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Abstract: Surface reflectance spectra retrieved from remotely sensed hyperspectral 
imaging data using radiative transfer models often contain residual atmospheric absorption 
and scattering effects. The reflectance spectra may also contain minor artifacts due to 
errors in radiometric and spectral calibrations. We have developed a fast smoothing 
technique for post-processing of retrieved surface reflectance spectra. In the present 
spectral smoothing technique, model-derived reflectance spectra are first fit using moving 
filters derived with a cubic spline smoothing algorithm. A common gain curve, which 
contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain 
curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally 
smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data 
collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are 
given. Comparisons between the smoothed spectra and those derived with the empirical 
line method are also presented. 
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1. Introduction 

Since the mid-1980s, hyperspectral imaging data have been collected with different types of 
imaging spectrometers from aircraft and satellite platforms. Because solar radiation along the  
sun-surface-sensor path in the 0.4−2.5 μm visible and near-IR spectral regions is subject to absorption 
and scattering by atmospheric gases and aerosols, hyperspectral imaging data contain atmospheric 
effects. In order to use hyperspectral imaging data for quantitative remote sensing of land surfaces and 
ocean color, the atmospheric effects must be removed. There are now a number of model-based 
atmospheric correction algorithms for retrieving surface reflectances from hyperspectral imaging data. 
These include, but are not limited to, the ATmosphere REMoval algorithm (ATREM) [1,2], the  
High-accuracy ATmospheric Correction for Hyperspectral Data (HATCH) [3], the Atmosphere 
CORrection Now (ACORN) [4], the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) [5], the Imaging Spectrometer Data Analysis System (ISDAS) [6], and a series of 
Atmospheric and Topographic Correction (ATCOR) codes [7,8]. 

The surface reflectance spectra retrieved with radiative transfer models often contain residual 
atmospheric absorption and scattering effects. The reflectance spectra can also contain artifacts due to 
errors in radiometric and spectral calibrations. Although models have been improving with time, they 
are not yet at the level where all artifacts are smaller than sensor noise. Figure 1 shows an example of a 
reflectance spectrum derived with ATREM from AVIRIS data [9] acquired over Cuprite (NV, USA) in 
June, 1995. Due to small errors in assumed wavelengths and errors in line parameters compiled on the 
HITRAN database [10], small spikes (particularly near the centers of the 0.94- and 1.14-µm water 
vapor bands) are present in this spectrum. These spikes have distracted geologists who are interested in 
studying surface mineral features. Clark et al. [11] pioneered a hybrid approach for the derivation of 
laboratory-quality surface reflectance spectra from AVIRIS data. They used a combination of ATREM 
and field spectral measurements over a single ground calibration site. In this case the use of ATREM 
allows improved atmospheric corrections at elevations that are different from the calibration site, and 
the ground calibration removes residual errors commonly associated with sensor artifacts and radiative 
transfer models. In many situations, researchers do not have any field-measured reflectance spectra for 
suppressing residual errors. 

Figure 1. An example of a reflectance spectrum derived with ATREM from AVIRIS data 
acquired in June, 1995 over Cuprite, Nevada, USA. 
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Boardman [12] first developed the Empirical Flat Field Optimal Reflectance Transformation 
(EFFORT) method to suppress residual errors in ATREM-derived surface reflectance spectra without 
the need for field-measured reflectance spectra. In this method, the complete spectrum for each pixel in 
the 0.4–2.5 μm range is fitted with a low order polynomial. It is sometimes difficult to make 
reasonable matches over the entire (or “global”) spectral range. In this article, we describe another 
technique, which fits spectra “locally” in the spectral domain using moving filters derived with a cubic 
spline smoothing algorithm, for quick post processing of ATREM-derived reflectance spectra from 
imaging spectrometer data. Results from analysis of AVIRIS data acquired over the Cuprite  
mining district in Nevada in June of 1995 and over Ivanpah in California in April of 2010 are given. 
Comparisons between the smoothed spectra and those derived with the empirical line method are  
also presented. 

2. Methodology 

In order to describe the smoothing technique, we first describe the commonly used cubic spline 
“fitting” technique, then we describe the cubic spline “smoothing” technique. 

2.1. Cubic Spline Fitting 

The cubic spline fitting technique is a powerful numerical method and has been widely used in 
engineering and scientific computing. For example, Numerical Recipes [13] provides standard 
subroutines, using cubic spline fitting method, for interpolating data between points. In order to 
describe mathematically the cubic spline fitting technique, we consider an interval α ≤ x ≤ b, and 
subdivide it by a mesh of points corresponding to the location of the data at α = X0 < X1 <…< Xj−1 < 
Xj…< XJ = b. An associated set of the observed data is prescribed by yo, y1,..., yj , ..., yJ . We seek an 
interpolating function h(x), which is defined in the interval a,b[ ]. Its first and second derivatives are 
continuous on a,b[ ] and it coincides with a cubic polynomial in each subinterval Xj −1 ≤ x ≤ Xj , and 
satisfies the relationship hj = h Xj( )= yj . Figure 2 illustrates the function h(x). As adapted from 
Ahlberg [14], the function h(x) in the interval Xj −1 ≤ x ≤ Xj  can be expressed as (for convenience, we 
assume the problem of equally spaced samples with a step size of Δ ): 

h(x) =

H1(x) X0 ≤ x ≤ X1

: :
Hj (x) Xj −1 ≤ x ≤ Xj

: :
HJ (x) XJ−1 ≤ x ≤ XJ

⎧ 

⎨ 

⎪ ⎪ 

⎩ 

⎪ 
⎪ 

 (1)

where: 

Hj (x) = s j −1

(Xj − x)3

Δ
+ s j

(x − Xj −1 )3

Δ
+ h j −1 − s j −1[ ]( Xj − x)

Δ
+ h j − sj[ ](x − X j −1)

Δ  
Xj = X0 + jΔ  
hj = h(Xj ); j = 0,1,2,..J  

{sj}, the spline coefficients, can be interpreted as the normalized second derivatives. 

(2)
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Figure 2. An illustration of the interpolating function h(x). 

 

The polynomials (2) in adjacent segments are continuous at the knots: 

Hj (Xj ) = hj = H j +1(Xj )  (3)

The first derivative is continuous at the knot provided that:  
s j −1 + 4sj + sj +1 = hj −1 − 2hj + hj +1  (4)

The second derivative is continuous at the knots: 

Hj
' ' (Xj ) = H j +1

" (Xj ) =
6
Δ2 sj  (5)

The polynomials (2) are determined by specification of {sj}. The selection of these spline 
coefficients can involve any number of imposed weak constraints that characterize the spline fitting. 
One of the constraints is the minimization of the second derivative. Because: 

H" (x)[ ]X j −1

X j

∫
2
dx =

12
Δ3 s j−1

2 + s j
2 + sj −1sj[ ] (6)

it follows that the quantity sj −1
2 + sj

2 + sj −1sj[ ] is to be minimized in any kind of variational selections of 
{sj}. The simplest quadratic form to minimize is sj −1

2 + s j
2 + sj −1sj[ ]

j =1

J

∑ . However, this is not enough to 
guarantee continuity of the derivatives at the knots. A method to incorporate the condition: 

s j −1 + 4sj + 4s j+1 − hj−1 − 2hj + hj +1( )= 0  (7)

must be found. This is done by introducing Lagrangian multipliers. The simple spline formulation for 
the minimization is: 

E {sj}[ ]= s j −1
2 + sj

2 + s j −1s j[ ]
j=1

J

∑ + 2 λ j sj −1 + 4s j + sj +1 − hj −1 − 2hj + hj +1( )[ ]
j =1

J −1

∑  (8)

where λ j s are the Lagrangian multipliers. These conditions are exactly satisfied upon completion of 
the minimization so that zeros are in effect added to the quantity to be minimized. The procedure of 
solving those λ j s, therefore, the spline coefficients {sj}, and the interpolating splines {hj }, is similar 
to that of spline smoothing to be described in the next section. 
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2.2. Cubic Spline Smoothing 

In the spline fitting technique described above, the {hj } are taken to represent errorless data or 
observations, and the spline passes each point yj. However, there can be circumstances that the 
observations are contaminated and unwanted noise is present. For example, in our case raw spectra 
exhibit coherent saw-tooth like “noise”. Under these circumstances, the data integrity condition should 
be relaxed. This can be done by adding a weak constraint term, hj − yj[ ]2

j =0

J

∑  to Equation (8), where yj is 
the observed data, and only a “best fit” should be sought. The smoothed spline { hj } does not 
necessarily pass original observed data { yj }, unlike the case of the spline fitting. An appropriate 
discrepancy sum can be formed as: 

E {sj},{hj}[ ]= τ 2 sj −1
2 + sj

2 + s j −1s j[ ]
j =1

J

∑ + hj − yj[ ]2
j =0

J

∑

+2 λ j s j −1 + 4sj + s j +1 − hj −1 − 2hj + hj +1( )[ ],
j =1

J−1

∑
 (9)

where τ 2  is an adjustable weighting factor. As it increases, the tension of the spline smoothing 
increases, i.e., the curve “flattens out”. On the other hand, as it decreases, the observed data are 
reproduced more closely at the expense of increased curvature. 

The variations on the spline coefficients are tabulated as: 

δs0 τ 2 2s0 + s1( )+ 2λ = 0
δs1 τ 2 s0 + 4s1 + s2( )+ 2λ1 + 8λ2 + 2λ3 = 0
: : :

δsj τ 2 sj −1 + 4s j + sj +1( )+ 2λ j −1 +8λ j + 2λj +1 = 0 j = 2,...,(J − 2)
: : :

δsJ −1 τ 2 sJ − 2 + 4sJ −1 + sJ( )+ 2λ J −2 +8λ J−1 = 0
δsJ τ 2 sJ −1 + sJ( )+ 2λJ −1 = 0

 (10)

The variations on the multipliers lead to: 
δλj : s j −1 + 4s j + sj +1 = hj −1 − 2hj + hj +1; j = 1,(J −1) (11)

Since the spline does not pass the data { yj }, the {hj } are no longer fixed; their variations are  
listed below: 

δh0 2 h0 − y0( )− 2λ1 = 0
δh1 2 h1 − y1( )+ 4λ1 − 2λ2 = 0
: : :

δhj 2 hj − yj( )− 2λj −1 + 4λ j − 2λj +1 = 0 j = 2,...,(J − 2)
: : :

δhJ −1 2 hJ −1 − yJ −1( )− 2λJ −2 + 4λJ −1 = 0
δhJ 2 hJ − yJ( )− 2λJ −1 = 0

 
(12)

Combining terms in (12), we have: 

hj −1 − 2hj + hj +1[ ]− yj −1 − 2yj + y j+1[ ]= λ j− 2 − 4λ j −1 + 6λ j − 4λj +1 + λ j +2  (13)
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Each of the combinations sj −1 + 4sj + s j+1[ ]; j = 1,...,(J −1)  in (10) can be replaced by their 

equivalents from (11) to obtain the following equations: 

δs1 : τ 2 h0 − 2h1 − h2( )+ 8λ1 + 2λ2 = 0
δsj : τ 2 hj −1 − 2hj − hj +1( )+ 2λ j −1 + 8λ j + 2λ j +1 = 0

δsJ −1 : τ 2 h0 − 2h1 − h2( )+ 2λ J− 2 + 8λ J−1 = 0
 (14)

The hj −1 − 2hj + hj +1[ ] in (14) can be replaced by the groupings in (13): 

δs1 τ 2 Δ2ℵ2y1 + 6λ1 − 4λ2 + λ3( )[ ]+ 8λ1 + 2λ2 = 0
δs2 τ 2 Δ2ℵ2 y2 + −4λ1 + 6λ2 − 4λ3 + λ4( )[ ]+ 2λ1 + 8λ2 + 2λ3 = 0
: : :

δs j τ 2 Δ2ℵ2 yj + λ j −2 − 4λ j −1 + 6λ j − 4λj +1 + λ j + 2( )[ ]+ 2λj −1 + 8λj + 2λ j +1 = 0 j = 3,...,(J − 3)
: : :

δsJ −2 τ 2 Δ2ℵ2 yJ − 2 + λ J−4 − 4λ J−3 + 6λ J − 2 − 4λ J −1( )[ ]+ 2λ J −3 + 8λJ −2 + 2λJ−1 = 0
δsJ−1 τ 2 Δ2ℵ2yJ −1 + 6λJ −3 − 4λJ− 2 + λJ −1( )[ ]+ 2λJ −2 + 8λJ −1 = 0

 
(15)

where: ℵ2 yj =
y j −1 − 2yj + yj +1

Δ2
. 

The {λ j } are then found as solutions of: 

Aλ = y" (16)

where A is the pentadiagonal matrix 
c b a
b c b a
a b c b a

a b c b a
a b c b a

. . . . .
. . . . .

. . . . .
a b c b a

a b c b
c b c

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

(17)

Here the matrix elements are constants and given by: 

a = τ 2

b = 2 − 4τ 2( )
c = 8 + 6τ 2( )

 (18)

and: 

y' ' = −Δ2τ 2

ℵ2y1

ℵ2 y2

.
ℵ2 yj

.
ℵ2 yJ −1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 
(19)
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Given the {λ j }, the {hj } can be determined directly from (13), and the spline coefficients {s j } can 

be found as a tridiagonal solution of (10). 

3. Procedures for Post Processing of ATREM-Derived Reflectance Data 

The small spikes, as seen in Figure 1, are systematically present in all spectra in an ATREM output 
data cube (2-d spatial plus 1-d spectral). We hope to make mild “gain” adjustments to remove these 
small spikes during the post processing of the ATREM data cube. Specifically, we hope to find a gain 
function, g( λ ), which contains all the weak spikes and which has a mean value close to 1. The 
multiplication of g(λ ) to the ATREM output spectra should allow the removal of the systematic small 
spikes. Several steps are involved in the post processing of an ATREM output data cube. They are: 

(a)  The cubic spline smoothing technique described in Section 2 is applied to each of the spectra 
in the ATREM data cube. As a result, an intermediate “smoothed” data cube is produced. 
Because the cubic spline smoothing technique fits a spectrum “locally” in the spectral 
domain, most of the smoothed spectra at this stage match quite well with the ATREM spectra. 
If the spectra were fit with low order Legendre polynomials “globally”, only a minor fraction 
of the smoothed spectra would match well with the ATREM spectra. 

(b) The average reflectance, ρ avg, is calculated for each of the spectra in the ATREM output  
data cube. 

(c)  For each pixel, the standard deviation, σ , between the ATREM spectrum and the “smoothed” 
spectrum is calculated. 

(d) For an AVIRIS scene, a scatter plot of σ / ρ avg vs. ρ avg is made. Pixels with σ / ρ avg values in 
the lower twenty percentile are identified. 

(e)  For each of the pixels identified in Step d, a ratio spectrum (“smoothed” spectrum/ATREM 
spectrum) is calculated. The desired gain spectrum, g(λ ), is obtained by averaging all the 
ratio spectra. Figure 3 shows an example of a gain spectrum, which contains a number of 
weak spikes in the 0.4–2.5 µm spectral region. 

(f) Each of the spectra in the ATREM output data cube is multiplied by the gain spectrum to 
obtain the “final” smoothed data cube. 

Figure 3. A sample gain spectrum. 
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Our algorithm for smoothing the ATREM output data cube is fast. It takes approximately  
30 s on a Mac computer with a 2.66 GHz Quad-Core Intel Xeon processor to process one complete 
data cube with a dimension of 614 samples, 972 lines, and 224 bands.  

4. Sample Results 

The cubic spline smoothing algorithm described above was implemented on an AVIRIS  
server computer at the NASA Jet Propulsion Laboratory for post-processing large volumes of 
ATREM-derived reflectance data cubes from AVIRIS radiances acquired during major field 
experiments. Below we present results from one set of AVIRIS data acquired over the Cuprite Mining 
District in Nevada in June, 1995 and another over Ivanpah playa in California in April, 2010.  

4.1. Cuprite, Nevada 

Figure 4 shows a comparison among an ATREM reflectance spectrum (lower line) over a single 
pixel within the 1995 AVIRIS Cuprite scene , the smoothed spectrum (middle line), and the reflectance 
spectrum obtained with the well-known empirical line method (upper curve) [15]. For clarity, the 
spectra in Figure 4 are vertically displaced. The general shapes of these spectra in the 0.4–1.26 µm,  
1.5–1.75 µm, and 2.0–2.5 µm wavelength intervals are very similar. Major mineral features in the  
2.0–2.5 µm region are seen in all the spectra. The un-smoothed ATREM spectrum has quite a few 
weak spikes. These spikes are largely removed in the smoothed spectrum. The spectrum derived with 
the empirical line method shows weak inverse water vapor features near 0.94 and 1.14 µm. This 
indicates that the method results in a slight over-correction of atmospheric water vapor absorption 
effects for this pixel. 

Figure 4. An ATREM reflectance spectrum (lower line), a smoothed spectrum (middle 
line), and a reflectance spectrum obtained with the empirical line method (upper line). For 
clarity, the three spectra are vertically offset. 

 

Figure 5A shows six ATREM reflectance spectra (vertically displaced for clarity). These spectra 
have distinct mineral absorption features in the 2.0–2.5 µm spectral region. Weak spikes (for example 
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near 1.14 µm) are systematically present in all the spectra. Figure 5B shows the corresponding 
smoothed spectra, which look very similar to laboratory-measured reflectance spectra, particularly in 
the 2.0–2.5 µm spectral region. Weak spikes are all removed. A broad iron feature near 0.9 µm is seen 
nicely in one spectrum—the 4th spectrum from top. Figure 5C shows six spectra derived from the 
AVIRIS data with the empirical line method. Mineral features in the 2.0–2.5 µm region are recovered 
quite well with this method. However, water vapor features in the 0.94 and 1.14 µm regions are either 
over- or under- corrected. The broad iron feature in the 4th spectrum from the top is not clearly seen due 
to the over-correction of atmospheric water vapor absorption effects. By comparing Figured 5A–C, it is 
seen that major mineral features are preserved after the spectral smoothing. 

Figure 5. (A): Six reflectance spectra (displaced vertically for clarity) derived with 
ATREM from AVIRIS data acquired over Cuprite, Nevada in June, 1995; (B): six 
smoothed reflectance spectra corresponding to those in (A); and (C): six reflectance spectra 
derived with the empirical line method and corresponding to those in (A). 

 

4.2. Ivanpah, California 

Figure 6A shows a false color image (Red: 0.63 μm; Green: 0.86 μm; Blue: 0.47 μm) for the 
AVIRIS scene over Ivanpah in California. The bright dry salt lake beds extending from top to bottom 
are seen obviously in the image. The green areas in the center left portion of the image are covered by 
vegetation. The dotted line in Figure 6B is the ATREM-derived surface reflectance spectrum over a 
soil pixel located at the center of the red box in Figure 6A. The curve is not spectrally smooth, 
particularly in the 0.86–1.20 μm range, due to residual errors in the ATREM atmospheric correction 
process. The solid line (vertically displaced for clarity) in Figure 6B is the smoothed spectrum. The 
spectrum in the 0.86–1.20 μm range becomes much smoother after the application of the cubic spline 
smoothing algorithm. By comparing the two curves in Figure 6B, it is also seen that major mineral 
absorption features centered near 2.20 and 2.34 μm are preserved after spectral smoothing, and  
no artificial absorption features in the entire 0.4−2.5 μm spectral range are introduced by the  
smoothing algorithm.  
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Figure 6. (A): a false color image (Red: 0.63 μm; Green: 0.86 μm; Blue: 0.47 μm) for an 
AVIRIS scene over Ivanpah in California, and (B): an ATREM-derived surface reflectance 
spectrum over a soil pixel (dotted line) and the corresponding smoothed spectrum (solid 
line). See text for more detailed descriptions. 

 

Figure 7 is similar to Figure 6, except for a spectrum over green vegetation covered area. The 
general shapes of the spectrum in the 0.5−2.5 μm range after smoothing (solid line in Figure 7B) are 
similar to those of green vegetation reflectance spectra measured in laboratories.  

Figure 7. (A): a false color image (Red: 0.63 μm; Green: 0.86 μm; Blue: 0.47 μm) for an 
AVIRIS scene over Ivanpah in California, and (B): an ATREM-derived surface reflectance 
spectrum over a green vegetation pixel (dotted line) and the corresponding smoothed 
spectrum (solid line). See text for more detailed descriptions. 
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Figure 8. (A): a false color image (Red: 0.63 μm; Green: 0.86 μm; Blue: 0.47 μm) for an 
AVIRIS scene over Ivanpah in California, and (B): an ATREM-derived surface reflectance 
spectrum over an Ivanpah playa pixel (dotted line), the corresponding smoothed spectrum 
(solid line), and a field-measured spectrum (dash-dotted line). See text for more  
detailed descriptions. 

 

Figure 8A is similar to Figure 6A. Figure 8B shows comparisons among ATREM-derived surface 
reflectance spectrum (dotted line) over an Ivanpah playa pixel located at the center of the red box in 
Figure 8A, the smoothed spectrum (solid line and vertically displaced by 0.075 in reflectance unit), 
and a field-measured spectrum (dash-dotted line and vertically displaced by 0.15 in reflectance unit). A 
major mineral feature centered at 2.2 μm is seen in all the spectra.  

In order to quantify improvements in smoothness, first derivatives for all the spectra in the Ivanpah 
scene before and after application of the smoothing algorithm were calculated. After smoothing, the 
average absolute spectral derivative for all the bands, excluding those bands centered near 1.38- and 
1.88-μm strong water vapor band absorption regions, over the scene decreased by 14%. The magnitude 
of the decrease is larger for a number of bands, including some bands located within the 0.94- and 
1.14-μm water vapor band absorption regions where larger spectral residuals are observed (see  
Figure 7B). The scene-averaged spectral derivative for a band centered near 1.11 μm decreased by 
20%. The decrease in spectral derivatives demonstrates the improvement in smoothness after 
applications of the cubic spline smoothing algorithm.  

5. Discussion and Summary 

During our development of the cubic spline smoothing technique for post-processing of surface 
reflectance spectra retrieved from AVIRIS data, we also tried another well-known filter, i.e., the 
Savitzky-Golay (SG) filter [16]. The use of SG filter didn’t produce satisfactory results. We observed 
that the peak positions of spectral features after application of the SG filter were not preserved. 
Therefore, we decided not to use the SG filter for our spectral smoothing purposes.  

In summary, we have described a technique, which fits spectra “locally” in the spectral domain 
based on cubic spline smoothing, for quick post processing of apparent reflectance spectra derived 
from AVIRIS data using the ATREM code. Results from analysis of AVIRIS data acquired over 
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Cuprite mining district in Nevada in June of 1995 and over Ivanpah in California in April of 2010 are 
presented. Very good agreement between our results and those of empirical line method in the  
2.0–2.5 µm spectral region is obtained. It is expected that the use of ATREM code for retrieving 
surface reflectance spectra from AVIRIS data plus the application of additional spectral smoothing 
should yield high quality surface reflectance spectra comparable with those of reflectance spectra 
measured in laboratory conditions. 
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