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Abstract

differentially expressed genes (DEGS).

improved methods of controlling this pest.

Background: Chemosensory proteins are a family of insect-specific chemical sensors that sense specific chemical
cues and regulate insect behavior. Chemosensory proteins have been identified and analyzed in many insect
species, such as Drosophila melanogaster, Bactrocera dorsalis and Calliphora stygia. This research has revealed that
these proteins play a crucial role in insect orientation, predation and oviposition. However, little is known about the
chemosensory proteins of Chlorops oryzae, a major pest of rice crops throughout Asia.

Results: Comparative transcription analysis of the genes of Chlorops oryzae larvae, pupae and adults identified a
total of 104 chemosensory genes, including 25 odorant receptors (ORs), 26 odorant-binding proteins (OBPs), 19
ionotropic receptors (IRs), 23 gustatory receptors (GRs) and 11 sensory neuron membrane proteins (SNMPs). The
sequences of these candidate chemosensory genes were confirmed and used to construct phylogenetic trees.
Quantitative real-time PCR (gRT-PCR) confirmed that the expression of candidate OR genes in different
developmental stages was consistent with the fragments per kilobase per million fragments (FPKM) values of

Conclusions: The identification of chemosensory genes in C. oryzae provides a foundation for the investigation of
the function of chemosensory proteins in this species, which, in turn, could allow the development of new,
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Background

Olfactory and gustatory systems play crucial roles in in-
sect orientation, oviposition, host-identification, mate
choice and predator avoidance [1-14]. Chemoreception
is mediated by odor and taste receptors which are re-
sponsible for identifying a diverse array of chemicals
[15-17].

Chlorops oryzae (Diptera) cause significant economic
damage to rice crops throughout Asia. Newly hatched
larvae primarily burrow into the stem of rice plants and
feed on the growing tips of developing leaves [18]. Most
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recent studies have focused on the ecology and physi-
ology of this species [18—20], and there is consequently
relatively little information on its genetics. In this paper
we present the results of genetic and phylogenetic ana-
lyses of putative chemosensory genes in C. oryzae.

The mechanism responsible for discriminating chem-
ical cues in lepidopteran larvae has been well established
[21-26]. In short, hydrophobic volatile molecules are
solubilized and ferried from the external environment to
sensory neurons where the chemical signals they carry
are converted into electric signals [27]. In insects the
process of chemoreception involves olfactory receptors
(ORs), gustatory receptors (GRs) and ionotropic recep-
tors (IRs). In addition, odorant binding proteins (OBPs),
sensory neuron membrane proteins (SNMPs) and
odorant-degrading enzymes (ODEs) also play an import-
ant role in regulating host behavior [1, 17, 28, 29].
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Insect odor and taste receptor genes were first identi-
fied in Drosophila melanogaster [30, 31] and subsequent
research identified the corresponding genes in other
Dipteran species, including Anopheles gambiae, Musca
domestica, Bactrocera dorsalis, Calliphora stygia,
Glossina morsitans morsitans, Mayetiola destructor,
Episyrphus balteatus and Eupeodes corollae [31-36].
ORs and GRs were first regarded as G-protein-coupled re-
ceptors (GPCRs) that share a common 7-transmembrane
protein. However, subsequent research suggests that these
two chemosensory receptors are not homologous with
mammalian OR genes [37]. Insect GRs have been classified
into sweet, bitter, and carbon dioxide receptors [38-42].
More recently, a new class of ionotropic receptor, a variant
sub-family of ionotropic glutamate chemosensory receptor
(iGluR), has been identified in Drosophila [43]. Insect OBPs
are small hydrophilic proteins that ferry hydrophobic
chemical cues to ORs across the sensilla lymph [44—46]. In
the lepidoptera, OBPs are usually divided into general
odorant-binding proteins (GOBPs) and pheromone-binding
proteins (PBPs). GOBPs and PBPs are involved in recogniz-
ing and transporting host plant odorants and pheromones
[47, 48]. SNMPs are the transmembrane domain-containing
proteins thought to be involved in pheromone and general
odorant reception [49, 50].

The transcriptome approach has been a recent ad-
vance in investigating the mechanisms underlying che-
mosensory proteins in various insect taxa [51-54]. We
used this approach to identify candidate chemosensory
genes (25 ORs, 26 OBPs, 19 IRs, 23 GRs and 11 SNMPs)
in C. oryzae larvae, pupae and adults. We then con-
structed phylogenetic trees to infer the putative func-
tions of each gene, and used quantitative real-time
RT-PCR (qPCR) to confirm the expression patterns of
OR genes in each developmental stage. The identifica-
tion of putative chemosensory genes is an essential first
step for both fully understanding the molecular basis of
an insects’ chemosensory system, and developing better
pest management tools.

Results

Analysis of the C. oryzae transcriptome

An Illumina HiSeq platform and Trinity assembly was used
to sequence C. oryzae larvae, pupae and adult transcrip-
tomes. We obtained 50.64 million (Larvae-1), 50.90 million
(Larvae-2) and 44.41 million (Larvae-3) raw-reads from lar-
vae, 55.06 million (Pupae-1), 55.73million (Pupae-2) and
50.59 million (Pupae-3) raw-reads from pupae, and 57.64
million (Adult-1), 62.21 million (Adult-2) and 56.50 million
(Adult-3) raw-reads from adults (Additional file 1: Table S1).
Filtering obtained 49.97 million (Larvae-1), 50.31 million
(Larvae-2), 43.86 million (Larvae-3), 54.36 million (Pupae-1),
54.86 million (Pupae-2), 49.35 million (Pupae-3), 56.12 mil-
lion (Adult-1), 61.06 million (Adult-2) and 54.82 million
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(Adult-3), clean-reads. The final transcript dataset contained
201, 810 unigenes with a mean length of 835bp and N50
length of 1, 243 bp.

Homology and gene ontology (GO) annotation

A total of 68, 745 (34.1%) unigenes showed significant
similarity to known proteins in the NCBI non-redundant
protein database when the cut-off of E-value was set to
107>, E-value distributions suggested that the assembled
sequences had 65.3% homology (<le ~*°) with proteins in
the Nr database. However, homology fell to 34.7% when
E-values were between 1le 3° and le ® (Additional file 2:
Figure Sla). Similarity distributions showed that 79.3% of
sequences had more than 60% similarity, and 20.7% of
sequences had 18-59% similarity, to sequences in the Nr
database (Additional file 2: Figure S1b). Species with the
highest proportion of similar genes were M. domestica
(17.9%) followed by Ceratitis copitata (15.8%), Bactrocera
cucurbitae (14.8%), B. dorsalis (13.7%) and D. melanoga-
ster (3.4%). (Additional file 2: Figure S1c).

Gene ontology (GO) analysis was used to categorize
annotated genes into functional groups. Most genes
were categorized into the “Biological Process”, “Cellular
Process”, “Metabolic Process” and “Single-organism
Process”, categories and “Cell” and “Cell Part” comprised
the highest proportion of the “Cellular Component” cat-
egory (Additional file 2: Figure S1d). “Binding” and
“Catalytic Activity” were the most common subcategor-
ies in the “Molecular Function” category (Additional
file 2: Figure S1d).

Candidate odorant receptors

We identified 25 candidate ORs in larval, pupal and
adult transcriptomes and constructed a phylogenetic tree
of the similarity between these and ORs from three
other Dipteran species; D. melanogaster, Calliphora sty-
gia and B. dorsalis (Fig. 1). This indicated that the
highly-conserved C. oryzae co-receptor, Orco (Clus-
ter-3781.62429), shares 88.1, 87.7, and 85.8% identity
with Orco in C. stygia, B. dorsalis and D. melanogaster
OR83b, respectively. Cluster-3781.168642  and
Cluster-13,424.1 belong to the same cluster and share
68.3% identity based on amino acid sequences. Similarly,
94.2% homology was found between Cluster-16,651.0
and Cluster-9598.0, and 73.4% between Cluster-18,499.0
and Cluster-18,899.0, which were clustered in different
groups. Interestingly, even though Cluster-3781.138000
and Cluster-13,269.0 were placed on the same branch
they only share 44.0% identity. The remaining C. oryzae
ORs were placed in different clusters, which is consistent
with their highly divergent amino acid sequences.
Cluster-10,102.1 was placed on a separate branch of the
phylogenetic tree (Fig. 1).
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Fig. 1 Phylogenetic tree of relationships between Chlorops oryzae odorant receptors (ORs) and those of other species; B. dorsalis (Bdor, black), C.
stygia (Csty, green) and D. melanogaster (Dm, blue) (Additional file 4). Bootstrap values after 1000 replications
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Candidate gustatory receptors

We identified 23 candidate gustatory receptors (GR)
from C. oryzae transcriptomes and constructed a phylo-
genetic tree of the relationships between these and 68 D.
melanogaster GRs, 20 C. stygia GRs and 40 B. dorsalis
GRs (Fig. 2). Cluster-10,678.0 and Cluster-6234.0 were
placed on a single branch and share 12.7% identity.
Cluster-8807.1 was classified with a D. melanogaster GR
(Gr2la) (72.7% identity). D. melanogaster Gr2la is a
CO, receptor in Drosophila [55]. Cluster-3781.37967
and Cluster-3781.170278 were grouped with another D.
melanogaster CO, receptor (Gr43a) (Fig. 2).

Candidate ionotropic receptors

We identified 19 candidate ionotropic receptor transcripts
in C. oryzae. To distinguish putative IRs from iGluRs, all C.
oryzae IRs were aligned with those from D. melanogaster,
C. stygia and A. gambiae and a phylogenetic tree con-
structed of the resultant relationships. This placed
Cluster-3781.106530 and Cluster-3781.15697 (49.9% iden-
tity) on the same branch as the A. gambiae iGluRs (Agam-
GLURIIa, AgamGLURIIb, AgamGLURIIc, AgamGLURIId

and AgamGLURIIe). Cluster-11,061.0 and Cluster-19,206.0
(97.1% identity) were classified in single a group (Fig. 3).
Cluster-3781.159004 and Cluster-3781.157618 were classi-
fied with the D. melanogaster ionotropic receptor super-
family and Co-Cluster-3781.174214 were classified with
CstyIR107, CstyIR75d, DmellR75d and CstyIR108-109.
Cluster-8273.0 and Cluster-16,299.3 was classified separ-
ately from the IRs (iGluRs) of the other species. The
remaining C. oryzae IRs were clustered on different
branches, however, no C. oryzae IRs were placed on the
IR7 branch (e.g. DmellR7a, d, e, f, g; AgamlIR7j, s, t, u, w, X).
IRs on that branch may play various roles in insect
olfaction.

Candidate odorant binding proteins

We identified 26 OBP transcripts from C. oryzae larvae,
pupae and adults and constructed a phylogenetic tree of the
relationships between these and OBPs from D. melanogaster
and B. dorsalis. Cluster-3781.101742 and Cluster-3781.17418
were placed in a single group (47.3% identity), Cluster-
3781.140399 and Cluster-3781.152546, which share 43.6%
identity, were placed on the same branch, as were
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Fig. 2 Phylogenetic tree of relationships between Chlorops oryzae gustatory receptors (GRs) and those from other species; B. dorsalis (Bdor, black),
C. stygia (Csty, green) and D. melanogaster (Dm, blue) (Additional file 5). Bootstrap values after 1000 replications
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Cluster-3781.178870 and Cluster-3781.178841 (86.3% iden-
tify) (Fig. 4). Four Co-OBPs (Cluster-3781.117642, Cluster-
3781.18626, Cluster-3781.36358 and Cluster-3781.38930)
were clustered with BdorOBP-A5-1 and BdorOBP-A5-2.
We found the orthologue of the BdorOBP-lush Cluster-
8053.0 in C. oryzae, these two OBPs were 56.2% identical at
the amino acid level. Cluster-17,022.1 clustered separately
with a large group of OBPs which suggests that it may have
a novel function in odor recognition. The remaining
Co-OBPs were placed in different clusters with those of the
other species (Fig. 4).

Candidate SNMPs

Eleven C. oryzae SNMP transcripts were identified and
aligned with those of two Dipteran species, D. melanogaster
and A. gambiae. The resultant phylogenetic tree suggests
that Cluster-3781.63294, Cluster-3781.49122, Cluster-
378147316 and Cluster-3781.160102 are similar to
DmelSNMP1-2, AgamSNMP1-2 (Fig. 5). The remaining
SNMPs were placed within a large SNMP superfamily.

Differentially expressed genes (DEGs)

The expression levels of chemosensory genes in larvae,
pupae and adults were estimated as fragments per kilobase
per million fragments (FPKM) values and the results shown
in a heatmap (Fig. 6). Of the 25 ORs identified, 13 were
more highly expressed in adults, including Orco (Clus-
ter-3781.62429), and 10 were more highly expressed in
pupae. Two ORs were more highly expressed in pupae
compared to both larvae and adults (Fig. 6a). Eight OBPs
were more highly expressed in adults and 7 were more
highly expressed in pupae (Fig. 6b). Eight GRs were more
highly expressed in adults, 8 were more highly expressed in
pupae, and 6 were more highly expressed in larvae (Fig. 6¢).
Most IR genes were more highly expressed in pupae
(Fig. 6d). Five SNMPs were more highly expressed in adults
and 3 were more highly expressed in pupae (Fig. 6e).

Specific expression profiles of candidate OR genes in
different developmental stages

We used qRT-PCR to measure the expression levels of can-
didate ORs in larvae, pupae and adults to confirm that the
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Fig. 3 Phylogenetic tree of relationships between Chlorops oryzae ionotropic receptors (IRs) and those of other species; A. gambiae (Agam, black),
C. stygia (Csty, green) and D. melanogaster (Dmel, blue) (Additional file 6). Bootstrap values after 1000 replications
J

DEGs identified by comparative transcriptomic analysis are
differentially expressed in these different developmental
stages. We detected all 25 candidate ORs in the three devel-
opmental stages. The Orco gene was highly expressed in
adults, as were Cluster-14,430.0, Cluster-8592.0 and Cluster-
9550.0 (Fig. 7). Cluster-3781.150419, Cluster-3781.16352,
Cluster-14,351.0, Cluster-16,651.0 and Cluster-18,499.0, were
more highly expressed in pupae compared to larvae and
adults. These results are consistent with the results of the
transcriptome analysis.

Discussion

C. oryzae is one of the most important insect pests of
rice crops. In the majority of insect species, chemosen-
sory proteins in the olfactory recognition system play a
key role in foraging, orientation, mating and oviposition.
To better understand how insects perceive olfactory
chemical cues, we first identified candidate chemosen-
sory proteins in transcriptomes of C. oryzae larvae,
pupae and adults, then used qRT-PCR to investigate the
expression profiles of Co-ORs in these three different de-
velopmental stages. Our results provide new evidence of
the molecular basis of olfactory proteins in chemosen-
sory reception in C. oryzae that may help develop better
methods of controlling this pest.

We used next generation sequencing technology to se-
quence transcriptomes from C. oryzae larvae, pupae and
adults. De novo assembly of transcripts was performed
using the Trinity method and a total of 68, 745 unigenes
were obtained from our sequence assembly, 34.1% of
which showed similarities to known proteins in the NCBI
non-redundant protein database. This percentage is less
than that found for other Dipteran species [35, 54, 56].

We identified 104 candidate chemosensory genes in C.
oryzae. ORs, which connect binding proteins and olfac-
tory sensory neurons to transduce olfactory signals, are
the best known group of insect chemoreceptors. We
identified 25 C. oryzae ORs, less than those identified in
C. stygia, G. morsitans morsitans, D. melanogaster, M.
domestica and A. gambiae [32, 34-36]. The sequencing
methods, or depth, used in these studies may have
allowed the detection of genes with lower expression
levels [57]. This suggests that different sample prepar-
ation and deep sequencing will be required to obtain
more functional ORs from C. oryzae. Our phylogenetic
analysis showed that Cluster-3781.138000 and
Cluster-13,269 are part of the Dmor67d superfamily.
Previous studies have found that OR67d is involved in
the perception of the sex pheromone cis-vaccenyl acet-
ate (cVA) [58-60]. Additional functional characterization
of the candidate proteins we identified will provide
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further information on the pheromone reception mech-
anism in C. oryzae.

Our qRT-PCR results confirm that all OR genes had
different expression profiles in each development stage.
Different olfactory organs may express different OR
genes in different developmental stages. For example,
the maxillary palp in larvae plays the same vital role in
host detection as the proboscis in adults [61-63].

OBPs also play a vital role or carrying odorants
through the hemolymph to olfactory receptor neurons,
and transducing the resultant signals to downstream ef-
fector molecules in the olfactory system [44]. We identi-
fied 26 OBPs in C. oryzae, fewer than have been found
in other Dipteran species. This may reflect physiological
and evolutionary differences between C. oryzae and the
other Dipteran species [54, 64].

The function of OBPs in the Diptera is relatively well
understood [65-69]. For example, DmelOBP-LUSH is
involved in recognition of a D. melanogaster aggrega-
tion pheromone [65]. We found that the C. oryzae
Cluster-8053.0 clustered with DmelOBP-LUSH and

BdorOBP-LUSH, however, because sequence specific
attributes may affect OBP function and thereby influ-
ence behavior, additional research is required to con-
firm the function of OBPs in C. oryzae.

We identified 23 C. oryzae GRs, more than those
found in the antennae of E. balteatus and E. corollae
[54]. However, the number of GRs we found in C. oryzae
is fewer than those reported in other Dipteran species,
such as D. melanogaster [35]. GRs are known to func-
tion as taste and contact receptors [70], so it is not sur-
prising that Cluster-9226.0 is homologous to the D.
melanogaster sugar receptors DmGr6la and DmGr64a
[71, 72]. Functional analysis indicates that GRs are in-
volved in host-specific pollination behavior in some in-
sects [73, 74]. Similar functional analysis will be required
to confirm the function of candidate GRs in C. oryzae.

IRs are conserved in the Diptera where they play a key
role in the synaptic ligand gated ion channels involved
in chemosensation. We identified 19 IRs in C. oryzae,
fewer than have been reported in other Dipteran species
[35, 54, 75]. In general, IRs function as chemoreceptors
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[43, 75] and are expressed in the peripheral and internal
gustatory neurons associated with taste and food assess-
ment [75], Further studies of Co-IRs are required to re-
veal their physiological and ecological function. We also
identified 11 C. oryzae SNMP transcripts. SNMPs are
conserved throughout holometabolous insects and play
important roles in pheromone detection [49, 50, 76—80].
Additional research is needed to verify how the putative
SNMP proteins we identified mediate the behavior of C.
oryzae.

Conclusions

The 104 candidate C. oryzae chemosensory proteins we
identified comprise the first comprehensive list of che-
mosensory proteins in this important agricultural pest.
Phylogenetic trees based on the sequence similarity of
these putative proteins with similar proteins in other
Dipteran species shed light on the molecular basis of ol-
factory and other behaviors in C. oryzae and provide a
foundation for developing improved methods of control-
ling this pest.

Methods

Insect rearing and sample collection

C. oryzae larvae were collected in Hanshou County,
Hunan province, China, in 2017, maintained in a labora-
tory and reared on fresh rice stems until pupation. Lab
conditions were 28 + 1°C, > 80% relative humidity, and a
photoperiod of 16:8 (L:D) h. Samples of individual in-
sects were collected from 2- to 5-day-old larvae, pupae
and adults, respectively. All samples were immediately
frozen in liquid nitrogen and stored at - 80°C until
required.

cDNA library construction and transcriptome analysis

Total RNA of 30 larvae, 30 pupae and 30 adults were in-
dividually extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s in-
structions. RNA integrity was verified with gel electro-
phoresis and concentration was measured with a Qubit®
RNA Assay Kit in Qubit® 2.0 Flurometer (Life Technolo-
gies, CA, USA). 1.5 ug of RNA per sample was used to
construct the ¢cDNA (Complementary DNA) library.
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Sequencing libraries were sequenced on an Illumina
Hiseq platform and paired-end reads generated.

All RNAseq data were pre-processed through in-house
perl scripts. Briefly, clean data (clean reads) were ob-
tained by removing reads containing adapters, ploy-N
and low-quality reads, from the raw data. The Trinity as-
sembly was conducted based on the left.fq and right.fq
using Trinity [81] with the min_kmer_cov set to 2 by
default and all other parameters set to the default values.
The raw sequence data has been uploaded to the
National Center for Biotechnology Information (NCBI),
under the accession number of SRR7528441 (C. oryzae
Larvae-1), SRR7528446 (C. oryzae Larvae-2), SRR7528467
(C. oryzae Larvae-3), SRR7529086 (C. oryzae Pupae-1),
SRR7529100 (C. oryzae Pupae-2), SRR7533623 (C. oryzae
Pupae-3), SRR7534236 (C. oryzae Adult-1), SRR7534658
(Adult-2) and SRR7534603 (Adult-3).

The function of unigenes was inferred by aligning
them against Nr (NCBI non-redundant protein se-
quences), Nt (NCBI non-redundant nucleotide se-
quences), Pfam (Protein family), KOG/COG (Clusters
of Orthologous Groups of proteins), Swiss-Prot (A
manually annotated and reviewed protein sequence
database), KO (KEGG Ortholog database) and GO
(Gene Ontology).

Differential gene expression

The differential expression of genes in larvae, pupae and
adults was measured using the Fragments Per Kilobase
of transcripts per Million mapped reads (FPKM) method
[82], Differential expression in two conditions/groups
(genes and samples) was measured using the DESeq R
package (1.10.1). DESeq provides statistical routines for
determining differential digital gene expression using a
model based on the negative binomial distribution. The
resulting P-values were adjusted using Benjamini and
Hochberg’s approach to control false discovery rate.
Genes with an adjusted P-value < 0.05 were considered
to be differentially expressed.

Identification of chemosensory genes

Chemosensory receptor genes were verified by manually
checking the amino acid sequences of all identified can-
didate receptors in BLASTX against the NCBI
non-redundant protein database (e-value<le-5) based on
the identity and similarity to orthologous genes from
other insect species. The Open reading frame (ORF) of
candidate chemosensory genes was predicted by ORF
finder tool (https://www.ncbi.nlm.nih.gov/orffinder/).

Sequencing and phylogenetic analysis

Amino acid sequence alignment was performed using the
ClustalW method [83]. Phylogenetic trees of C. oryzae che-
mosensory genes were constructed in IQ-TREE using the
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best-fitting substitution-model with Maximum-likelihood
[84]. Branch support was assessed by bootstrapping with
1000 replicates. OR sequences were obtained from D. mela-
nogaster, C. stygia and B. dorsalis. The GR data set con-
tained GR sequences identified in other Diptera, including
D. melanogaster, C. stygia and B. dorsalis. The OBP data set
contained OBP sequences from D. melanogaster and B.
dorsalis. The IR data set contained IR sequences from D.
melanogaster, C. stygia and A. gambiae. For the SNMP data
set, we selected SNMP sequences from D. melanogaster
and A. gambiae.

Quantitative real-time PCR

We used qRT-PCR with three replicates for each treat-
ment to verify the expression of candidate C. oryzae che-
mosensory genes. cDNA was synthesized from total
RNA using a PrimeScript RT reagent kit with gDNA
eraser (perfect real time) (Takara, Dalian, China) accord-
ing to the manufacturer’s instructions. qRT-PCR primers
were designed using the National Center for Biotechnol-
ogy Information’s profile server (https://www.ncbinlm.-
nih.gov/tools/primer-blast/) (Additional file 3: Table S2).
The C. oryzae glyceraldehyde-phosphate dehydrogenase
(GAPDH) gene was used as the internal reference. A
SYBR® Premix Ex Taq™ (TaKaRa, Dalian, China) and a
Bio-rad Detection iQ2 System were used for PCR reac-
tions as follows: 95 °C for 30's, 40 cycles at 95 °C for 10,
59°C for 30s. Melting curve analysis was performed
from 55°C to 95°C to determine the specificity of
qPCR primers. To determine the efficiency of the
qPCR primers, a standard curve (cDNA concentration
vs. Ct) was produced with a 5-fold dilution series of
3rd instar larvae ¢cDNA corresponding to one micro-
gram total RNA. qRT-PCR efficiencies were then cal-
culated according to the equation: E = (10! 1/slopel _
1)*100 [85, 86]. The 2722* method was used to
analyze gene expression profiles [85]. Means and vari-
ances of treatments were analyzed with a one-way
ANOVA implemented in the SPSS program for win-
dows (SPSS, Chicago, IL, USA).

Additional files

Additional file 1: Table S1. Summary of the transcriptome sequencing
data from the C. oryzae samples. (DOCX 15 kb)

Additional file 2: Figure S1. Results of BLASTx matches of Chlorops
oryzae transcriptome unigenes and Gene ontology classification. a:
E-values, b: gene identity, c: insect species in which homologous
genes were matched. d: Gene ontology classifications of C. oryzae
unigenes. (TIF 192 kb)

Additional file 3: Table S2. Primers of candidate ORs in C. oryzae used
for gRT-PCR. (DOCX 16 kb)

Additional file 4: Protein sequences of ORs used to construct
phylogenetic tree. (DOCX 52 kb)
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