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Abstract

Placental insufficiency alters the intrauterine environment leading to increased risk for

chronic disease including impaired glucose metabolism in low birth weight infants. Using a

rat model of low birth weight, we previously reported that placental insufficiency induces a

significant increase in circulating testosterone in male intrauterine growth-restricted off-

spring (mIUGR) in early adulthood that is lost by 12 months of age. Numerous studies indi-

cate testosterone has a positive effect on glucose metabolism in men. Female growth-

restricted littermates exhibit glucose intolerance at 6 months of age. Thus, the aim of this

paper was to determine whether mIUGR develop impaired glucose metabolism, and

whether a decrease in elevated testosterone levels plays a role in its onset. Male growth-

restricted offspring were studied at 6 and 12 months of age. No impairment in glucose toler-

ance was observed at 6 months of age when mIUGR exhibited a 2-fold higher testosterone

level compared to age-matched control. Fasting blood glucose was significantly higher and

glucose tolerance was impaired with a significant decrease in circulating testosterone in

mIUGR at 12 compared with 6 months of age. Castration did not additionally impair fasting

blood glucose or glucose tolerance in mIUGR at 12 months of age, but fasting blood glucose

was significantly elevated in castrated controls. Restoration of elevated testosterone levels

significantly reduced fasting blood glucose and improved glucose tolerance in mIUGR.

Thus, our findings suggest that the endogenous increase in circulating testosterone in

mIUGR is protective against impaired glucose homeostasis.

Introduction

Diabetes is increasing worldwide [1] and is a known risk factor for cardiovascular disease, the

leading cause of mortality in the U.S. Low testosterone is associated with a greater risk for type

2 diabetes (T2D) in men [2,3,4,5]. A high endogenous level of free or total testosterone is asso-

ciated with a lower fasting blood glucose and prevalence of T2D in men [6,7]. Collectively,

these studies indicate that testosterone deficiency in men is a risk factor for diabetes. Yet,
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whether testosterone replacement has a beneficial effect on glucose metabolism in men is con-

troversial [8,9,10,11].

Low birth weight is associated with an increased risk of T2D and cardiovascular disease [12,

13] implicating the role of early life events in later chronic health. A few studies have examined

the sex-specific association between low birth weight and diabetes. Mogren et al. demonstrated

that fasting blood glucose levels are elevated in low birth weight women, but not low birth

weight men in middle age [14]. A similar finding has been reported by Jornyvaz et al. using the

CoLaus prospective population-based study [13]. Using the population based AusDiab Study,

Al Salmi showed that the effect of birth weight on the development of diabetes is observed in

both men and women although the population-attributable risk percentage is greater for low

birth weight women than low birth weight men [15]. Other studies by Zimmerman and col-

leagues, and by Yarmolinsky et al. also report a greater prevalence of diabetes in low birth

weight women relative to low birth weight men [7,16], but low birth weight in men is associ-

ated with an increased risk for T2D in later life [17,18].

Using a model of low birth weight, i.e. intrauterine growth restriction (IUGR) induced via

placental insufficiency in the rat, we previously reported that female growth-restricted off-

spring develop glucose intolerance as early as 6 months of age, prior to the development of

increased adiposity that occurs by 12 months of age [19]. Although blood pressure is not ele-

vated in female growth-restricted offspring by 6 months of age [20], male growth-restricted

offspring (mIUGR) demonstrate a significant increase in blood pressure in early adulthood

[21] suggesting a sex- and age-specific difference in the developmental origins of cardiovascu-

lar risk. Hypertension in mIUGR in young adulthood is associated with an increase in circulat-

ing testosterone relative to age-matched male controls [22]. Castration abolishes the increase

in blood pressure in mIUGR [22] indicating the permissive role of testosterone in the etiology

of increased cardiovascular risk originating in early life. However, in later life testosterone

associated blood pressure does not remain elevated in mIUGR relative to their normal birth

weight counterparts [23]. Whether IUGR programs impaired glucose homeostasis in mIUGR,

and whether a decrease in endogenous testosterone plays a role in the development of this

impairment are unknown. Thus, we tested whether mIUGR exhibit delayed development of

impaired glucose metabolism. Furthermore, we tested whether age-related decline in circulat-

ing testosterone contributes to the development of impaired glucose tolerance in mIUGR.

Materials and methods

Animals

All experimental procedures were approved by the Animal Care and Use Committee at the

University of Mississippi Medical Center and in accordance with the National Institutes of

Health. Rats were housed in a temperature-controlled, 23˚C, room with a 12:12-hour light/

dark cycle with food and water available ad libitum. Timed-pregnant, Sprague Dawley (SD)

rats purchased from Harlan Inc (Indianapolis, IN) underwent the reduced uterine perfusion

procedure or a sham procedure at day 14 of pregnancy as described below. All dams were

allowed to deliver at term with birth weight recorded within 12 hours of delivery. At 48 hours

of age, offspring in the control and reduced uterine perfusion litters were culled to 8 pups per

dam to ensure equal nutrient access for all offspring. The ratio of male to female offspring

remained equivalent after culling when possible; however, only male offspring were used in

this study. Offspring were weighed three times weekly until weaning at 3 weeks of age; after

weaning, rats were weighed every two weeks. Offspring from 11 pregnant controls and 12

reduced uterine perfusion pregnant dams were randomly assigned to groups studied at 6 or 12

months. Only one male offspring per litter was used per study group. The experimental
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protocol included control groups subjected to measurement of body composition, fasting

blood glucose and glucose tolerance at 6 (N = 8 Control and N = 8 IUGR) or 12 (N = 9 Control

and N = 8 IUGR) months of age, and experimental groups: 1) sham operation (intact) (N = 6

Control and N = 6 IUGR), 2) castration (CTX) (N = 6 Control and N = 4 IUGR) with mea-

surement of body composition before and after sham, or 3) castration with insertion of a tes-

tosterone pellet (T) (N = 7 Control and N = 6 IUGR) followed by measurement of fasting

blood glucose and glucose tolerance 6 weeks later. All rats undergoing surgical procedures

were anesthetized with 2% isoflurane. At the end of the study, animals were euthanized by

exposure to 5% isoflurane following with removal of the hearts.

Reduced uterine perfusion in the pregnant rat

Reduced uteroplacental perfusion was used to induce IUGR at day 14 of gestation, as previ-

ously described [21]. Briefly, a silver clip was placed around the lower abdominal aorta

(0.203-mm ID) above the iliac bifurcation and at each branch of the ovarian artery (0.100-mm

ID); the sham procedure involved visualization of the uterine horn (control).

Castration in male offspring

At 11 months of age, animals were randomly selected to undergoes sham or castrated surger-

ies. As previously described [22], a small median incision was made at the distal tip of the scro-

tum. Subcutaneous connective tissue was cleared, and the testes were visualized. The muscular

sac of the testes was excised and exposed by gently pulling on the cauda epididymis. The blood

vessels were tied and the vas deferens with the testes was removed. Muscle and the skin were

closed with a suture. The sham operation involved exposure of the testes without isolation.

Testosterone replacement

The testosterone pellet was implanted subcutaneously on the back of the animal at the same

time of castration. Testosterone minipellets (25 mg for 60-day release) were used for continu-

ous release of hormone (Innovative Research of America) at a dose chosen to elevate the circu-

lating levels of testosterone to that observed in young adult mIUGR [22].

Body composition and fatty liver

Total fat mass and total lean mass were determined in conscious animals using an Echo-MRI-

700 (Echo Medical Systems, Houston TX); total liver fat mass was determined after harvest.

Results are expressed as gram weight.

Hormone levels

Circulating testosterone and insulin levels were determined using commercially available kits

(Ultra-Sensitive Testosterone RIA kit, Linco Research, St. Charles, MO; Insulin Ultra-Sensitive

Rat Insulin ELISA kit, Crystal Chem Inc., Downers Grove, IL).

Glucose tolerance test (OGTT) and glucose stimulated insulin release in

response to glucose challenge

As previously described, animals were fasted overnight before the OGTT [19]. A bolus of D-

glucose solution (5 g per kg BW) was administrated orally by gavage. Blood glucose levels were

determined from samples collected from the tail vein (FreeStyle Lite glucometer, Abbott Dia-

betes Care, Alameda, CA) at 0, 30, 60, and 120 min post-gavage. Collected blood samples were

also used to determine circulating insulin levels.
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Statistics

Data are presented as mean values ± SEM with n representing the number of male offspring

representing one pup per litter per parameter. Graphpad PRISM version 4 (Graph Pad Soft-

ware, San Diego, CA) was used for all statistical analysis. Differences between groups were

evaluated by two-way analysis of variance (ANOVA) followed by Bonferroni posttest with

IUGR and age or CTX as sources of variation as applicable. An unpaired student t-test was

used for comparison of birth weight and pre- versus post-body composition analysis. Differ-

ences were considered statistically significant at P< 0.05.

Results

Intrauterine growth restriction, testosterone and body weight

Birth weight was significantly reduced in mIUGR compared with male controls (5.01 ± 0.09

vs. 6.17 ± 0.12 grams, P< 0.01). Body weight of mIUGR vs. age-matched control offspring did

not differ at 6 or at 12 months of age (Fig 1A). Visceral fat was also not significantly different

in mIUGR relative to age-matched control at 6 or 12 months of age (Fig 1B). Yet, total lean

mass was reduced in relative to control counterparts at 6 months but did not differ by 12

months of age (Fig 1E). Total fat mass was increased in mIUGR and control offspring at 12

months relative to 6 months old groups. (Fig 1D).Lean mass per gram body weight was re-

duced in mIUGR and control offspring at 12 months old of age relative to control offspring at

6 months (Fig 1E) whereas fat mass per gram body weight was increased (Fig 1F). Castration

Fig 1. Body weight (A), visceral fat mass (B), total lean mass (C), total fat mass (D), lean mass per gram body weight (E), and fat mass per

gram body weight (F) in male control and male growth-restricted (IUGR) offspring at 6 or 12 months of age. *P<0.05 versus 6-month control.

† P<0.05 versus 6-month growth-restricted. Data values represent mean±SE.

https://doi.org/10.1371/journal.pone.0187843.g001
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did not significantly alter body weight, total fat, or total lean mass in control or mIUGR

(Table 1). However, total fat mass was reduced in both control and mIUGR administered tes-

tosterone following castration (Table 1).

Intrauterine growth restriction and glucose homeostasis

To determine if IUGR programs glucose intolerance in male mIUGR, we examined glucose

tolerance at 6 and 12 months of age. The glucose response to a glucose, fasted challenge was

not altered in mIUGR relative to 6 month controls (Fig 2A). At 12 months of age, fasted

mIUGR exhibited a significant elevation in blood glucose at 30 and 60 min post-glucose chal-

lenge compared with age-matched controls (Fig 2B). The area under the curve (AUC) was sig-

nificantly increased in mIUGR at 12 months of age relative to age-matched controls (Fig 2C).

AUC was also significantly increased in mIUGR at 12 months of age compared with mIUGR

at 6 months implicating an age effect on glucose homeostasis after mIUGR. No difference was

noted in the overnight fasting blood glucose concentration in mIUGR compared with age-

matched control offspring at 6 months of age. Overnight fasting blood glucose levels were sig-

nificantly increased in mIUGR at 12 months of age relative age-matched controls (Fig 2D).

Glucose-induced insulin release was not altered post-glucose challenge in mIUGR rats relative

to age-matched control at 12 months of age (Fig 2E).

Testosterone and glucose homeostasis

We previously reported that circulating levels of testosterone are significantly elevated in mIUGR

relative to age-matched control in young adulthood [22] but no longer differ by 12 months of age

[23]. To determine if changes in testosterone correlate with altered glucose homeostasis, we per-

formed an oral glucose tolerance test 6 weeks after sham, castration, or castration with testoster-

one replacement. Blood glucose was elevated at 30 and 60 minutes’ post glucose challenge in

mIUGR relative to control counterparts (Fig 3A). Castration did not alter the glucose response to

a glucose challenge in control or mIUGR relative to their intact counterpart, but castration in con-

junction with testosterone replacement significantly reduced circulating glucose levels at 30 and

60 minutes’ post-challenge in control and mIUGR relative to their intact counterpart (Fig 3A).

AUC and fasting blood glucose levels were elevated in mIUGR relative to control (Fig 3B, Fig 3C

respectively). Castration did not alter AUC or fasting blood glucose in mIUGR relative to intact

counterparts, but castration in conjunction with testosterone replacement reduced both of these

parameters in mIUGR relative to intact and castrated counterparts (Fig 3B, Fig 3C). Castration

increased fasting blood glucose levels, but not AUC in control offspring relative to intact control;

testosterone replacement abolished the increase in fasting blood glucose and reduced AUC in

control relative to intact and castrated counterparts (Fig 3B, Fig 3C).

Table 1. Body composition in male control and male growth-restricted (IUGR) rats before and 6 weeks after castration (CTX) or castration plus tes-

tosterone (T) replacement. Data were analyzed using a two-tailed, paired t-test for comparison of “before and after” in the different groups. Values denote

mean ± standard error of the mean. *P<0.05 versus 6 weeks prior to counterpart.

Control prior

to CTX

Control after

CTX

IUGR prior

to CTX

IUGR after

CTX

Control prior to

CTX plus T

Control after

CTX plus T

IUGR prior to

CTX plus T

IUGR after

CTX plus T

Body

Weight

(grams)

584±19 583±11 565±31 556±28 581±14 575±12 472±15 465±14

Fat Mass

(grams)

94±6 84±7 102±16 100±12 100±7 77±6* 65±7 49±5*

Lean Mass

(grams)

417±17 378±47 391±17 376±17 390±10 411±29 356±16 334±12

https://doi.org/10.1371/journal.pone.0187843.t001
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Liver fat mass at 12 months of age, effect of castration and testosterone

replacement

Liver fat mass did not significantly differ in in intact mIUGR relative to intact control

(9.0 ± 3.6 versus 13.4 ± 2.1 grams and 0.0153±0.006 versus 0.022±0.003 g/gBW mIUGR versus

control, respectively) at 12 months of age. Liver fat mass increased significantly in castrated

mIUGR and castrated control offspring relative to their intact counterpart (20.5 ± 3.2 and

30.7 ± 6.0 grams; 0.037±0.006 and 0.052±0.010 g/gBW, P< 0.05 versus intact counterpart;

mIUGR and control, respectively). Liver fat mass was significantly reduced in offspring with

chronic testosterone replacement relative to their castrated counterpart (7.0 ± 2.9 and 7.7 ± 3.7

grams; 0.014±0.007 and 0.013±0.002 g/gBW, P< 0.05 versus castrated counterpart; mIUGR

and control, respectively).

Circulating testosterone levels in intact and castrated rats

Circulating testosterone levels were significantly increased at 6 months of age in mIUGR rela-

tive to control (Fig 4A). As previously reported [22], circulating testosterone levels were no

longer significantly elevated in mIUGR at 12 months of age (Fig 4A, Fig 4B). Castration signif-

icantly decreased testosterone levels in male offspring relative to intact contrals (Fig 4B).

Fig 2. Oral glucose tolerance test (OGTT) at 6 (A) and 12 months of age (B) in male control and growth-restricted (IUGR) offspring. Area under the

curve (AUC) (C) and fasting blood glucose (D) at 6 and 12 months of age. The insulin response to a fasting blood glucose challenge at 12 months of

age (E). *P<0.05 versus 12-month control. †P<0.05 versus 6-month control; ‡ P<0.05 versus 6-month growth-restricted. Data values represent

mean±SE.

https://doi.org/10.1371/journal.pone.0187843.g002
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Fig 3. Oral glucose tolerance test (OGTT) (A), area under the curve (B), and fasting blood glucose (AUC) (C) in intact, castrated,

(CTX) and castrated plus testosterone replacement in male control and growth-restricted (IUGR) offspring. *P<0.05 versus intact

control. †P<0.05 versus intact growth-restricted. ‡ P<0.05 versus castrated control. € P<0.05 versus castrated growth-restricted.

Data values represent mean±SE.

https://doi.org/10.1371/journal.pone.0187843.g003

Fig 4. Circulating testosterone levels in male control and male growth-restricted (IUGR) offspring at (A) 6 and

12 months of age, or (B) at 12 months of age in intact, castrated (CTX) or castrated plus hormone replacement

(CTX + T). *P<0.05 versus 6-month control. †P<0.05 versus 6-month growth-restricted. ‡ P<0.05 versus intact

groups, € P<0.05 versus intact and CTX groups. Data values represent mean±SE.

https://doi.org/10.1371/journal.pone.0187843.g004

IUGR, testosterone, glucose homeostasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0187843 November 16, 2017 7 / 13

https://doi.org/10.1371/journal.pone.0187843.g003
https://doi.org/10.1371/journal.pone.0187843.g004
https://doi.org/10.1371/journal.pone.0187843


Testosterone replacement by insertion of a subcutaneous mini-pellet significantly increased

circulating levels of testosterone above endogenous levels relative to intact controls (Fig 4B).

Discussion

This study introduced several new findings. Unlike their female littermates [19], mIUGR did

not exhibit glucose intolerance at 6 months of age. However, glucose intolerance was observed

at 12 months of age in mIUGR relative to age-matched control. Fasting blood glucose levels

were also elevated in mIUGR at 12 months of age relative to age-matched male controls. As

previously reported [23], testosterone levels were elevated at 6, but not at 12, months of age in

mIUGR relative to age-matched male control. Thus, the development of impaired glucose

homeostasis in mIUGR at 12 months of age was associated with normalization of testosterone

levels in mIUGR relative to age-matched control. Castration did not alter fasting blood glucose

levels in mIUGR, whereas fasting blood glucose levels were elevated in castrated control off-

spring at 12 months of age. Testosterone replacement elevated levels above intact control nor-

malized AUC and fasting blood glucose in castrated mIUGR at 12 months of age relative to

male control counterparts. Taken together, these results indicate that an elevation in endoge-

nous testosterone may be protective against impaired glucose metabolism in mIUGR and that

placental insufficiency programs sex- and age-specific alterations in glucose homeostasis in

mIUGR.

Different experimental models of developmental insult are used to investigate the mecha-

nisms, which contribute to impaired glucose homeostasis [24,25,26]. Sex differences in glucose

metabolism are observed in these models, although findings differ based on the method or

timing of the fetal insult. Our current and previous studies from IUGR model induced by

reduced uterine perfusion indicate a faster development of impaired glucose homeostasis at a

younger age in female IUGR than in male IUGR. Zambrano and colleagues reported that

male, but not female, Wistar rat offspring exposed to maternal protein restriction during preg-

nancy (8 vs. 20% protein) demonstrate an increase in fasting glucose at 110 days of age [26,27].

Fernandez-Twinn et al. demonstrated that female low protein offspring do not exhibit an

increase in fasting blood glucose or develop glucose tolerance in later life [28]. However, Petry

et al. showed that male Wistar rat offspring exposed to maternal protein restriction (8 vs. 20%

protein) exhibit glucose intolerance associated with an increase in fasting blood glucose levels

at 17 months of age [29]. Yet, studies by Chamson-Reig and colleagues indicated that female

but not male low protein (8 vs. 20%) Wistar rats demonstrate an increase in blood glucose and

glucose intolerance in young adulthood [30]. In the rat model of placental insufficiency

induced by bilateral uterine ligation (BUL) at day 19 of gestation, Simmons showed a signifi-

cant increase in fasting blood glucose and glucose intolerance due to impaired insulin release

in response to a glucose challenge in the fasted, male Sprague Dawley IUGR rat offspring at 6

months of age [25]. However, Siebel et al. reported that male, but not female, Wistar Kyoto rat

offspring exposed to BUL at gestation day 18 exhibit impaired glucose metabolism at 6 months

of age [31], whereas Jansson and Lambert observed impaired glucose tolerance at 3–4 months

of age in female, but not male, Sprague Dawley offspring exposed to unilateral uterine ligation

at day 18 of gestation [24]. Taken together, these studies suggest that fetal insult programs sex-

and age-specific changes in glucose metabolism in the offspring. However, subtle differences

based on the timing or the method of fetal insult, rat strain, or as elegantly reviewed by Jah-

Mihan and colleagues, differences in dietary composition can alter programmed outcomes

[32]. Simmons reported that BUL during gestation, programs a reduction in beta-cell mass in

mIUGR that exhibit fasting hyperglycemia [25]; Chamson-Rieg showed that low protein pro-

grams a reduction in pancreatic beta-cell mass associated with impaired glucose tolerance and
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elevated blood glucose in female low protein offspring in young adulthood [30]. Whether

beta-cell mass is reduced in mIUGR in our model is not known. Yet, impaired beta cell func-

tion is not always associated with a reduction in beta cell mass following a perinatal insult.

Compensatory increases in beta cell mass are observed in young adult male sheep exposed to

placental restriction [33]. Differences in pancreatic maturation between species may account

for this difference in the developmental programming of altered beta cell mass [34]. However,

in contrast to our rodent model of placental insufficiency [19], insulin secretion is impaired in

young adult male but not female sheep exposed to placental restriction [35] whereas insulin

secretion in our rodent model is blunted only in female IUGR at 12 months of age [19]. Thus,

sex-specific programming of beta cell function may also be species specific. Further studies are

needed to determine the effect of IUGR induced by reduced uterine perfusion in the rat, in

addition to sex, on beta cell mass.

A possible mechanism by which testosterone can alter glucose metabolism may involve

changes in body composition. As reviewed by Zerradi et al., androgens modulate body fat dis-

tribution via inhibition of adipocyte differentiation [36]. Fat mass was increased in mIUGR at

12 months of age relative to mIUGR at 6 months of age; an increase that corresponded to a

decrease in circulating testosterone. Yet, fat mass was also increased in control offspring at 12

months of age relative to control offspring at 6 months of age. Despite differences in fasting

blood glucose, the fat mass of mIUGR and control did not differ at 12 months of age. Further-

more, AUC was increased only in mIUGR, but not control offspring at 12 months of age rela-

tive to their 6 month counterparts. Testosterone replacement lowered fat mass, AUC, and

fasting blood glucose in control and mIUGR implicating that control and mIUGR were both

sensitive to the effect of testosterone elevation above endogenous control levels on body com-

position and glucose homeostasis. In the study by Chamson-Reig, testosterone levels were

reduced in male low protein offspring in young adulthood that did not exhibit a change in glu-

cose tolerance or fasting blood glucose levels relative to male control [30]. Adiposity was signif-

icantly elevated in conjunction with reduced endogenous testosterone in this study [30].

Whether low protein male offspring in this model of fetal insult develop impaired glucose

homeostasis with age is not yet known. Additionally, the exact timing of the age-related decline

in endogenous testosterone and the development of impaired glucose homeostasis in our

model of mIUGR is unknown. Therefore, whether a reduction in testosterone in mIUGR pre-

cedes developmental programming of the impaired glucose homeostasis originating in fetal

life has not yet been elucidated.

An increase in endogenous glucose production is the main source of elevated fasting glu-

cose in T2D [10]. An increase in free fatty acids within the liver can increase glucose produc-

tion within the liver [37]. Thus, an elevation in free fatty acids in the liver with an increase in

liver fat deposition can alter metabolism leading to the development of metabolic disease [38].

Testosterone inhibits lipid uptake and stimulates lipolysis[39]. Yet, despite the loss of a high

endogenous level of testosterone in mIUGR, fat mass was not elevated in intact mIUGR rela-

tive to intact control offspring at 12 months of age. But, castration increased liver fat mass in

both mIUGR and control offspring relative to their intact counterpart; this increase was not

observed in rats that underwent castration with testosterone replacement. Therefore, an

increase in fat mass was associated with an increase in fasting blood glucose in control; an out-

come that was prevented by testosterone replacement. An increase in fasting blood glucose

was not associated with an increase in liver fat mass in intact mIUGR.

To conclude, our results indicate that a high endogenous testosterone level was protective

against the developmental programming of impaired glucose homeostasis in the mIUGR rat.

The beneficial effect of testosterone was not linked to an increase in total body fat mass or fatty

liver in the intact mIUGR rat. Also, insulin release in response to glucose in the fasted state

IUGR, testosterone, glucose homeostasis
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was not altered. Thus, the mechanism by which elevated endogenous testosterone is protective

against impaired glucose homeostasis in the mIUGR rat is unknown. However, we previously

reported that elevated endogenous testosterone in the mIUGR rat programs a significant

increase in blood pressure in young adulthood [22] and contributes to accelerated cardiovas-

cular aging. [23]. Therefore, the developmental origins of increased endogenous testosterone

had an opposite effect on blood pressure and metabolic health of male IUGR.

Perspectives and significance

Testosterone decreases in aging men [40]. Low testosterone in men is associated with

increased risk for T2D [2,3,4,5]. Numerous studies suggest that testosterone replacement in

men improves glycemic control [41,42,43,44,45]. Yet, the benefit of testosterone replacement

for improved metabolic health in men is controversial [8, 9, 11] because the long-term risk of

testosterone replacement in men is linked to increased cardiovascular risk [46,47,48,49]. Thus,

the beneficial effect of testosterone replacement on metabolic health must be balanced against

the increased risk for cardiovascular events. Further studies are needed to clarify the risk ver-

sus benefit of testosterone replacement in men. Moreover, targeted investigations into the

mechanisms that contribute to increased risk for impaired glucose homeostasis originating in

fetal life are warranted to improve therapeutic and interventional strategies in low birth weight

individuals.
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