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ABSTRACT

COVID-19 was initially characterized as a disease primarily of the lungs, but it is becoming increasingly clear that the
SARS-CoV2 virus is able to infect many organs and cause a broad pathological response. The primary infection site is likely
to be a mucosal surface, mainly the lungs or the intestine, where epithelial cells can be infected with virus. Although it is
clear that virus within the lungs can cause severe pathology, driven by an exaggerated immune response, infection within
the intestine generally seems to cause minor or no symptoms. In this review, we compare the disease processes between
the lungs and gastrointestinal tract, and what might drive these different responses. As the microbiome is a key part of
mucosal barrier sites, we also consider the effect that microbial species may play on infection and the subsequent immune
responses. Because of difficulties obtaining tissue samples, there are currently few studies focused on the local mucosal
response rather than the systemic response, but understanding the local immune response will become increasingly
important for understanding the mechanisms of disease in order to develop better treatments.
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INTRODUCTION

The immune system has been shown to play a critical role in
the clearance of severe acute respiratory syndrome coronavirus
2 (SARS-CoV2) and the pathogenesis of resulting coronavirus in-
fectious disease 2019 (COVID-19). Much of the immunological
analysis in this disease has focused on the systemic immune

response found in the blood. By focusing on recent data from
lung and gut, the mucosal sites of infection, we can gain
insights into the local immune response, which is likely key to
viral clearance,s limiting pathogenesis and vaccine efficacy.

SARS-CoV2 infection at mucosal sites

SARS-CoV2 enters cells via the angiotensin-converting enzyme
(ACE2) [1]. As with other coronaviruses, the spike protein is im-
portant for viral attachment and binding to ACE2, and must be
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cleaved for entry. Transmembrane serine protease 2 has been
identified as a cellular serine protease able to cleave the spike
protein. The broad spectrum of cell types that express ACE2
goes some way to explaining the wide variety of tissues
that can be infected and damaged. ACE2 is particularly abun-
dant on the epithelial cells that line the lung and intestine, spe-
cifically secretory goblet cells in the nasal mucosa, Type II
pneumocytes in the lung, and absorptive enterocytes in the
small intestine [2].

In clinical settings, infection with SARS-CoV2 is defined on
the basis of viral RNA amplification from nasopharyngeal swab
samples. More recently, saliva tests have gained the popularity
because of their less invasive nature while maintaining a simi-
lar sensitivity [3], due to ACE2 expression in oral cavity epithe-
lial cells [4]. Diagnosis of COVID-19 depends upon a positive test
for viral RNA from an oropharyngeal, nasopharyngeal or saliva
swab, but it has become clear that the faeces can also contain
SARS-CoV2 RNA, in many cases before symptoms appear and
long after a patient has tested negative from a conventional
swab [5]. Indeed, testing of wastewater for viral RNA is gaining
popularity as a way for authorities to quickly identify local hot-
spots of infection in the community [6].

However, the detection of RNA from SARS-CoV2 in different
samples does not necessarily indicate the presence of infectious
virus. The gold standard is isolation of virus that can infect an
epithelial cell line Vero E in vitro, which has been clearly shown
in lung samples [7] and documented in faecal samples [8]. High
RNA levels may correlate with infectious virus, which has been
isolated from nasal swabs, sputum and faeces [7, 9]. However,
another study that used small intestine biopsy samples failed to
isolate infectious virions [10]. It is also unclear whether any vi-
rus from the intestine is infectious once it is egested, or whether
it is degraded in the intestine with remaining nucleic acid de-
tectable by qPCR.

Viral infection of human enterocytes of the small intestine
has been shown by microscopy in organoid systems [11] and bi-
opsies [10], indicating that SARS-CoV2 can productively infect
cells of the intestine. Around 20% of patients with COVID-19 ex-
perience gastrointestinal symptoms, but these are generally
mild and include diarrhoea, nausea and vomiting [12]. A COVID-

19 symptom tracker has been used to classify six different dis-
ease symptom clusters, including a gastrointestinal cluster with
diarrhoea but no cough or fever [13]. It remains unclear whether
the faecal–oral route is a significant infection risk and whether
it may be related to this disease cluster. A summary of the cur-
rently understood differences between infection of the lung and
gastrointestinal tract is shown in Fig. 1.

Microbiome and SARS-CoV2

It has long been appreciated that the local microbiota may inter-
act directly with invading viruses or immune cells, or indirectly
through metabolite production that modulates the environ-
ment [14, 15]. Studies have implicated pharyngeal microbial
communities in susceptibility to influenza [16, 17] and second-
ary bacterial infections [17], but interactions through the gut–
lung axis indicate that gut microbes also play a role—the gut
bacterium Lactobacillus paracasei was able to modulate the im-
mune response to influenza in mice, decreasing damaging in-
flammatory cell accumulation within the lungs [18]. This all
suggests that the microbiome may play a role in modulating
both susceptibility and immune responses to viral pathogens.
Antibiotic-driven dysbiosis, which would be common among
COVID-19 patients, can also affect the immune response to viral
infection [19]. In COVID-19, diseases associated with microbial
dysbiosis, particularly comorbidities related to metabolic syn-
drome (including insulin resistance and Type 2 diabetes, obesity
and hypertension), have also been implicated in worse out-
come. In one study, patients in intensive care units with critical
COVID-19 were nearly twice as likely to be obese as the general
population [20]. It is therefore unsurprising that many studies
are ongoing to investigate associations between lung and gut
microbiota and COVID-19. Such studies are complicated by the
difficulties of unpicking cause versus effect in an already sick
population, as an excessive immune response is likely to affect
both local and distal bacterial populations. Initial results indi-
cate decreased microbial diversity in patients with COVID-19
compared with both healthy controls and influenza or pneumo-
nia patients, which may gradually recover over time [21, 22] but
can persist long after viral clearance from the respiratory tract

Box 1 Is there a consensus on the topic discussed? And what is the consensus?

There is a broad consensus that an over-exuberant immune response is a key driver of severe disease following SARS-CoV2
infection, and that inducing a moderate immune response will be important in vaccine efficacy. Studies are starting to inves-
tigate the immune response at the local site of infection as immunity here will be the first line of defence. There is conflicting
data about whether gut involvement in SARS-CoV2 is beneficial or harmful. The microbiome has also become a focus of in-
vestigation given the strengthening link between obesity (which is associated with reduced microbial diversity) and worse
disease outcome. Mucosal studies remain limited due to the lack of sample access but will become increasingly important in
understanding disease.

Box 2 Why does the subject matter?

Understanding the mucosal immune response to SARS-CoV2 will help to enable better treatment of COVID-19 and the devel-
opment of successful vaccines for prevention. Presently available data on the immunology of COVID-19 generally reflect sys-
temic responses in the blood, with comparatively little on the local immune response within the lung or intestine, both sites
of viral infection. Given that intestinal immune responses to infection appear to be regulated, while those in the lung are ex-
aggerated, understanding the similarities and differences between the sites will help to unravel the differing immune
responses between mild and severe disease.
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[5]. Common commensal microbes such as Faecalibacterium
prausnitzii, a known producer of short-chain fatty acid metabo-
lites associated with health [23] are significantly transiently re-
duced in the gut at peak disease, even in patients with mild
symptoms [21], and abundance was inversely correlated with
lung disease severity and in the absence of gut symptoms [24].
Interestingly, however, a pilot study of the microbiome of
infected patients described an increase in Faecalibacterium
within bronchoalveolar lavage fluid compared with healthy
controls [25]. As Faecalibacterium is reduced in metabolic disease
including obesity and Type 2 diabetes [26], it may be that pre-
existing microbial factors alter initial susceptibility to SARS-
CoV2 infection, and location of microbes within the body may
also play a role. In addition, an increase in certain Clostridial
and Pseudomonas opportunistic pathogens have been associated
with COVID-19 severity, possibly due to increased risk of sec-
ondary bacterial infection [21, 22, 24]. Similarly, infection with
SARS-CoV2 may also reduce the diversity of the nasopharyngeal
microbiome [27], and increase abundance of specific genii that
can play a role in mucosal immunity, such as Prevotella, the
presence of which has been associated with more severe symp-
toms [28]. However, data are currently limited to small-scale
studies, and more prospective, longitudinal analysis of larger
cohorts will be required to unpick the many variables that may
contribute to microbial changes.

Disease processes and protection in mucosal tissues

A key feature of severe COVID-19 disease is the extensive lung
damage caused by an over-exuberant immune response, but
the immune response in the gut remains enigmatic. Despite the
evidence for viral infection within the intestine, where a high
viral burden might also be expected, gastrointestinal (GI) symp-
toms are generally mild, although pro-inflammatory interleukin
(IL)-23 and IL-8 are increased in faecal samples from COVID-19
patients compared with healthy controls [29]. The presence of
diarrhoea in severe patients has been associated with a worse
outcome in some studies [13, 30], which could be related either
to systemic immune activation or more widespread viral inva-
sion of tissues. Interestingly, another study using three patient

cohorts found an association between GI symptoms and re-
duced disease severity and mortality even when comorbidities
were accounted for [10]. A few patients with GI symptoms who
underwent endoscopic evaluation had no evidence of mucosal
inflammation despite the epithelial infection. GI infection was
associated with reduced levels of circulating pro-inflammatory
cytokines including IL-1b, tumour necrosis factor (TNF)a and IL-
6, but increased IL-7, a critical T-cell development and survival
cytokine [31]. This would suggest that GI infection may lead to a
less inflammatory response than in the lungs in adults.
However, in multisystem inflammatory system in children, a
rare but severe disease following SARS-CoV2 infection in chil-
dren, a common feature is gastrointestinal symptoms rather
than lung involvement [32]. Symptoms seem to occur up to 4
weeks after COVID-19 exposure so are likely to involve an aber-
rant immune response rather than direct damage from the vi-
rus [33]. Treatment with intravenous immunoglobulin (Ig), anti-
IL-6 or anti-IL-1 has had beneficial effects [34], suggesting that
in these children there is an excessive immune response de-
spite the gastrointestinal involvement.

Neutrophils have emerged as potentially important regula-
tors of lung disease, due to the significant formation of neutro-
phil extracellular traps (NETs) in COVID-19 patients in
respiratory failure, and the correlation between neutrophilia
and poor outcome [35]. NETs trap viral particles upon neutrophil
death by NETosis [36], but their extrusion can also cause coagu-
lation, a feature of severe COVID-19. An increase in both neutro-
phil and pro-inflammatory macrophage accumulation in
bronchoalveolar fluid has been noted in severe COVID-19
patients [37] along with an increase in neutrophil degranulation
[38]. Post-mortem examination of lung samples from patients
who died with respiratory involvement showed a significant
macrophage and monocyte exudate in alveolar cavities, as well
as some neutrophil and lymphocyte accumulation [39–42].

The cytokine environment induced by the different immune
cell players is also likely to play a critical role in outcome.
Treatment with the steroid Dexamethasone demonstrated that
inhibiting the immune response can improve survival in se-
verely ill patients [43]. Damage to alveolar epithelial cells is
likely to stimulate early responding monocytes, macrophages

Figure 1: Despite being sites of viral infection with SARS-CoV2, the lungs and gastrointestinal tract show very different responses to the virus. These differences may

be important for mounting the most appropriate immune response to the virus
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and neutrophils to make high levels of IL-1b, IL-6, IL-18, inter-
feron (IFN)c and TNFa, which can act downstream on T-cell acti-
vation and differentiation. The presence of high serum IL-6 has
been associated with poor outcome [44], but treatment with
anti-IL-6, however, has shown mixed results [45] and may be
beneficial only in a subset of patients with the highest hyperin-
flammation. Type I interferons are directly induced by viral infec-
tion and are the important component of anti-viral responses.
About 15% of severe cases have been associated with genetic var-
iants in the interferon pathway or auto-antibodies against the
cytokines [46, 47]. Circulating IFNb expression has been shown to
be reduced in all patients with COVID-19 regardless of disease se-
verity [48]. As Type I IFNs are potent stimulators of natural killer
and T cells, perhaps it is unsurprising that overall there appears to
be a decrease in natural killer cells and all T cells in COVID-19
lungs. Most notably CD8þ T cells are reduced in the lung and bron-
choalveolar fluid in severe COVID-19, as well as in the blood [48],
and these cells showed fewer markers of proliferation and tissue
residency than those found in moderate or no disease [37].
Indeed, a broad T-cell memory of the virus is associated with a
milder course of disease [49] and local lung CD4 T-cell responses
are associated with survival from severe disease [41]. This could
suggest that in severe disease there are fewer SARS-CoV2-specific
anti-viral CD8þ T cells within the tissues but continued innate cell
activation from high viral load. Treatment with IFNb subcutane-
ously may shorten disease duration and reduce symptoms [50],
but inhalation directly into the lungs may be a better method of
delivery, as this is where the biggest problem lies. Indeed,
Synairgen has reported (in a pre-print) that treatment with in-
haled IFNb reduced the development of severe disease by up to
79% in an early trial [51]. It may be that mucosal administration
by inhalation of other treatments leads to a better response than
when given systemically.

Although lung T cells decrease in severe COVID-19, there
appears to be an increase in B cells [48], reflecting their impor-
tance in antibody production. A number of studies have mea-
sured immunoglobulin levels in the serum, particularly IgG and
IgA, both of which are found in convalescent patients. However,
as IgG comprises the majority of serum immunoglobulin, cur-
rent antibody tests use IgM and IgG only, although IgA is mainly
found in mucosal tissues such as the lung, and may therefore
be of as great or greater importance. Limited data hint at early
neutralizing IgA responses being associated with milder infec-
tion [52, 53], and that IgA peaks earlier than IgG [53]. Analysis of
faecal samples from COVID-19 patients suggests viral-specific
antibody responses can develop in the gut [29], but the effect of
this antibody on systemic levels is unknown. Serum antibody
appears to wane in the weeks and months post-infection [54],
however, it is unclear what happens within the lung tissue.
Antibody concentrations in the saliva suggest IgA rapidly
wanes, but IgG is maintained, at least in the oral cavity [55].
Measurement of SARS-CoV2-specific antibody and memory B
and T cells within mucosal tissues rather than just serum may
give a more accurate picture as to the impact of antibody on re-
covery and protection from reinfection. Given the difficulties in
obtaining mucosal tissue samples from humans with COVID-19,
and the advent of a host of animal models including ferrets,
non-human primates and the use of a mouse-adapted virus
[56], investigation of mucosal responses in animal models may
help to increase our understanding of the immune response to
SARS-CoV2 in lung and intestinal sites.

Antibody responses are critical for design and interpretation
of the efficacy of vaccine trials, as they are one of the primary
readouts for an immune response, and length of antibody

response is an important consideration for vaccine success.
However, a successful vaccine is likely to have wider effects
than the antibody induction alone, possibly also inducing a
memory T-cell response that can contribute to protection. Early
results of ChAdOx1 nCoV-19 vaccination in rhesus macaques
indicated that while the animals were protected from pneumo-
nia, nasal carriage of the virus remained at the same level as
non-vaccinated animals [21], hence, animals may be protected
from the worst COVID-19 symptoms but remain infectious to
others. A single dose of ChAd vaccine can lead to a local steriliz-
ing response [57] when given intranasally rather than intramus-
cularly, highlighting the importance of induction of a local
mucosal immune response.

CONCLUSION

Although the great strides have been made in our understand-
ing of SARS-CoV2 infection and subsequent disease in the past
9 months, the study of mucosal immunity will be critical to fu-
ture endeavours to prevent and treat disease.
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