiple HIV exposures (Figure 1) [8,9]. Neither MOT model

includes secondary transmission or movement between activity

classes.

Epidemic types
We used region-specific data from south India (Belgaum),

Kenya (Kisumu), and Lesotho (country-level data) to derive

plausible parameter values and simulate our synthetic epidemic

with the 4-stage dynamical model (Figures S2, S3, and S4). These

regions were chosen for their different epidemiologic contexts

(overall HIV prevalence and characteristics of commercial sex),

and the geographic-level (national or sub-national) reflects the

geographic-scope of available data. We then classified each

synthetic epidemic as being concentrated, mixed, and generalized

[1,4,10,23,25]. The concentrated epidemic required that com-

mercial sex exist for HIV to establish and persist in the population,

meaning that the basic reproductive ratio (average number of new

infections due to one infectious case in an otherwise susceptible

population, R0) is greater than 1 in the presence of commercial sex

and ,1 in the absence of commercial sex. The generalized

epidemic required multiple partnerships (casual sex) for R0 to be

greater than 1, such that existing commercial sex was neither

sufficient nor necessary for R0 to exceed 1. The mixed epidemic

required either commercial sex or casual sex for HIV to establish

and persist, such that both commercial and casual sex acts would

need to be protected to achieve long-term elimination (R0 ,1).

Each synthetic epidemic was classified by examining the counter-

factual (‘turning off’ transmission within specific partnerships,

Figure S5). Key differences between the synthetic epidemics are

listed in Table 2.

Calculation of the MOT metric
We used the synthetic data on the annual number of new HIV

infections by risk groups to derive the benchmark MOT metric.

We then parameterized the 1-stage dynamical model and both

MOT models with the same synthetic data to derive the MOT

metric from each comparator model. The inputs for the gMOT

represent a weighted average of the parameters for the relevant

subgroups that were merged as per the generic MOT template[9].

Each comparator model assumes constant HIV infectivity

throughout infection, and uses a weighted average of the

transmission probability from the 4-stage dynamical model.

The MOT metric is reported in line with the policy literature

[7], by summing the number of HIV infections acquired by FSWs,

clients, or individuals in the high- and intermediate-frequency

multiple partner (MP) class. The remainder of infections occur in

the low-activity class and are divided among those acquired by

main or spousal partners of clients, main or spousal partners of the

MP class, and among individuals where both partners reside in the

low-activity class.

Table 3. Prevention policies under finite resources, as formulated in 2012.

Policy description
Resources for existing
interventions Population Intervention

1. gMOT-directed: resources are prioritized to
subgroup with the largest burden of new HIV
infections in 2012

Redistributed a Low-activity generic

Multiple partners Qcondoms

FSWs and clients (occasional) Qcondoms

FSWs and clients (regular) Qcondoms

2. gMOT-directed: additional resources
prioritized to reach the subgroup with the
largest burden of new HIV infections

Continued Low-activity generic

Multiple partners «condoms

FSWs and clients (occasional) «condoms

FSWs and clients (regular) «condoms

3. Directed by Increasing long-term PAFt:
additional resources prioritized to epidemic
drivers b

Continued Low-activity generic

Multiple partners «condoms + generic

FSWs and clients (occasional) «condoms + generic

FSWs and clients (regular) «condoms + generic

4. No epidemic appraisal: random distribution
of additional resources

Continued Low-activity generic

Multiple partners «condoms + generic

FSWs and clients (occasional) «condoms + generic

FSWs and clients (regular) «condoms + generic

MOT (modes of transmission).
aUnder policy 1, resources were redistributed from high-risk groups (condom-use coverage was reduced). Initiation of combination antiretroviral treatment is assumed
to be equal across subgroups, and not affected by the prevention policies examined here.
bConcentrated epidemic (FSWs and clients; commercial sex), Generalized epidemic (individuals with multiple partnerships; casual sex), Mixed epidemic (FSWs, clients,
and individuals with multiple partnerships; commercial and casual sex)
« (levels remained stable after 2012); Q (coverage declined after 2012).
doi:10.1371/journal.pone.0101690.t003
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Validity analysis of the MOT metric
We assessed the validity of the MOT metric in the following

four stages:

To assess the sensitivity of the MOT metric to biological and1

sexual structure (structural uncertainty), and model type (static

vs. dynamic), we compared the MOT metrics obtained from

our three comparator models to the benchmark MOT metric.

To assess the sensitivity of the MOT metric to potentially2

biased parameters, we compared the MOT metric from the

cMOT using unbiased input parameters (i.e. parameters from

the synthetic epidemics), to the MOT metric using biased

parameters, which were varied one by one. In keeping with

social desirability bias observed in behavioural surveys [20,21],

the size of high-risk subgroups was varied by 0 to 100%. All

other (47) parameters were varied by 6 50%.

To assess the validity of the MOT metric itself in identifying

the relevant prevention targets over time, we compared the

benchmark MOT metric at different time-points with the

known epidemic drivers.

To assess the extent to which the MOT metrics (including the

benchmark MOT metric) reflect the short- and long-term

contribution of different subgroups to overall HIV transmission,

we compared the MOT metrics with the cumulative population

attributable fraction of infections (PAFt) from corresponding

partnerships over one year (PAF1) and over 5–30 years (PAF5 -

PAF 30), starting in 2012. The PAFt is estimated using the 4-

stage dynamical model by ‘‘turning off’’ HIV transmission from

specific subgroups in 2012, and calculating the relative

difference in the number of new HIV infections acquired by

the total population over time (t years). We then compared the

different MOT metrics (reflecting HIV acquisition) and the

PAFt with the one-year fraction of HIV infections transmitted

from the corresponding subgroups using the cMOT (‘‘cMOT

transmitted’’). Details are provided in Text S1.

Prevention implications of using the MOT metric to
guide policies

We used the 4-stage dynamical model to assess the potential

impact on HIV incidence of introducing HIV prevention policies

guided by the gMOT metric in 2012. For the illustrative purpose

of this analysis, we applied a generic intervention that reduces per-

act transmission by 80% under a resource cap specific to each

setting. The number of person-years of intervention was capped at

the number required to increase condom-use within commercial

partnerships to 98% (assuming both FSWs and clients agree to use

condoms) in the concentrated epidemic; the number required to

double condom-use within casual partnerships in the generalized

epidemic; and number required to increase condom-use within

commercial partnerships to 98% and double condom-use within

casual partnerships in the mixed epidemic.

Four policies were examined (Table 3). Policies 1 and 2 used the

ranking from the gMOT (as is most commonly cited in the policy

literature [7,11,12,26]) to prioritize interventions to the subgroup

with the largest burden of new infections. Policy 1 re-distributed

resources by reducing the coverage of existing condom-based

intervention programs for FSWs and/or the MP groups and re-

allocated these resources to the subgroup with the largest burden

Figure 2. Model-predicted distribution of new HIV infections over one year (MOT metric) in three epidemic types. The benchmark
Modes of Transmission (MOT) metric is obtained from the 4-stage dynamical model, and corresponding MOT metric obtained from the 1-stage
dynamical model (1-stage DM), complex MOT (cMOT), and generic MOT (gMOT) models. The MOT metric reflects the fraction of new HIV infections
acquired by different risk groups (colored bars) estimated for 2012 using data from the synthetic epidemics.*local epidemic drivers.
doi:10.1371/journal.pone.0101690.g002
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of new HIV infections. Policies 2 to 4 assumed that resources were

added to existing interventions, so condom-use was maintained at

2012 levels. Policy 3 used additional resources to target

intervention to epidemic drivers (based on an increasing long-

term PAFt). Policy 4 randomly distributed additional resources

across subgroups, mimicking a situation without an epidemic

appraisal. Each policy was implemented in 2012, with immediate

scale-up and sustained efforts.

Results

The epidemic driver in the concentrated, mixed, and general-

ized epidemic was commercial sex, a combination of commercial

and casual sex, and casual sex, respectively (Table 1, Figure S5).

Sensitivity of the MOT metric estimates to biological,
sexual, and static structure

Figure 2 compares the 2012 MOT metrics from different models

with the benchmark. The MOT metrics generated by the 1-stage

dynamical model and the cMOT were similar to the benchmark.

This suggests that assumptions of uniform HIV infectivity in the

MOT models do not substantially bias the MOT metric estimates.

In contrast, the MOT metric was very sensitive to assumptions

about sexual structure. Using the gMOT biased the predicted

distribution of new HIV infections toward the low-activity group in

all epidemics (Figure 2, Figures S6–S8). Across all three epidemic

types, all models including the benchmark MOT predicted that

most new HIV infections were acquired by low-activity groups in

2012 (Figure 2) rather than among local epidemic drivers. Hence,

using a simplified sexual structure in the MOT model reduces the

validity of the MOT metric estimate, but does not explain why

MOT models do not identify local epidemic drivers.

Sensitivity of the MOT metric estimates to biased
parameter inputs

Of the 51 parameters explored in univariate sensitivity analyses,

the size, the HIV prevalence, and the frequency of partner change

in high-risk groups, and the number of sex-acts within partner-

ships, were the most influential parameters on the cMOT metric

across epidemic types (Figure 3, Figure S9, Figure S10). As

expected, underestimates of the population size of high-risk groups

led the cMOT metric to overestimate the relative burden of new

HIV infections in the low-activity group (Figure 3, Figure S9,

Figure S10). Overestimating sex acts within casual partnerships, or

underestimating sex acts in main partnerships, led the biased

cMOT to overestimate the burden of new infections in the

multiple partnership groups and helped identify the local epidemic

drivers; however, this effect was only observed in the generalized

epidemic (Figure S9). The findings suggest that while biased inputs

produce biased MOT metrics, and therefore, reduce validity, they

do not explain why MOT models do not consistently identify local

epidemic drivers.

Figure 3. Sensitivity of the MOT metric to biased input parameters (concentrated epidemic). The range in the predicted fraction of new
HIV infections acquired by the low-activity group (A), clients (B), and female sex workers (FSWs, C) are depicted for the five most influential
parameters from the complex Modes of Transmission model (cMOT) using biased inputs. Also shown are the benchmark MOT metric and the
unbiased cMOT metric. Across the parameter range examined here, the low-activity group incurred the largest burden of new infections, and the
unbiased MOT metric did not identify the epidemic driver (no red regions). Pop. (population); Prev. (prevalence).
doi:10.1371/journal.pone.0101690.g003
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Validity of the MOT metric itself in identifying the
relevant prevention targets (epidemic drivers) over time

Figure 4 and Figures S6-S8 demonstrate how the benchmark

MOT metric changes over the course of an epidemic. In the

concentrated epidemic, most new infections (77%) were acquired

by clients and FSWs in 1990, compared to the low-activity group

in 2012 (65%). In the generalized epidemic, 67% of new infections

occurred in the multiple-partnership group in 1990, compared to

approximately 40% in each of the low-activity and multiple-

partnership groups in 2012. Early in the mixed epidemic, most

new infections occurred in FSWs and clients (37% in 1990), and

the multiple-partnership group (39% in 1990), compared to the

low-activity group in 2012 (48%). Hence, the benchmark MOT

metric identified epidemic drivers early in the epidemics, but failed

to do so in the later stages (with the possible exception of the

generalized epidemic). Thus, even if perfectly estimated (as in the

case of the benchmark MOT metric for our synthetic epidemics),

the fraction of new HIV infections measured in a mature epidemic

alone may not distinguish epidemic types, particularly between the

concentrated and mixed epidemics (Figure 4).

MOT metric and the contribution of epidemic drivers to
overall HIV transmission

The fraction of HIV infections acquired in different subgroups

(MOT metrics), the fraction of HIV infections transmitted from

each subgroup (‘‘cMOT transmitted’’), and the contribution of

that subgroup to overall HIV transmission (PAFt) is depicted

across epidemic types (Figure 5, Figure S11, Figure S12). In the

concentrated and mixed epidemics (Figure 5a, Figure S12a), the

fraction of HIV infections acquired by FSWs (benchmark MOT

metric) underestimated the PAF1 of FSWs, while the fraction of

HIV infections transmitted from FSWs (‘‘cMOT transmitted’’)

approximated the PAF1 of FSWs. This is because HIV acquisition

among FSWs (MOT metric) does not reflect HIV transmission to

clients and other male partners over one year. In contrast, the

benchmark MOT metric for the multiple-partnership and low-

activity groups includes HIV infections acquired and transmitted

between males and females within each respective group, and is

thus similar to the cMOT metric and PAF1 (Figure S11a–b,

Figure 5b, Figure 12b).

The cumulative PAFt of the epidemic drivers increases over

time (Figure 5a, Figures S11a–S12a). For example, over 30 years,

FSWs contributed to 42%–47% of overall transmission in the

concentrated and mixed epidemics, compared to 17–22% over

one year (Figure 5a, Figure S12a). In the generalized epidemic, sex

within multiple partnerships contributed to 64% of all transmis-

sion over 30 years (Figure S11a). In contrast, the cumulative PAFt

of sex within low-activity partnerships remained relatively stable

over time (Figure 5b, Figure S11b, Figure S12b).

Therefore, even unbiased estimates of the MOT metric

(infections acquired), unbiased estimates of the annual fraction of

HIV infections transmitted from epidemic drivers, or unbiased

estimates of the PAF1 would underestimate the medium- to long-

term contribution of epidemic drivers to overall HIV transmission.

This underestimate was largest with the gMOT (Figure 5, Figure

S11, Figure S12). The findings were similar over the range of

values explored in the univariate sensitivity analysis of biased

inputs for the cMOT (data not shown).

Figure 4. The benchmark MOT metric over time in three epidemic types. The benchmark Modes of Transmission (MOT) metric is obtained
from the 4-stage dynamical model, and is shown for the years 1990 and 2012. The MOT metric reflects the fraction of new HIV infections acquired by
different risk groups (colored bars) estimated for 2012 using data from the synthetic epidemics.*local epidemic drivers.
doi:10.1371/journal.pone.0101690.g004
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Prevention implications
Figure 6 illustrates the plausible consequences of prevention

policies based on different epidemic appraisals (gMOT, long-term

PAFt, none) when applied under an equivalent resource cap across

epidemic types. Based on the gMOT, diverting resources away

from epidemic drivers (Policy 1) fared the worst, leading to

increased overall HIV incidence, while Policy 3 (prioritizing

epidemic drivers based on the long-term PAFt) achieved the largest

long-term impact. If additional resources were available and were

focused on the low-activity population because the largest fraction

of annual HIV infections were acquired within this group (gMOT-

directed Policy 2), the result was a modest reduction in overall

HIV incidence. Of note, random allocation of additional resources

(Policy 4) – based on policies that did not use an epidemic

appraisal and did not prioritize subgroups – achieved a similar or

larger impact than MOT-guided policy 2.

Discussion

Validity of the MOT model and MOT metric
Epidemic tools used to guide HIV prevention policies aim to

ensure that the right populations are reached, the most effective

interventions are applied at scale, and finite resources are aligned

with the desired goals for epidemic control [1,27,28]. Using a

dynamical transmission model and synthetic data to objectively

validate the MOT metric in a controlled and simulated

environment, we demonstrated three key results.

First, the MOT metric was sensitive to simplifications in the

sexual structure and biases in the input parameters leading to

biased estimates of the annual distribution of new HIV infections

obtained from MOT models. However, estimates were improved,

and essentially, unbiased, when the structure of the MOT model

was equivalent to that of our synthetic population and used

unbiased parameters. This means that with better (less biased) data

and a more detailed and tailored model structure, more reliable

estimates of the MOT metric could be obtained [10,14].

Second, we demonstrated that it was not the static MOT model

per se, but the MOT metric itself – even if perfectly estimated or

generated by a dynamical model - that was inadequate to identify

the relevant prevention targets because it consistently underesti-

mated the long-term contribution of epidemic drivers to overall

HIV transmission (Table 4). Similarly, none of the other ‘short-

term’ measures (the unbiased annual fraction of HIV infections

transmitted, the annual PAF) captured the long-term contribution

of epidemic drivers. Hence, improving the reliability of MOT

model predictions by improving model structure or using better

parameters is unlikely to be sufficient if our objective is to focus

country-specific HIV prevention and achieve a long-term impact.

Third, translation of the MOT metric based on how subgroups

rank by burden of newly acquired infections tended to prioritize

the low-activity population across epidemic types. Thus, MOT-

based policies often missed the role of epidemic drivers to overall

HIV transmission, which undermined our ability to control our

synthetic HIV epidemics in the long-term.

Figure 5. MOT metrics by subgroups and their contribution to overall HIV transmission (concentrated epidemic). The predicted
fraction of new infections acquired by female sex workers (A, FSWs) and the low-activity group (B), as obtained from the complex Modes of
Transmission model (cMOT acquired) and the generic Modes of Transmission model (gMOT acquired), and the benchmark MOT (acquired), are shown
in grey. The fraction of HIV infections transmitted from FSWs and the low-activity group is shown in green (cMOT transmitted). The cumulative
population attributable fraction (PAFt) over different time horizons measured from the year of the MOT (2012) for the epidemic driver (FSWs) and
low-activity groups are shown in black.
doi:10.1371/journal.pone.0101690.g005
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The failure of the MOT metric to identify epidemic drivers

were exacerbated in the late (mature) epidemic phase, by

simplifying the sexual structure of the MOT model, removing

multiple HIV exposures, and when underestimating key param-

eters such as the size of high-risk groups. The benchmark MOT

metric identified epidemic drivers in the early epidemic phase, but

not later (mature) phases. In our synthetic generalized epidemic,

the benchmark MOT identified the single epidemic driver (casual

sex within multiple partnerships) even in the mature phase partly

because individuals engaged in multiple partnerships were the

largest risk group. As in most regions, the low-risk group in our

synthetic epidemics was the largest risk group, which means that

this group could acquire the largest burden of new HIV infections

even if their per-capita HIV incidence rate is low [8]. This is

evident from most published MOT analyses which identify the

low-activity population as the most vulnerable subgroup, partic-

ularly if condom use is high within epidemic drivers (such as FSWs

and clients) [6,13].

Prevention implications
The illustrative analysis of the impact of directly translating the

MOT metric into policies prioritizing the low-activity group

depended on how resources were allocated. MOT-guided policies

did not perform better than random allocation of additional

resources, highlighting the potential limited value in using the

MOT to appraise epidemics and guide the selection of prevention

targets. In addition, the prevention gains already made could even

be reversed if resources are re-distributed based on the MOT

results. The allocation of resources was illustrative and cannot be

extrapolated to complex real-life choices. Nonetheless, it provides

a simple exploration of what it could mean for HIV policies guided

by expected short-term versus the longer-term impact.

In practice, HIV prevention targets based on the MOT vary

across countries [2,13,29]. While some countries explicitly target

interventions to the highest-risk groups and local epidemic drivers

[4], many countries prioritize prevention to the ‘‘general

population’’ (efforts which may or may not also address epidemic

drivers) [13,29]. The importance of prioritizing prevention to key

populations, such as FSWs, in high-prevalence HIV epidemics has

Figure 6. Impact of different prevention policies on the overall HIV incidence in three epidemic types. A generic intervention that
reduces HIV transmission by 80% per sex-act is used. Policy 1 (red) prioritizes the low-activity group based on the largest burden of new HIV
infections estimated from the generic Modes of Transmission model (gMOT) in 2012. gMOT-guided Policy 1 redistributes finite resources from
condom-use coverage in high-risk groups to a generic intervention focus on low-activity individuals. gMOT-guided Policy 2 (blue) prioritizes the low-
activity group but resources are added to existing interventions (baseline condom use in high-risk partnerships is sustained). Policy 3 (green) is
guided by an increasing long-term population attributable fraction over time t (PAFt), and therefore prioritizes epidemic drivers to receive the generic
intervention. Policy 4 is not informed by an epidemic appraisal, and randomly allocates additional resources across subgroups. Each policy is
implemented in 2012, is immediately scaled-up, and sustained over 30 years of follow-up. The person-years of the generic intervention are fixed
throughout the follow-up period, and equivalent within each simulated synthetic epidemic type.
doi:10.1371/journal.pone.0101690.g006
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re-emerged in the policy discourse [30-32]. However, in regions

such as sub-Saharan Africa, prevention efforts focused on key

populations remain scarce, perhaps partly because the long-term

contribution of key populations to overall HIV transmission and

the potential long-term prevention benefits of key population

interventions have been overlooked [29,33]. Relying on the MOT

metric, or any short-term metric, to characterize local HIV

epidemics and prioritize HIV prevention targets could continue to

misdirect resources away from epidemic drivers [7,11,12,29].

Strength and limitations
This is the first study to objectively assess the validity of the

static MOT model [9] using synthetic epidemics generated by a

dynamical HIV transmission model, and therefore, the first to

evaluate the MOT model using an objective, benchmark MOT

metric and epidemic drivers. The simulated settings were informed

by regional empirical data in order to use realistic parameter

values. The examination of three epidemic types improves

generalizability of findings across epidemiologic context. This

study also demonstrates the use of dynamical transmission models

to simulate synthetic data, and how we can use them to test the

validity and utility of different epidemic tools.

We did not examine other key populations, including men who

have sex with men and people who inject drugs. However, the

overarching principles with respect to the MOT metric are

expected to be similar if the sexual partnerships between other

high-risk groups and the rest of the population resemble the

connectivity between risk-groups in the heterosexual HIV

epidemics studied here. Although our deterministic model to

generate the synthetic data was somewhat limited in structural

complexity, its sexual structure included the important features of

most published models that include high-risk groups[34], and

exceeded that of the generic MOT model[9,14]. A more complex

model (e.g. with partnership duration) would have only increased

differences between estimates of the static gMOT and the

benchmark MOT, which would strengthen our conclusions about

the MOT model’s lack of reliability. However, increasing the

complexity of the sexual structure of the dynamical model would

have little influence on the comparison between the benchmark

and cMOT models, because the cMOT would be adjusted

accordingly.

The interventions simulated from 2012 onwards, and the

resource-allocation examples, were illustrative. However, they

provide a useful warning for the potential implication of MOT-

guided policies, and to highlight the need for policies to consider

long-term impact. More detailed modelling and cost-effectiveness

analysis would be required to make intervention-specific recom-

mendations for policy-decisions.

Summary and Recommendations
The generic MOT model remains the current template for HIV

epidemic appraisals [9]. Our findings suggest that the reliability of

the MOT metric could be improved by either using locally

calibrated dynamical models for generating the MOT metric, or

using parameters from calibrated dynamical models in the static

MOT model (akin to the ‘unbiased’ inputs for the cMOT used

here). We could also use alternate short-term metrics, such as the

fraction of new HIV infections transmitted from a given subgroup

(i.e. the ‘‘MOT transmitted’’), or the annual PAF generated from

dynamical models. However, none of these solutions address the

fundamental issue that short-term estimates of HIV acquisition or

transmission inherently underestimate the long-term contribution

of epidemic drivers to overall HIV transmission under most

conditions (except during the early epidemic phase). As the main

problem with the MOT model rests with the inadequacy of the

MOT metric, rather than model specification, the validity of the

MOT metric in identifying epidemic drivers cannot be improved

by calibrating the MOT model (using ‘unbiased’ inputs),

increasing the complexity of the MOT model structure, or using

a dynamical model to generate the metric.

We conclude that the MOT metric, in and of itself, is not a valid

stand-alone tool and should not be used for selecting HIV

prevention targets because it consistently underestimates the

contribution of epidemic drivers to overall HIV transmission in

the medium- to long-term. Translation of the MOT metric into

policy could fail to reach epidemic drivers, and lead to less effective

HIV prevention. Additional tools to characterize HIV epidemics

that are based on a new paradigm of taking a long-term view (such

as the long-term PAF) and that try to identify epidemic drivers are

required, and their objective validation is necessary prior to wide-

scale use.

Supporting Information

Figure S1 Schematic of HIV progression, combination
antiretroviral (cART) treatment, and discontinuation.
Dashed arrows represent the excess mortality due to HIV.

Symbols correspond to Equations 1-7 in Text S1 and Table S1.

cART (combination antiretroviral treatment).

(TIF)

Table 4. Key Findings.

The annual distribution of new HIV infections (MOT metric) is an inadequate metric, in and of itself, for identifying local epidemic drivers and
prioritizing the relevant HIV prevention targets, especially in mature HIV epidemics.

An unbiased MOT metric does not consistently identify epidemic drivers because the metric inherently underestimates the long-term contribution
of epidemic drivers to overall HIV transmission. The contribution of epidemic drivers to overall transmission increases over time due to secondary transmitted
events.

Estimates of the MOT metric is sensitive to structural and parameter uncertainty, which exacerbate the bias in the annual fraction of HIV infections
acquired by epidemic drivers, and the fraction of HIV infections due to epidemic drivers in the long-term. Improving the MOT model (by improving
sexual structure and parameterization) will improve the reliability of the MOT model’s predictions.

The validity of the MOT metric in identifying epidemic drivers cannot be improved by increasing the complexity of the MOT model structure calibrating the
MOT model (using ‘unbiased inputs’), or using a dynamical model (instead of a static model) to generate the metric.

MOT-directed policies which do not prioritize HIV epidemic drivers could undermine our ability to reduce HIV incidence in the long-term. MOT-
directed HIV prevention policies are only useful in the short-term if existing interventions for epidemic drivers are sustained. MOT-directed policies may not perform
better than random allocation of additional resources.

doi:10.1371/journal.pone.0101690.t004
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Figure S2 Synthetic concentrated epidemic using data
from Belgaum, south India. Depicts subgroup HIV preva-

lence in the concentrated epidemic as predicted by the 4-stage and

1-stage dynamical models and the observed HIV prevalence

(Belgaum, India) from available data sources that were used for the

4-stage DM calibration to generate the synthetic concentrated

epidemic. The 1-stage dynamical model (DM) assumes uniform

HIV infectivity throughout an individual’s HIV infection, while

the 4-stage DM incorporates differential HIV infectivity by stage

of infection. The vertical capped lines represent 95% confidence

intervals from the observed HIV prevalence. Note that different

scales on the y-axis are used in A and B. ANC (antenatal clinic

surveillance); GPS (general population survey); FSW (female sex

worker). *ANC data was adjusted using 2007 GPS and ANC data

comparison.

(TIF)

Figure S3 Synthetic generalized epidemic using data
from Lesotho. Depicts subgroup HIV prevalence in the

generalized epidemic as predicted by the 4-stage and 1-stage

dynamical models (DM) and the observed HIV prevalence

(Lesotho) from available data sources that were used for the 4-

stage DM model calibration to generate the generalized epidemic.

The 1-stage DM assumes uniform HIV infectivity throughout an

individual’s HIV infection, while the 4-stage DM incorporates

differential HIV infectivity by stage of infection. The vertical

capped lines represent 95% confidence intervals from the observed

HIV prevalence. Note that different scales on the y-axis are used in

Panels A and B. ANC (antenatal clinic surveillance); DHS

(demographic health survey).

(TIF)

Figure S4 Synthetic mixed epidemic using data from
Kisumu, Kenya. Depicts subgroup HIV prevalence in the

mixed epidemic as predicted by the 4-stage and 1-stage dynamical

models (DM) and the observed HIV prevalence (Kisumu, Kenya)

from available data sources that were used for the 4-stage DM

calibration to generate the synthetic mixed epidemic. The 1-stage

DM assumes uniform HIV infectivity throughout an individual’s

HIV infection, while the 4-stage DM incorporates differential HIV

infectivity by stage of infection. The vertical capped lines represent

95% confidence intervals from the observed HIV prevalence. Note

that different scales on the y-axis are used in Panels A and B. ANC

(antenatal clinic surveillance).

(TIF)

Figure S5 Epidemic curves for the synthetic concentrat-
ed, generalized, and mixed epidemics. The epidemic that

would manifest in absence of commercial sex (dashed line) or the

absence of casual sex (solid line with circles) is depicted alongside

the full epidemic curve (solid line). In the generalized epidemic (B),

commercial sex has little direct or indirect impact on HIV

prevalence. In the mixed epidemic (C), commercial and casual sex

both contribute to sustained transmission. Note that different

scales on the y-axis are used in each panel.

(TIF)

Figure S6 The MOT metric over time in the concen-
trated epidemic, by model type. The Modes of Transmission

(MOT) metric was measured every 5 years: (A) benchmark MOT

(A); (B) MOT metric from the complex MOT model; (C) MOT

metric from the generic MOT model (C). The MOT metric

reflects the fraction of new HIV infections acquired by different

risk groups (colored bars) estimated for 2012 using data from the

synthetic epidemics. Early in the epidemic, most new infections

occurred among clients and FSWs. As the epidemic progressed,

and in the presence of increasing condom-use within high-risk

partnerships, most new HIV infections occurred in the low-activity

group.

(TIF)

Figure S7 The MOT metric over time in the generalized
epidemic, by model type. The Modes of Transmission (MOT)

metric was measured every 5 years: (A) benchmark MOT (A); (B)

MOT metric from the complex MOT model; (C) MOT metric

from the generic MOT model (C). The MOT metric reflects the

fraction of new HIV infections acquired by different risk groups

(colored bars) estimated for 2012 using data from the synthetic

epidemics. Early in the epidemic, most new infections occurred

among individuals in the multiple partner (MP) group. As the

epidemic progressed, and in the presence of increasing condom-

use within high-risk partnerships, most new HIV infections

occurred in near equal proportions between the low-activity

group and the MP groups (benchmark MOT [A] and the MOT

metric from the complex MOT [B]).

(TIF)

Figure S8 The MOT metric over time in the mixed
epidemic, by model type. The Modes of Transmission (MOT)

metric was measured every 5 years: (A) benchmark MOT (A); (B)

MOT metric from the complex MOT model; (C) MOT metric

from the generic MOT model (C). The MOT metric reflects the

fraction of new HIV infections acquired by different risk groups

(colored bars) estimated for 2012 using data from the synthetic

epidemics. Early in the epidemic, most new infections occurred

among individuals engaged in multiple partnerships (MP). As the

epidemic progressed, and in the presence of increasing condom-

use within high-risk partnerships, most new HIV infections

occurred in the low-activity group.

(TIF)

Figure S9 Sensitivity of the MOT metric to biased input
parameters (generalized epidemic). The range in the

predicted fraction of new HIV infections acquired by the low-

activity group (A), clients (B), and individuals engaged in multiple

partnerships (MP, C) are depicted for the five most influential

parameters from the complex Modes of Transmission model

(cMOT) using biased inputs. Also shown are the benchmark MOT

metric and the unbiased cMOT metric. In the parameter range

examined here, the biased cMOT model identified the epidemic

driver (red regions) when (i) the number of sex-acts/year in a main

partnership was underestimated; or (ii) the number of sex-acts/

year in a casual partnership was overestimated. Pop. (population);

Prev. (prevalence).

(TIF)

Figure S10 Sensitivity of the MOT metric to biased
input parameters (mixed epidemic). The range in the

predicted fraction of new HIV infections acquired by the low-

activity group (A), clients (B), female sex workers (FSWs, C), and

individuals with multiple partnerships (D) are depicted for the five

most influential parameters from the complex Modes of

Transmission model (cMOT) using biased inputs. Also shown

are the benchmark MOT metric and the unbiased cMOT metric.

Across the parameter range examined here, the low-activity group

incurred the largest burden of new infections, and the unbiased

MOT metric did not identify the epidemic driver (no red regions).

Pop. (population); Prev. (prevalence); MP (multiple partnership

group).

(TIF)

Figure S11 MOT metrics by subgroups and their
contribution to overall HIV transmission (generalized
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epidemic). The predicted fraction of new infections acquired by

individuals with multiple partnerships (A, MP) and the low-activity

group (B), as obtained from the complex Modes of Transmission

model (cMOT acquired) and the generic Modes of Transmission

model (gMOT acquired), and the benchmark MOT (acquired),

are shown in grey. The fraction of HIV infections transmitted

from FSWs and the low-activity group is shown in green (cMOT

transmitted). The cumulative population attributable fraction

(PAFt) over different time horizons measured from the year of

the MOT (2012) for the epidemic driver (FSWs) and low-activity

groups are shown in black.

(TIF)

Figure S12 MOT metrics by subgroups and their
contribution to overall HIV transmission (mixed epi-
demic). The predicted fraction of new infections acquired by

female sex workers (A, FSWs) and the low-activity group (B), as

obtained from the complex Modes of Transmission model (cMOT

acquired) and the generic Modes of Transmission model (gMOT

acquired), and the benchmark MOT (acquired), are shown in

grey. The fraction of HIV infections transmitted from FSWs and

the low-activity group is shown in green (cMOT transmitted). The

cumulative population attributable fraction (PAFt) over different

time horizons measured from the year of the MOT (2012) for the

epidemic driver (FSWs) and low-activity groups are shown in

black.

(TIF)

Table S1 State variables and parameters for the
dynamical and MOT models.
(DOCX)

Text S1 Dynamical and MOT model details.
(DOCX)
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