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Abstract: Stachys thracica Davidov is a Balkan endemic species distributed in Bulgaria, Greece,
and Turkey. In Bulgaria, it is classified as “rare” and is under the protection of the Bulgarian
biodiversity law. The aim of our study was to develop an efficient protocol for ex situ conservation
of S. thracica and to perform comparative NMR-based metabolite profiling and bioactivity assays of
extracts from in situ grown, in vitro cultivated, and ex vitro acclimated plants. Micropropagation of
S. thracica was achieved by in vitro cultivation of mono-nodal segments on basal MS medium. Ex Vitro
adaptation was accomplished in the experimental field with 83% survival while conserved genetic
identity between in vitro and ex vitro plants as shown by the overall sequence-related amplified
polymorphism marker patterns was established. Verbascoside, chlorogenic acid, and trigonelline
appeared the main secondary metabolites in in situ, in vitro cultivated, and ex vitro acclimated
S. thracica. High total phenolic and flavonoid content as well as antioxidant and radical scavenging
activity were observed in in situ and ex vitro plants. Further, the anti-inflammatory activity of
S. thracica was tested by hemolytic assay and a high inhibition of the complement system was
observed. Initiated in vitro and ex vitro cultures offer an effective tool for the management and better
exploitation of the Stachys secondary metabolism and the selection of lines with high content of
bioactive molecules and nutraceuticals.

Keywords: Lamiaceae; woundwort; in vitro cultivation; phenylethanoid glycosides; antioxidant
activity; anti-inflammatory activity

1. Introduction

Stachys L., or woundwort, is a subcosmopolitan genus of herbs and shrubs that
comprises more than 300 species [1] and is considered as one of the largest genera among
the Liliaceae family. The plants from the genus are distributed in temperate and tropical
regions of the Mediterranean, Asia, America, and Southern Africa. In Bulgaria, 22 species
of the genus Stachys are naturally distributed, as five of them are under the protection of
the Bulgarian biodiversity law [2]. Since ancient times, species of this genus have been
used in traditional medicine under the form of extracts, decoctions, and ointments for the
treatment of stomach disorders, genital tumors, skin inflammations, sclerosis of the spleen,
cough, and ulcers [3,4]. In recent years, several studies on different taxa of genus Stachys
have demonstrated that woundworts exert various biological effects, such as antioxidant,
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radical scavenging, anti-inflammatory, antibacterial, analgesic, hepatoprotective, cytotoxic,
antiproliferative, wound healing, anxiolytic, and antidepressant potential [1,4–6]. Overall,
based on these studies, Stachys species are considered as a potential source of nutraceuticals
and functional ingredients and hence good candidates for pharmacological application.

Phytochemical studies in Stachys species revealed the presence of iridoids [7], polyphe-
nols, including flavonoids [8], tannins, phenolic acids [5], phenylethanoid glycosides [9],
diterpenes and triterpene saponins in addition to essential oil as minor constituents [4].

Plants are an indispensable reservoir of natural antioxidants which may find various
applications as functional ingredients such as components of food supplements and natural
food additives, as well as cosmetics and pharmaceuticals [1]. Natural antioxidants may
very effectively reduce the lipid peroxidation in biological membranes, therefore they
could be useful food additives and inhibitors of reactive oxygen species in living cells.
Recent studies summarized by Tomou et al. [1] reported the high antioxidant potential of
Stachys sp. and confirmed the possibility of their use as natural antioxidants. The ethyl
acetate fraction of tubers of S. affinis showed extremely high DPPH radical scavenging
activity (IC50 0.85 ± 0.04 µg mL−1), several folds higher than the standard α-tocopherol
(IC50 18.68 ± 0.51 µg mL−1), which was attributed to the abundance of phenolics and
flavonoids [10]. Another species, S. mucronate also demonstrated strong anti-radical activity
due to the high content of polyphenols [11].

The anti-inflammatory activity of several Stachys species (S. inflata, S. chrysantha, S.
candida, S. athorecalix, S. beckeana, S. anisochila, S. plumose, S. alpina, S. germanica, S. officinalis,
S. recta, S. schtschegleevii) has been mainly prescribed to the presence of iridoids such
as aucubin, acetylharpagide, harpagide, harpagoside, and ajugoside [6,12], as well as
phenylethanoid glycosides (verbascoside and betonyoside F) and flavonoids [13].

Stachys thracica Davidov (The Plant List) or Thracian woundwort is a Balkan endemic
plant distributed in Bulgaria, Greece, and Turkey. In Bulgaria, it is classified as “rare” and
is under the protection of the Bulgarian biodiversity law. Thracian woundwort has several
distribution locations with small populations in the Strandja Mountain, Black Sea coast,
and the region of Sofia [14]. There is no available data on ex situ conservation of S. thracica
and the knowledge of its chemical composition is rather scarce. Phenylethanoid glycosides
and the diterpene betolide were isolated and identified in Thracian woundwort [15]. The
aim of our study was to develop an efficient protocol for ex situ conservation of S. thracica
and to perform comparative NMR profiling and bioactivity assays of extracts from in situ
wild-grown, in vitro cultivated, and ex vitro acclimated plants.

2. Results and Discussion
2.1. In Vitro Cultivation and Ex Vitro Acclimation of S. thracica

Bulgaria is characterized by a high level of endemism—approximately 270 species are
considered Balkan endemics [16]. Most of those species have medicinal qualities and are a
potential source of nutraceuticals and functional ingredients but as yet they have not been
thoroughly studied. Micropropagation (in vitro cultivation) represents a biotechnological
approach for ex situ conservation of rare and endangered plants, which can be carried
out in a controlled environment regardless of seasons and climate changes [17]. Low seed
germination of S. thracica seeds was found, as after 14 days only 20% of the seeds cultivated
on 0.7% water agar germinated, while these inoculated on half-strength MS medium did
not germinate. The sprouting seedlings were then transferred to a basal MS medium and
cultivated under controlled environmental conditions. After one month, approximately,
78% of the explants showed shoot proliferation and produced 11.14 ± 0.73 shoots per
explant. The regenerated micro-plants managed to form thick and healthy roots and
plentiful leaf biomass (Figure 1).
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Figure 1. Ex situ conservation of S. thracica.

The regenerated in vitro plants with 1 cm long shoots and a well-developed root
system were transferred into pots with a sterile soil mixture. The first stage of acclimation
was performed in a phytotron chamber under controlled environmental conditions and
a gradual decrease in relative humidity. The survival rate of S. thracica acclimated plants
appeared to be relatively high—83%. In the next step, the ex vitro adapted plants were
transferred to a greenhouse and adapted for a period of one month followed by transfer to
normal garden soil in the experimental field (Figure 1). The percentage of surviving plants
remained unchanged.

Successful in vitro regeneration on hormone free MS medium and subsequent ex vitro
adaptation has been previously reported for S. maritima [18]. However, in S. leucoglossa
and S. annua, MS medium supplemented with 0.5 mg L−1 6-benzyladenine was most
effective for shoot proliferation and produced 5.61 ± 1.15 and 4.5 ± 0.54 shoots per explant
respectively [19,20]. Root development in in vitro cultivated S. leucoglossa was established
in 60% of the explants cultivated on WPM media supplemented with 0.5 mg L−1 indole-3-
butyric acid [20].

2.2. Genetic Stability of In Vitro Cultivated and Ex Vitro Adapted S. thracica

The SRAP approach, developed by Li and Quiros [21], is a simple, effective, and
reliable marker system that can be adapted for a variety of purposes. The SRAP markers
have been successfully applied for analysis of genetic diversity in plant genetic resources
and natural populations from the Lamiaceae family [22,23]. Alekseeva et al. [23] studied
genetic diversity in Origanum vulgare subsp. hirtum and reported that the SRAP assay is
sensitive in the detection of heterogeneity between individuals within populations of the
same species. As well, comparison of SRAP profiles between different lavender varieties
indicated high genetic diversity [22]. However, it has been pointed out that in the case of
vegetatively propagated plants from one lavender variety, SRAP analysis with three primer
pairs displayed the same pattern of SRAP fragments. In our work, a total of 16 combinations
of SRAP primer pairs was selected for successful PCR amplification and generation of
fragments for the polymorphism study of S. thracica plant variants. These primers showed
sufficient efficiency to distinguish between S. thracica and other Stachys species (unpublished
data). On the other hand, the comparison between in vitro and respective ex vitro S. thracica
individuals demonstrated the presence of overall 496 different alleles without any variation
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in the SRAP profiles, which suggests preserved genetic stability during the process of
micropropagation (Supplementary Table S1).

2.3. NMR-Based Metabolite Profiling during S. thracica Ex Situ Conservation

In order to reveal the metabolic alterations in S. thracica plants during the process of ex
situ conservation an 1H NMR in combination with 2D NMR techniques (J-resolved, COSY,
TOCSY, and HSQC) were applied. In total 15 individual compounds were unambiguously
assigned to the abundant signals including carbohydrates, amino acids, organic acids,
phenolic compounds, and alkaloids. No major qualitative differences were observed in
the metabolic profiles of in situ, in vitro cultivated, and ex vitro adapted plants except for
the two unidentified phenolic compounds, whose signals were detected only in the NMR
spectra of ex vitro acclimated plants (Figure 2, Table 1). Verbascoside and leucoseptoside A
along with chlorogenic acid and trigonelline appeared to be the main secondary metabolites
in the extracts of all samples. Phenylethanoid glycosides are of common occurrence in
the members of Stachys genus [4]. Verbascoside and leucoseptoside A have also been
reported in S. officinalis, S. recta, S. affinis, S. alpina subsp. dinarica, S. anisochila, S. beckeana, S.
byzantine, S. plumose, S. iva, S. candida, S. schtschegleevii, and others [1,4]. It has been found
that verbascoside possesses a wide range of biological properties including antioxidant,
anti-inflammatory, cytotoxic, antimicrobial, anti-thrombotic, and wound healing [24]. The
identification of phenylethanoids was confirmed by comparison with authentic samples.
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Figure 2. Metabolic profiling of S. thracica extracts: 1H NMR spectra of in situ, in vitro cultivated,
and ex vitro adapted plants (a). Chemical structure of the main secondary metabolites identified in
the extracts (b).

Chlorogenic acid is another major metabolite present with high intensity in the NMR
spectra of all S. thracica samples. It is an important and biologically active dietary polyphe-
nol found in the Asteraceae and Lamiaceae families [25]. Chlorogenic acid offers valu-
able therapeutic properties including antioxidant activity, antibacterial, hepatoprotective,
cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral,
anti-microbial, anti-hypertension, and a central nervous system stimulation [25]. It has
been also found that chlorogenic acid could modulate lipid metabolism and glucose in both
genetic and healthy metabolic disorders [25].
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Table 1. Chemical shifts (δ) and coupling constants (J) of the metabolites, identified in S. thracica
plants by the relevant 1D and 2D NMR spectra.

Metabolite S.t. In Situ a S.t. In Vitro a S.t. Ex Vitro a Chemical Shift (ppm) b

Amino acids

Alanine + + + δ 1.47 (d, J = 7.2)
Valine + + + δ 0.99 (d, J = 7.0)/δ 1.04 (d, J = 7.0)

Sugars

α-Glucose + + + δ 5.17 (d, J = 3.8)
β-Glucose + + + δ 4.56 (d, J = 7.9)/3.18 (dd, J = 7.9, 9.2 )
Sucrose + + ++ δ 5.37 (d, J = 3.8)

Organic acids

Acetic acid + + + δ 1.92 (s)
Lactic acid + + + δ 1.31 (d, J = 6.9)/δ 4.08 m
Succinic acid + + + δ 2.48 (s)
Formic acid + + + δ 8.45 (s)

Malic acid + + + δ 2.80 (dd, J = 16.9, 8.2)/δ 2.93
(dd, J= 16.9, 3.9)

Phenolic acids

Chlorogenic acid ++ ++ +++

δ 7.60 (d, J = 15.7)/δ 7.13 (d, J = 2.2)/δ
7.06 (dd, J = 8.2, 2.2)/δ 6.86 (d, J = 8.3)/δ

6.33 (d, J = 15.9)/δ 5.30 (td, J = 4.9,
10.9)/δ 4.18 (br q, J = 3.1)

Phenylethanoid glucosides

Verbascoside ++ ++ +++

δ 7.63 (d, J = 15.9)/δ 7.14 (d, J = 2.0)/7.05
(dd, J = 8.3, 2.0)/δ 6.67 (dd, J = 8.3,
2.0)/δ 6.34 (d, J = 15.9)/4.93 (t, J =

9.6)/4.47 (d, J = 7.9)/δ 2.81 (t, J = 7.2)
1.04 (d, J = 6.4)

Leucosepthoside A + + +

δ 7.70 (d, J = 15.8)/δ 7.23 (d, J = 1.9)/7.16
(dd, J = 8.3, 2.0)/δ 6.89 (dd, J = 8.3,
2.0)/δ 6.41 (d, J = 16.0)/4.93 (t, J =

9.6)/4.47 (d, J = 7.9)/δ 3.88 (s)/
δ 2.81 (t, J = 7.1) 1.04 (d, J = 6.4)

Alkaloids

Trigonelline + + + δ 9.12 (s)/δ 8.83 (m)/δ 8.07
(m)/δ 4.43 (s)

Others

Choline + + + δ 3.19 (s)
Unidentified phenolic
compounds - - ++ δ 7.99 (d, J = 8.9)/δ 7.10 (d, J = 8.9)

δ 7.93 (d, J = 8.9)/δ 6.99 (d, J = 8.9)

S. t. in situ—S. thracica in situ; S. t. in vitro—S. thracica in vitro; S. t. ex vitro—S. thracica ex vitro. a The sign “+”
refers to relative fold differences and “–” to absence of the particular compound. b Proton NMR chemical shifts (δ)
and coupling constant (J).

The biological activities of trigonelline, a vitamin B6 derivative, have been thoroughly
evaluated especially regarding diabetes and central nervous system disease. It possesses
also hypoglycaemic, hypolipidemic, neuroprotective, antimigraine, sedative, and memory-
improving activities, and may also reduce diabetic auditory neuropathy and platelet
aggregation. It has been established that trigonelline affects β-cell regeneration, insulin
secretion, activities of enzymes related to glucose metabolism, reactive oxygen species,
axonal extension, and neuron excitability [26].
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2.4. Comparative Determination of Total Phenols and Flavonoids in In Situ, In Vitro Cultivated,
and Ex Vitro Adapted Plants

Phenolic compounds are the most diverse and widely distributed secondary metabo-
lites in plant species with pronounced antioxidant activity. They are synthesized mainly in
the presence of adverse environmental factors (biotic and abiotic) and their amount varies
significantly depending on the growth conditions. The determination of the total phenolic
and flavonoid content in in situ, in vitro cultivated and ex vitro adapted S. thracica plants
provides information on the quantitative changes in metabolic content in plants of the same
genotype which are cultivated under different conditions. The highest phenolic content
was established in in situ wild plants, followed by ex vitro adapted S. thracica (171 ± 4.5
and 161.6 ± 1.24 µg GAE mg−1 extract, respectively; Figure 3a). Reverse dependence was
observed in the flavonoid content, which appeared highest in ex vitro acclimated plants
followed by in situ grown (41.7 ± 0.68 and 29.7 ± 0.65 µg QE mg−1 extract, respectively;
Figure 3b). A nearly fourfold decrease in the content of total phenols and a twofold decrease
of flavonoids in in vitro cultivated S. thracica compared to wild growing genotypes was
observed (Figure 3). It is likely that the aseptic culture conditions in controlled environment
and mixotrophic nutrition affect the quantity of phenolic compounds in micropropagated
S. thracica plants.
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Strong inhibition of metabolic activity was also observed during in vitro cultivation of
Lamium album and Achillea thracica, however, it recovered upon ex vitro adaptation [17,27].
In several plant model systems, a significant decrease in the concentration of total phenolic
and flavonoid content was also found in in vitro cultivated plants compared to those grown
in situ or adapted ex vitro [28,29].

2.5. Antioxidant and Radical Scavenging Activity of S. thracica during the Process of Ex Situ
Conservation

Phenolics have been recognized as essential antioxidant agents due to their structural
characteristics and chemical behaviour. Based on the hydrogen-donating ability, they may
act as free-radical scavengers and, consequently, exert a protective effect against reactive
oxygen species (ROS) [30]. A positive correlation between the phenolic content and total
antioxidant activity (TAA) was observed as the highest TAA was established in in situ and
ex vitro acclimated plants (0.190 ± 0.005 and 0.197 ± 0.006 mM α-tocopherol g−1 extract,
respectively). Approximately, two times lower TAA was found in in vitro cultivated S.
thracica plants (0.104 ± 0.004 mM α-tocopherol g−1 extract; Figure 4a). Similar dependence
was observed in the FRAP assay. The ferric reducing activity was highest in in situ wild
and ex vitro adapted plants (2.23 ± 0.05 and 2.07 ± 0.07 mM Fe2+, respectively), and
threefold lower in in vitro cultivated plants (0.598± 0.020 mM Fe2+; Figure 4b). In addition,
the extracts from in situ and ex vitro acclimated plants have nearly two times higher
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antioxidant potential of the used standard α-tocopherol (Figure 4b). In DPPH assay all the
three methanolic extracts exhibited concentration dependant radical scavenging activity.
The maximum inhibition of the DPPH free radical was 76% and 74% at a concentration of
80 µg mL−1 for in situ and ex vitro adapted plants and 64% for in vitro cultivated S. thracica
at the highest tested concentration—150 µg mL−1 (Figure 4c). The lowest concentrations
at which 50% inhibition (IC50) of the DPPH radical was observed were 8.9 µg mL−1 for
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Most likely the high antioxidant potential of in situ and ex vitro adapted S. thracica
plants is due to the presence of verbascoside and chlorogenic acid, which are the main
secondary metabolites found in the extracts through NMR profiling (Table 1). There is
considerable evidence showing that phenylethanoids and phenolic acid are powerful
antioxidants by scavenging ROS directly or acting as chain-breaking peroxyl radical scav-
engers [1,31]. It has been established that the major components, responsible for the high
radical scavenging potential, in the methanolic extract of S. officinalis are verbascoside
and chlorogenic acid, comprising 69% of the total antioxidant activity [31]. Methanolic
extracts of aerial flowering parts of four Stachys taxa (S. alpina subsp. dinarica, S. anisochila,
S. beckeana and S. plumose) were studied for their antioxidant activity and high correla-
tions between total phenolic content, TAA and DPPH scavenging activity was established,
indicating that polyphenols are the main antioxidants [12].
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2.6. Anti-Inflammatory Activity of S. thracica

The anti-inflammatory potential was examined by monitoring the effect of methanolic
extracts of S. thracica on the complement hemolytic activity via the classical pathway
(CP). The complement system is an innate effector mechanism with the intrinsic ability to
initiate local inflammation at the sites of accumulation of ligands for its classical recognition
molecule C1q, typically immune complexes, as well as to augment significantly an ongoing
inflammatory response by the generation of plethora of pro-inflammatory mediators in a
cascade mode. Therefore, inhibiting the complement activation (e.g., CP) would produce
a profound anti-inflammatory effect. After treatment with the S. thracica extracts a dose-
dependent inhibition on the CP was observed. The extracts from in situ and ex vitro adapted
plants exhibited a similar degree of inhibition reaching up to 94% and 97%, respectively,
at a concentration of 2000 µg mL−1, while those from in vitro cultivated plants reached a
maximum of 69% (Figure 5). The lowest concentrations at which 50% inhibition (IC50) of the
hemolysis was observed were 351.7 µg mL−1 for in situ, 358.5 µg mL−1 for ex vitro adapted,
and 872 µg mL−1 for in vitro cultivated plants. The extracts from in situ and ex vitro
acclimated plants had not only similar trends of inhibition on the CP but also a comparable
anti-inflammatory effectiveness. The extract from in vitro cultivated S. thracica was 2.5-fold
less active than the rest. It is very apparent that environmental factors significantly reduce
the concentration of phenolic compounds and hence the biological activity of in vitro
cultivated Thracian woundwort, while in ex vitro conditions, the biosynthetic capacity is
restored, and this leads to an increase in bioactivity of the plants.
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Maleki-Dizaji et al. [32] reported on the anti-inflammatory properties of a hydro
alcoholic extract from S. schtschegleevii and associated this activity with the presence of
phenylethanoid glycosides (verbascoside and betonyoside F) and flavonoids. It has been
found that the polyphenol-rich extract from S. officinalis inhibited the enzymes lipoxyge-
nase and cyclooxygenase-2 with IC50—1.22 µg mL−1 and 10.1 µg mL−1, respectively [33].
Haznagy-Radnai et al. [6] also reported high anti-inflammatory activity of aqueous ex-
tracts from S. alpina, S. germanica, S. officinalis, and S. recta in the carrageenan-induced paw
oedema in rats. The extracts showed greater potency compared to the positive control
diclofenac-Na.
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3. Materials and Methods
3.1. Chemicals

Murashige & Skoog medium, plant agar, and sucrose used for in vitro cultivation were
purchased from Duchefa Biochemie (Haarlem, The Netherlands). The organic solvents used
for extraction, the reagents, and the standards used for the determination of total phenols
and flavonoids, as well as the DPPH, ABTS, and FRAP free radicals were purchased from
Sigma-Aldrich (Madrid, Spain). CD3OD and D2O came from Deutero GmbH (Kastellaun,
Germany). The sensitized red sheep erythrocytes, hemolysin and the guinea pig serum
were purchased from BulBio (Sofia, Bulgaria).

3.2. Plant Material and Culture Conditions

Wild grown in situ Stachys thracica Davidov plants were collected from their natural
habitat (village of Sinemorets, Tsarevo municipality, Bulgaria) in the period of blooming
in June and seeds in September, with the permission of the Ministry of Environment and
Water of Bulgaria. A voucher specimen SO107847 was deposited in the Herbarium of Sofia
University “St. Kliment Ohridski”. In Vitro shoot culture was induced by sterilization
of 100 ripe dry seeds with 70% ethanol as described by Yordanova et al. [27]. After that,
sterilized seeds were inoculated on half-strength Murashige and Skoog (MS) medium [34]
and on 0.7% water agar (w/v). After 14 days the seedlings were transferred on MS medium
with 3% (w/v) sucrose and 0.7% (w/v) agar and cultivated under controlled environmental
conditions (80 µmol m−2s−1 photosynthetic active radiation, cool white fluorescent TL-D
36W/54-765 1SL/25 Philips, photoperiod 16 h light/8 h dark, 25 ± 1 ◦C, 50–60% moder-
ate humidity). The plants were micropropagated twice over a period of 30 days before
performing further experiments.

3.3. Ex Vitro Acclimation

In Vitro regenerated S. thracica plants with well-developed root systems were trans-
ferred to plastic pots containing a sterile soil mixture (peat:coconut-fibers:sand = 2:1:1).
The first stage of ex vitro adaptation was performed for one month in a phytotron cham-
ber (POL-EKO APARATURA SP.J.A. Polok—Kowalska KK 350 STD 1400 W) with 16/8 h
light/dark, 100 µmol m−2 s−1 PPFD, 22 ± 2 ◦C, the relative humidity was decreased from
90% to 60% every week. In the next step, the ex vitro adapted plants were transferred to a
greenhouse and adapted for a period of one month followed by transfer to normal garden
soil at the experimental field of Sofia University “St. Kliment Ohridski”. After one year of
acclimation to the field conditions, newly formed fully expanded leaves from the 2nd or
3rd nodes of the stem of ex vitro plants in the period of blooming were harvested and used
for further analyses and NMR-metabolic profiling.

3.4. Genetic Stability Assay by SRAP Markers

To check genetic stability between in vitro and respective ex vitro adapted plants, the
sequence-related amplified polymorphism (SRAP) approach was applied according to [21].
Frozen leaf material was used for genomic DNA purification and for subsequent PCR
amplification, the primer pair sequences (ME1 to10 for forward primers targeting exons,
and EM1 to 10 reverse primers targeting DNA non-coding region) used by Zagorcheva
et al. [22] were utilized. In total, 16 SRAP primer pairs, which showed the highest number
of peaks and clarity of the electropherogram, were selected for further use in the current
study. The following primer pair combinations were used: ME1 + EM3; ME1 + EM5; ME1 +
EM6; ME1 + EM7; ME1 + EM10; ME3 + EM2; ME3 + EM5; ME4 + EM5; ME6 + EM3; ME6
+ EM5; ME7 + EM2; ME8 + EM1; ME8 + EM8; ME10 + EM4; ME10 + EM7; ME10 + EM9.
The forward ME primers were 5′ end labelled with FAM (carboxyfluorescein) dye. PCR
reactions were carried out with 50 ng genomic DNA, while the PCR amplification steps
and fragment analysis were performed as described by [22]. The analysis of the length of
the generated SRAP fragments was estimated by the GeneMapper Analysis Software v4.0
(Thermo Fisher Scientific Inc., Waltham, MA, USA). The threshold for peak detection was
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set to 400 relative fluorescence units. Fragment analysis was carried out for fragment sizes
in the range of 50 to 950 bp.

3.5. Extraction Procedure and NMR Analyses

Extraction of the plant material and NMR analysis were described in detail by Zah-
manov et al. [35]. Proton (1H) as well as 2D NMR spectra (J-resolved, COSY, HSQC, and
TOCSY) were recorded at 25 ◦C on an AVII+ 600 spectrometer (Bruker, Karlsruhe, Ger-
many), operating at a proton NMR frequency of 600.01 MHz [35]. Deuterated methanol
was used for internal lock. The resulting 1H NMR spectra for each sample were phased,
baseline corrected, and referenced to the residual signal of methanol-d4 at 3.30 ppm, by
running TopSpin software (3.6.5, Bruker BioSpin Group).

3.6. Methanolic Extract Preparation

Three grams (3 g) of finely powdered dry plant material from aboveground parts of in situ
grown, in vitro cultivated, and ex vitro adapted S. thracica was subjected to triple extraction
with 30 mL chloroform (Sigma-Aldrich, Madrid, Spain) in an ultrasonic bath for 10 min. At
the next step the biomass was extracted three times by distillation with methanol for 30 min.
The final plant extract from each variant was concentrated through vacuum evaporator (IKA,
Germany) and dried to constant dry weight. The yields of extracts from in situ, in vitro
cultivated, and ex vitro adapted plants were 13.8%, 28.46%, and 13.6% respectively.

3.7. Determination of Total Phenolic and Flavonoid Content

The total phenolic content of S. thracica methanol extracts was determined using Folin–
Ciocalteu reagent, according to the methodology proposed by Singleton et al. [36]. The
determination of flavonoids was performed following the methodology of Chang et al. [37].
The content of polyphenols was quantified by a standard curve using gallic acid as a
standard, and expressed as µg gallic acid equivalents per mg (µg GAE mg−1 extract). The
flavonoid concentration was quantified by a standard curve using quercetin as a standard,
and expressed as µg quercetin equivalents per mg extract (µg QE mg−1 extract).

3.8. Total Antioxidant Activity

Total antioxidant activity (TAA) was determined by the method of [38] with modifi-
cations. The incubation medium contains 0.25 mL extract (1 mg mL−1), 2.5 mL reagent
(0.6 M H2SO4, 28 mM KH2PO4, and 4 mM (NH4)2MoO4). A control containing 0.25 mL of
methanol and 2.5 mL of reagent was set in parallel and incubated under the same condi-
tions. The samples were incubated in a water bath for 90 min at 95 ◦C. The reaction was
quenched after placing the samples on ice and subsequent tempering to room temperature.
Absorbance was measured at 695 nm on a spectrophotometer, Shimadzu 1800 UV. The TAA
was expressed as mM α-tocopherol per gram extract (mM α-tocopherol g−1 extract).

3.9. DPPH Radical Scavenging Activity

The radical scavenging activity of methanolic extracts was determined using stable
DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical according to [39]. Eight different con-
centrations of the selected extracts were tested. Briefly, 0.5 mL of 0.1 mM DPPH solution,
dissolved in methanol was added to 1.5 mL of sample. Methanol was used as a blank and a
mixture of methanol (1.5 mL) with DPPH (0.5 mL) as a positive control. The samples were
incubated for 30 min in the dark and the absorbance was measured at 517 nm. The results
are given as maximum % inhibition and 50% inhibition (IC50) concentration in µg mL−1.

3.10. ABTS Radical Scavenging Activity

The ability of the different extracts to reduce the ABTS (2,20-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid) free radical was determined by the method described by Re et al. [40]. The
active ABTS free radical was produced by the reaction of 7 mM ABTS and 2.5 mM K2S2O8
in water. The solution is stored in the dark at room temperature for 12 to 16 h. The working
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ABTS solution was prepared by dilution of the active radical in methanol until the absorbance
reached 0.7± 0.03 at 734 nm. An aliquot of 20 µL of each extract was mixed with 2.0 mL of the
ABTS solution and after 1 min the absorbance was measured on a spectrophotometer, Shimadzu
UV1800. Trolox was used as a standard. The results were expressed as mg Trolox equivalents
per mg extract (mg TE mg−1 extract).

3.11. FRAP Assay

The ability of the extracts to reduce ferrous-containing radical was determined according
to the method of [41]. The stock solution of the FRAP (Ferric Reducing Antioxidant Power)
reagent was prepared by mixing 10 parts of 300 mM acetate buffer (pH = 3.6), 1 part of 10 mM
TPTZ dissolved in 40 mM HCl, and 1 part of 20 mM FeCl3. The reaction mixture contained
1.8 mL of FRAP reagent, 0.2 mL of dH2O, and 0.040 mL of extract. Ten different concentrations
of methanolic extracts were tested. After 30 min incubation at 37 ◦C the absorbance was
measured at 593 nm on a Shimadzu UV1800 spectrophotometer. Ferric-reducing antioxidant
capacity was represented as mM Fe2+ using an FeSO4 standard curve.

3.12. Microtitre Hemolytic Complement Assay

The hemolytic complement assay was performed in 96-well flat-bottom microtiter
plates. The dried extracts were dissolved in 3% dimethyl sulfoxide (DMSO) and further
diluted with barbitone buffered saline, pH 7.2, containing 0.15 mM Ca2+ (BBS). The assay
was performed on 6% sheep erythrocyte (SE) suspension sensitized with rabbit polyclonal
anti-SE serum (hemolysin, BulBio, Sofia, Bulgaria) and guinea pig complement (BulBio,
Sofia, Bulgaria). Preliminary titration of sera was performed to determine the dilution
producing 50% haemolysis of target erythrocytes. The SE (25 µL/well) were sensitized
by 30 min incubation with hemolysin (dilution 1:1600, 25 µL/well) at 37 ◦C. After that
complement (125 µL/well of appropriate dilution) and increasing amounts of the analyzed
plant extracts (100 µL/well) were added and incubated for 1 h at 37 ◦C. Next, the microtiter
plates were centrifuged at 1000× g for 5 min, and 200 µL of the supernatant from each well
was transferred to new 96-well flat-bottom microtiter plates and the absorbance at 540 nm
was measured by an ELISA reader (DR-200B, Hiwell Diatek Instruments, Jiangsu, China).
Each assay was carried out in triplicate.

3.13. Data Analysis

The data are presented as mean ± SE of at least 12 scores (3 repetitions per variant in
each of 4 independent sets of experiments). One-way ANOVA followed by Holm-Sidak
statistical test with significance level 0.001 was performed with Sigma Plot 11.0 software to
estimate the difference between all the variants.

4. Conclusions

The protocol for micropropagation of S. thracica comprises germination of sterilized
ripe dry seeds on water agar and cultivation of sprouting seedlings on hormone free MS
medium with 30 g L−1 sucrose for 30 days. Optimal induction of shoot proliferation from
mono-nodal segments was achieved on MS medium without supplement of growth regula-
tors. The ex vitro adaptation was accomplished on the experimental field and conserved
genetic identity as shown by the overall sequence-related amplified polymorphism DNA
marker patterns was established during the process of ex situ conservation. No significant
changes in the NMR metabolic profiles, as measured by NMR, were found and verbasco-
side, leucoseptoside A, as well as chlorogenic acid and trigonelline were the most abundant
metabolites in the extracts of S. thracica. As usual the aseptic conditions significantly re-
duced the quantity of total phenols and flavonoids and hence the antioxidant, radical
scavenging, and anti-inflammatory potential of the extracts from in vitro cultivated plants.
However, the biosynthetic potential and the associated biological activity were restored
after adaptation of the plants to ex vitro conditions. The successful initiation of in vitro and
ex vitro cultures is an alternative biotechnological approach for preservation of S. thracica
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which will also offer an effective tool for the management and better exploitation of the
Stachys secondary metabolism and the selection of lines with high content of nutraceuticals
and pharmaceutically valuable molecules.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/metabo12030251/s1, Table S1: Summary of SRAP alleles data following SRAP analysis of S. thracica.
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5. Vundać, V.B.; Brantner, A.H.; Plazibat, M. Content of polyphenolic constituents and antioxidant activity of some Stachys taxa.
Food Chem. 2007, 104, 1277–1281. [CrossRef]

6. Háznagy-Radnai, E.; Balogh, A.; Czigle, S.; Máthé, I.; Hohmann, J.; Blazsó, G. Antiinflammatory activities of Hungarian Stachys
species and their iridoids. Phytother. Res. 2012, 26, 505–509. [CrossRef] [PubMed]

7. Kotsos, M.; Aligiannis, N.; Mitaku, S.; Skaltsounis, A.L.; Charvala, C. Chemistry of plants from Crete: Stachyspinoside, a new
flavonoid glycoside and iridoids from Stachys spinosa. Nat. Prod. Lett. 2001, 15, 377–386. [CrossRef]

8. Demirtas, I.; Gecibesler, I.H.; Yaglioglu, A.S. Antiproliferative activities of isolated flavone glycosides and fatty acids from Stachys
byzantina. Phytochem. Lett. 2013, 6, 209–214. [CrossRef]

9. Delazar, A.; Delnavazi, M.R.; Nahar, L.; Moghadam, S.B.; Mojarab, M.; Gupta, A.; Sarker, S.D. Lavandulifolioside B: A new
phenylethanoid glycoside from the aerial parts of Stachys lavandulifolia Vahl. Nat. Prod. Res. 2011, 25, 8–16. [CrossRef]

10. Guo, H.; Saravanakumar, K.; Wang, M.H. Total phenolic, flavonoid contents and free radical scavenging capacity of extracts from
tubers of Stachys affinis. Biocatal. Agric. Biotechnol. 2018, 15, 235–239. [CrossRef]

11. Grigorakis, S.; Makris, D.P. Characterisation of polyphenol-containing extracts from Stachys mucronata and evaluation of their
antiradical activity. Medicines 2018, 5, 14. [CrossRef] [PubMed]
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