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ABSTRACT

As the biomedical impact of small RNAs grows, so
does the need to understand competing structural
alternatives for regions of functional interest. Subop-
timal structure analysis provides significantly more
RNA base pairing information than a single mini-
mum free energy prediction. Yet computational en-
hancements like Boltzmann sampling have not been
fully adopted by experimentalists since identifying
meaningful patterns in this data can be challenging.
Profiling is a novel approach to mining RNA sub-
optimal structure data which makes the power of
ensemble-based analysis accessible in a stable and
reliable way. Balancing abstraction and specificity,
profiling identifies significant combinations of base
pairs which dominate low-energy RNA secondary
structures. By design, critical similarities and differ-
ences are highlighted, yielding crucial information
for molecular biologists. The code is freely available
via http://gtfold.sourceforge.net/profiling.html.

INTRODUCTION

RNA molecules perform a variety of important functions,
including the expanding roles of ‘small’ RNAs (1,2). Short,
non-coding RNA molecules are now known to function in
chemical catalysis as ribozymes (3,4), in aptamer binding as
riboswitches (4,5) and in the quorum sensing mechanism of
bacteria like Vibrio cholerae (6,7).

Knowing the base pairings of an RNA sequence is criti-
cal to understanding its function. A first step is often to pre-
dict a minimum free energy (MFE) secondary structure un-
der the nearest neighbor thermodynamic model (NNTM).
However, even for short sequences, the MFE prediction may
not be the native secondary structure (8,9).

Prediction accuracy improves when suboptimal struc-
tures are considered (10-15). Although they can be gener-
ated exhaustively (16) or sampled deterministically (17), the
current standard is to sample structures stochastically from

the Boltzmann distribution (18,19). The goal is to identify
the set of base pairs which dominate the low-energy sec-
ondary structures and hence are more likely to occur in na-
ture. The challenge is to extract the most meaningful struc-
tural signal from a noisy Boltzmann sample.

At the level of individual base pairs, this has been well-
studied (20-23). It is known that, even when disjoint, two
Boltzmann samples (typically of size 1000) will display
‘nearly identical patterns’ of estimated probabilities (18).
Given the significance of high frequency pairings, it is nat-
ural to ask which combinations dominate the low-energy
secondary structures.

High probability helices, with few low-energy competi-
tors, are a structural signal strong enough to be identified
by visual inspection of a 2D dot plot. However, beyond
these well-determined regions, the signal is much less clear.
In particular, there will be regions where one can easily see
that competing structural alternatives exist, but not what
they might be.

Clarifying this multimodal signal is critical to advancing
our understanding of RNA structure and function. This is
especially true for RNAs whose functionality may depend
on switching from one conformation to another (4,5). How-
ever, identifying combinations of base pairs whose probabil-
ity is high enough to merit attention but which have signifi-
cant competing alternatives is challenging.

Existing methods (24,25) identify dominant combina-
tions of base pairs by dividing the Boltzmann sample into
groups, and reporting a representative structure for each
one. However, as illustrated below, support for different
substructures can be lost within a group or diluted across
groups. This poses obstacles to understanding the substruc-
tural signal in a Boltzmann ensemble, especially when mul-
timodal.

Communicating significant commonalities and differ-
ences in pairing combinations is critical to understanding
competing structural alternatives for regions of functional
interest. Given this, we introduce a new combinatorial ap-
proach to analyzing a Boltzmann sample. Our method fo-
cuses on denoizing the distribution of helices; those with
high enough probability form our set of ‘features’ which
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Figure 1. Predicted MFE structure for VcQrr3 with the conserved region
(20-51 of 107 nucleotides) shown in bold. VcQrr2 has a comparable four-
armed MFE prediction while VcQrr4 has an additional helix forming a
‘cumberbun’ across the middle. VcQrrl has the common first and last he-
lices, but different base pairings forming a single middle arm.

are used to ‘profile’ the structures. In this way, we identify
notable combinations of helices and present this signal as
concisely and stably as possible. By design, RNA profiling
highlights critical relations at the substructure level, yield-
ing crucial information for molecular biologists.

VcQrr3: a case study

As concrete motivation, we consider a small RNA sequence
with an unknown structure from the pathogen V. cholerae.
This bacteria regulates its virulence via a quorum sens-
ing mechanism (26,27) that involves four short, non-coding
RNA molecules, denoted VeQrr1-VeQrr4 (6). With cholera
infecting three million people and causing 100 000 deaths
annually (28), understanding the structure and function of
these small RNAs is an important biomedical problem (29).

Quorum regulatory RNA (Qrr) molecules have been
found in multiple Vibrio species (6,7,30), and sequence
alignment identifies a 32 nucleotide region which is essen-
tially perfectly conserved. This degree of sequence conser-
vation is strong evidence for functional significance; how-
ever it provides no structural information for the region of
interest.

Moreover, thermodynamic optimization (31,32) predicts
that the four VcQrr sequences have three different MFE
structures (6) with varying roles for the conserved region.
Given this lack of structural consensus, it is important to
consider a more nuanced view of base pairing alternatives.

Figure 1 shows the VcQrr3 MFE structure. As seen in
Figure 2, base pair probabilities clearly support the forma-
tion of the first and fourth helices. However, the situation for
the middle two, and most of the conserved region, is consid-
erably murkier; we see that significant structural alternatives
exist but not what they might be.

Parsing this multimodal structural signal requires ana-
lyzing the suboptimal structures from a Boltzmann sample.
Understanding its nature requires preserving the critical re-
lations. To appreciate the challenge, consider the subopti-
mal secondary structures for VcQrr3, denoted sy, s> and s3,
shown in Figure 3. As illustrated, they have important com-
monalities as well as significant differences.

The Sfold (18,24,33,34) approach groups structures us-
ing divisive clustering under the base pair metric (35), which
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Figure 2. Dot plot of base pair probabilities for VcQrr3. Dot size at (x, y)
corresponds to log probability of position x pairing with y. Dashed lines
indicate the conserved region on each axis. While the first and fourth MFE
helices are highly probable, the rest of the sequence—including the major-
ity of the conserved region—has significant suboptimal structural alterna-
tives, as well as many low-frequency pairings.

counts pairings not shared between two structures. The
cluster centroid, with minimum distance to all structures in
the class, is the representative element. In this way, s; and
55 are clustered together, with the MFE structure from Fig-
ure 1 as the centroid, obscuring critical substructural alter-
natives. Moreover, the similarities with s3 are not transpar-
ent since it belongs to a second (much smaller) cluster.

Alternatively, RNAshapes (25,36,37) groups structures
(by default) according to their overall branching configura-
tion. The minimal energy structure with that shape, called
a shrep, is the representative element. Both s, and s3 as well
as the MFE structure have the four-armed [ ][ ][ ][ ] shape,
despite significant differences in the second and third arms.
However, the additional ‘cumberbun’ in s; gives it the [ J[[ ][
1I[ ] shape, which hides the common base pairs. Moving to
a more detailed shape abstraction level helps to distinguish
structural differences, but at the cost of significant similari-
ties.

In contrast, profiling focuses on the arrangement of he-
lices at the substructure level. Unlike methods using the
base pair metric, we do not distinguish the red and pur-
ple helices in s; from those containing one less pairing in
5. However, unlike branching configuration approaches, we
do not abstract away all base pair details. Hence, profiling is
based on a ‘fuzzy’ definition of helix with a limited degree
of elasticity in its exact composition.

We show this degree of abstraction has two benefits. It
enables major structural patterns to stand out without get-
ting overwhelmed by minor differences in stem composi-
tion. Yet, it retains enough information about specific base
pairs to generate experimentally testable hypotheses.

Moreover, our method differs substantially from the
existing helix-based analysis approach. Unlike profiling,
RNAHeliCes (38,39) does not mine the structural signal
from a Boltzmann sample, nor does it classify a given set
of secondary structures. Rather, their helix index shape
(hishape) abstractions are generated exhaustively starting
from the MFE.

These abstractions closely resemble RNAshapes with the
refinement that helices are indexed by their ‘central posi-
tion.” Thus, the hishape of the VcQrr3 MFE structure is
[13, 37.5, 55.5, 89.5] since, for instance, the first arm ends
at base pair (8, 18) and 13 = % Despite this additional
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Figure 3. Three structures from a Boltzmann sample for VcQrr3 generated by GTfold (43) with conserved nucleotides 20-51 in bold. Commonalities are
highlighted by colored rectangles. Significant differences include pairing 29-31 with 69-71 to form a multiloop in s| versus with 43-45 in s, and s3 to form
a stem extension (yellow). In s1 and s, 48-50 are paired with 61-63 forming part of a hairpin stem-loop (purple) but are single-stranded in s3.

information, hishapes still don’t characterize important re-
lations among low-energy secondary structures.

By default, three hishapes for VcQrr3 are output. How-
ever, the MFE one still includes s,. While s3 1s now distin-
guished (with 63 replacing 55.5), s; does not appear unless
additional output is requested. However, the number of dif-
ferent hishapes grows exponentially, with much index repe-
tition. But since indices do not correspond uniquely to max-
imal helices (c.f. Figure 1 of (38)) these are not necessarily
similar pairings.

In contrast, profiling identifies well-defined combinations
of base pairs that dominate low-energy secondary struc-
tures with an emphasis on highlighting significant similar-
ities and differences. This makes it well-suited for probing
function, especially for regions with competing structural
alternatives.

MATERIALS AND METHODS

Profiling identifies and presents signal on two levels: he-
lices and their combinations. This requires denoizing the set
of observed base pairs to highlight the dominant substruc-
tures. We employ equivalence classes to consolidate simi-
lar substructure elements, and thresholds to highlight the
head or core of the distribution. This extracts the signal
from our Boltzmann sample, yielding estimated probabil-
ities characteristic of the entire ensemble. By truncating the
low-probability tail, we retain the most frequent elements
as an informative, concise and reproducible summary of the
Boltzmann ensemble.

The profiling pipeline takes a representative sample as
input and outputs the substructural signal in the Boltz-
mann distribution. To begin, we partition the helices in our
Boltzmann sample into helix classes. Thresholding yields
the most prominent components of helix level signal, which
form our set of features. Each structure is categorized ac-
cording to its combination of features, called a profile.
Choosing the highest frequency profiles yields selected pro-
files, whose relations are visualized in a summary profile
graph.

Helix classes

Helices are a fundamental subunit in RNA structures.
Under the NNTM, a secondary structure is a set of
pseudoknot-free, canonical base pairs. A consecutive run of
pairings {(i, /), i+ 1,j— 1), ..., i+ k—1,j—k+ D}is
grouped into a helix denoted (i, j, k). Thus, in Figure 3, s;
={(1, 25, 8),(29, 71, 3),(32, 43, 4),(47, 64, 6),(77, 102, 10)}.

When comparing secondary structures, particularly those
in a Boltzmann sample, a helix in one may be a proper sub-
set of a helix in another. For instance, the helix (33, 42, 3) in
s> and in s3 is a subset of (32, 43, 4) in s;. At the helix level,
this difference is negligible, and all three are colored red in
Figure 3. Likewise with the purple helices.

Helix classes are defined to group together helices which
are ‘the same’ in this way. More precisely, a helix is maximal
if(i—1,j+ 1)and (i + k, j — k) would be non-canonical base
pairsorifj—i— 2k < 5. That is, a maximal helix respects the
minimum hairpin length of 3 and is non-extendable under
the Watson—Crick pairings A <> U and C <> G as well as
the wobble pairing G <> U.

A helix class consists of all helices /# which are subsets
of the same maximal helix g, and will be denoted [g]. Thus,
(33,42, 3) and (32, 43, 4) are elements of the set [(32, 43, 4)],
along with four other helices of minimum length >2. Given
a set of secondary structures S (with multiplicity), profiling
identifies the helix classes ordered by descending frequency.

The frequency of a helix /, denoted f{/), is the number of
times it appears in S. When S is large enough (typically of
size 1000 (18)), then f{(/)/IS!is a good approximation to the
probability of /1 in the Boltzmann ensemble and S'is called a
representative sample. Since (33, 42, 3) occurs in 328 of 1000
sampled structures and (32, 43, 4) in 573, their estimated
probabilities are 32.8 and 57.3%.

Similarly, the probability of a helix class ¢ is approxi-
mated using its frequency f{c¢), which is the sum over all (/)
for each helix % in c. Including the frequencies of the other
four helices in [(32, 43, 4)], its estimated probability is 94%
which is a much stronger signal than any individual helix.
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Figure 4. VcQrr3 histograms of estimated probabilities for (a) helix classes
and (b) profiles in descending order with graphs of average entropy accord-
ing to Equation 1 below and its profile equivalent. In (a), the 194 helices
observed in the representative sample of 1000 structures were consolidated
into 88 helix classes. Only the first 20 are pictured; the estimated probabil-
ity of the 20th one is 0.8%. In (b), all 13 profiles are pictured but the last
seven have frequency <5. The maximum average entropies at the seventh
helix class and fourth profile are marked.

Features

Profiling consolidates similar substructures via helix classes,
thereby amplifying their signal. However, there remain
many whose signal is weak at best; as illustrated in Fig-
ure 4(a), the distribution of frequencies typically has a very
long tail. In this case, more than 78% of the VcQrr3 helix
classes occur in <1% of the Boltzmann sample.

Profiling removes the noise of low-probability pairings
to highlight significant helices as our features. Hence, he-
lix classes are selected in order of decreasing frequency,
up to some threshold. In separating signal from noise, we
avoid hard cut-offs, thereby substantially increasing the re-
producibility of our results. Instead, profiling identifies the
point of diminishing returns, where increasing the number
of features begins diluting the structural signal.

This is achieved using the concept of Shannon entropy
from the mathematical theory of information. The entropy
of a (binary) random variable is a measure of its uncertainty,
which is also understood as information gain. The point of
diminishing returns in feature selection is determined by the
maximum average entropy.

More precisely, the presence of a helix class ¢ in a struc-
ture from the Boltzmann sample is a binary random vari-
able X.. To ensure that the average entropy rises to a maxi-
mum, consider the estimated probability normalized by the
most probable helix class ¢q;

if X, =1

p(X,) = {f(c)/f(cl) Y =0

1= f(e)/f(er)

Using this rescaled probability, the entropy of X, is calcu-
lated as

H(X.)=— > p(x)log p(x).

x=0,1

Given observed helix classes ¢y, ¢3, ..., ¢, ordered by de-
creasing frequency, we compute the average entropy at helix
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Table 1. Most probable VcQrr3 helix classes ¢; and profiles ¢; ordered by
decreasing observed frequency

i Max. helix i) Profile Aqi)
1 (1,25, 8) 1000 {c1, 2, €3, ¢4, ¢5} 564
2 (77, 102, 10) 1000 {e1, 2, €3, ca} 205
3 (32,43, 4) 940 {c1, 2, €3, ¢5, ¢6} 70
4 (47, 64,7) 891 {c1, €2, ¢3, ¢4, 7} 68
5 (27,47, 5) 669 {e1, c2, ¢4} 47
6 (51,75,7) 74

7 (29,71, 3) 73

8 (44,78, 3) 46

The top eight of 88 helix classes and top five of 13 profiles are listed.
The maximum average entropy threshold for the helix classes is # = 7, so the
set of VeQrr3 features is {¢;|1 < i < 7}. The threshold for selected profiles
ist=4.

class ¢j as

1
hy =

Ell

k
> H(X,,) foreach kwith I <k <m. (1)
i=1

Our threshold 7 is the index which maximizes this running
average, and our set of features is then {¢;|1 <i < t}.

We can prove that if there exists a k such that H(X,,,,) <
hy, then h; < hy for all i > k + 1. Hence, if there is a local
maximum /i, then it is a global one. There are pathological
distributions where the average entropy will increase until
the last helix class ¢,,. However, for all observed distribu-
tions, the maximum occurs near the beginning of the long
tail.

One advantage to thresholding by average entropy is that
determining where to truncate the noisy tail is a function
of the head of the distribution. Specifically, if the frequen-
cies drop precipitously, this method will retain more low-
frequency helix classes than if the decline had been more
gradual. In this way, lower frequency alternatives are con-
sidered only when they add value to the structural informa-
tion.

Returning to our VcQrr3 example, we see this behavior
illustrated in Figure 4(a), where the maximum average en-
tropy occurs at the 7th helix class—following the steep drop
in frequency from the 5th one. (The first eight helix classes
are given in Table 1.) Hence, our set of features is {cj, ...,

C7}.

Profiles

Features serve two purposes. First, they highlight the core
of the helix class distribution, that is the runs of base pairs
which dominate the low-energy secondary structures. Sec-
ond, they provide the basis for understanding higher order
structural signals at the combination-of-helices level.

The profile of a structure s is its maximal set of features.
Given the set of features {c|, ..., ¢;} from Table 1, the pro-
file of the MFE structure in Figure 1 is {c¢, ¢z, ¢3, ca}.
This will often be denoted as (1)(3)(4)(2), using parenthetic
notation with helix class indices to indicate the nesting re-
lationships. The structures s;, s, and s3 in Figure 3 have
profiles (1)(7(3)(4))(2), (1)(5(3))(4)(2) and (1)(5(3))(6)(2) re-

spectively.
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Each profile is an equivalence class of secondary struc-
tures. The specific frequency of a profile ¢, denoted f{(g), is
the size of this equivalence class, that is the number of struc-
tures in the sample S having exactly that set of features. The
specific frequencies of the top five VcQrr3 profiles are given
in Table 1. Note that the MFE profile is not the most fre-
quent one.

We also define the general frequency of ¢ as the number of
structures in S whose profile contains at least those features.
Although the specific frequency of the MFE profile ¢; is
only 205, its general frequency is 837 since that includes the
structures from ¢; and ¢4 as well.

Selected profiles

Like helix classes, profiles group together similar structures,
thereby amplifying their signal. However, there will also be
profiles with a weak signal. As before, we use a maximum
average entropy threshold to truncate the distribution yield-
ing our selected profiles.

The denoizing calculations are essentially the same; the
association of a profile ¢ to a structure s is a binary ran-
dom variable X,. The selected frequency f(¢), rescaled by
the most frequent profile ¢;, yields a probability for the out-
comes of X, which is used to calculate the Shannon entropy.
The threshold value ¢ gives the maximum average entropy
over the top ¢ profiles, and the set of selected profiles is {¢;,

ces ‘It} .

Figure 4(b) shows the average entropy against the esti-
mated probability of each VcQrr3 profile. As listed in Ta-
ble 1, the first, third and fourth selected profiles include (re-
spectively) structures s,, s3 and s; from Figure 3 while the
2nd includes the MFE.

Selected profiles are maximal probable combinations of
helices—a signal from the Boltzmann ensemble above the
level of base pair probabilities but below whole structure
groupings. As such, they are well-suited for analyzing sig-
nificant similarities and differences across low-energy sec-
ondary structures. This is critical information for a molecu-
lar biologist seeking to understand which competing struc-
tural alternatives are most likely to occur in nature.

Summary profile graph

As illustrated in Figure 5, the relationships among selected
profiles can be visualized graphically. To our knowledge,
this is the first such compare/contrast summary of a Boltz-
mann ensemble, and should be of significant utility to re-
searchers.

All profiles have a partial order given by set inclusion (g
< ¢ if g=q') which is visualized as a Hasse diagram. Fur-
thermore, the general frequency of ¢N¢g’ is at least the sum
of the specific frequencies for profiles ¢ and ¢'. Thus while
each selected profile is a common combination of features,
their intersections are also a significant substructural signal.

To identify common substructures across selected pro-
files O = {q1, ..., q:}, we calculate their intersections I =
{qiNgj|1 <i<j<t}. Anintersection profile belongs to 7\ Q.

We construct the summary profile graph using the fewest
intersection profiles to (weakly) connect all selected pro-
files. The graph has vertices from /UQ and directed edges
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Figure 5. VcQrr3 summary profile graph. Boxes indicate selected profiles,
and dashed ovals the intersection ones. Each node is labeled with the pro-
file, in parenthetic notation, along with its specific and general frequencies,
written as a ratio. An edge from ¢ to ¢’ is labeled with the feature(s) from
¢'\q. Similarities between profiles are given by the greatest lower bound,
aka ‘last common ancestor,” with differences read from edge labels. The
root is always the (possibly empty) profile common to all sampled struc-
tures. Features are listed by maximal helix with frequency. For illustrative
purposes, the secondary structures from Figures 1 and 3, with features
highlighted in color, are shown with their selected profile.

between two profiles if one covers the other in the partial
ordering. That is, there is an edge from ¢ to ¢’ if there is no
¢ in IUQ such that ¢Cq"C¢q .

Since every sampled structure is included in at least one
vertex, this graph provides a detailed yet concise overview
of the most probable substructures in the Boltzmann en-
semble. Reading from the top, the general frequency of the
first vertex will always be the size of the Boltzmann sample.
Hence, we know that every observed structure includes fea-
tures ¢ and ¢,, and also others since the specific frequency
of (1)(2) is 0. Following the first edge, we see that 94% of the
sample, and all selected profiles, also include c3. Beyond this
intersection profile, important structural alternatives begin
to emerge.

Crucially, these differences all involve base pairs from
the conserved region 20-51. For instance, the region 26—
31 after ¢; and before ¢3 has three distinct possibili-
ties: stem extension (c¢5) with 66.6% probability, rare he-
lices or single-stranded with 20.5%, or multibranched loop
(¢7) with 6.8%. The first case is read from the intersec-
tion profile (1)(5(3))(2) which includes in its general fre-
quency two downstream selected profiles: (1)(5(3))(6)(2)
and (1)(5(3))(4)(2). The second and third are the specific
frequencies for the other selected profiles which include the
MFE structure and sy, respectively. As will be discussed af-
ter the next section, all three cases merit further study and
experimentation.
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Table 2. Information for 15 test sequences from five types of short RNA:

Qrr, tRNA, 58 ribosomal RNA, THF riboswitch and TPP riboswitch

Average number
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200

O Helices I
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(b) Structure compression

Abbr Seq  Organism (Seq subtype) Ref Len Acc
Vi Qrr V. cholerae (#1) (6) 96

V2 Qrr V. cholerae (#3) (6) 107

V3 Qrr  Vibrio harveyi (#1) 7 95

T1 tRNA Homo sapiens (Cys) AC004932 72 0.00
T2 tRNA Sulfolobu tokodaii (Lys) BA000023 74 045
T3 tRNA Oryza nivara (Ala) AP006728 73 1.00
Sl 5S Escherichia coli V00336 120 0.26
S2 5S Acheilognathus tabira ~ AB015591 120 0.59
S3 5S Desulfurococcu mobilis  X07545 133 0.88
H1 THF  Mitsuokella multacida ~ ABWK02000009 99 0.11
H2  THF Clostridium botulinum — CP000939 101 0.43
H3  THF Streptococcus uberis AM946015 91 0.62
P1 TPP  Thermoplasma AL445064 107 0.00

acidophilum

P2 TPP  Pasteurella multocida ~ AE004439 93  0.30
P3 TPP  Bacillus clausii AP006627 100 0.62

Accession numbers are given for reference when available, and citations
otherwise. The tRNA and 5S rRNA sequences and pseudoknot-free sec-
ondary structures were obtained from the comparative RNA website (40).
The THF and TPP riboswitch sequences and their consensus secondary
structures were obtained from the Rfam database (41,42). MFE secondary
structures were predicted by GTfold (43) using default settings. The accu-
racy was calculated as the F-measure, that is the harmonic mean of the
MFE sensitivity and positive predictive value against true positive base
pairs in the downloaded structures. Sequences were arbitrarily chosen to
span the range of MFE accuracies.

RESULTS

As we have shown, denoizing the VcQrr3 Boltzmann sam-
ple yields combinations of base pairs—features and selected
profiles—which dominate the low-energy secondary struc-
tures. Moreover, as will be discussed next, the value of this
substructural signal is maximized by highlighting its mul-
timodal nature, that is the commonalities and differences
which provide crucial information for molecular biologists.

First, we give proof-of-principle results that profiling
successfully denoises arbitrary Boltzmann samples at this
length scale. The 15 test sequences, given in Table 2, all have
(1) high sample compression, so that profiling’s output is a
substantial reduction in scale from the input; (ii) low infor-
mation loss, so that features and selected profiles cover a dis-
proportionate amount of the observed substructures; (iii)
reproducible results, so that variability in threshold cut-offs
between independent trials is minimized; and (iv) charac-
teristic frequencies, so that the estimated probabilities ex-
tracted from the sample are a true signal from the Boltz-
mann ensemble. (The last case confirms that denoizing via
thresholding introduces no distortions in the substructural
signal.)

For our test set, we selected three Qrr, tRNA, 5S ri-
bosomal RNA, THF riboswitch and TPP riboswitch se-
quences from online databases (40—42). The average length
was 99 nt. In our experience, the strength of the profile
signal from a Boltzmann ensemble degrades significantly
in the 150-200 nt range. As we will explain further in our
concluding remarks, this is consistent with the well-known
negative correlation between MFE accuracy and sequence
length (8,9), and is the subject of ongoing research.

Figure 6. Sample compression via profiling at the (a) helix and (b)
combination-of-helices/structure levels. Average number of substructures,
respectively helices, helix classes, and features in (a) and structures, profiles,
and selected profiles in (b), in 25 samples of 1000 structures for each test
sequence. Error bars indicate standard deviations. For additional clarity, a
log scale presentation is provided in Supplementary Figure S1.

Although prediction accuracy is typically much higher
for short sequences, there is still a wide range overall. Hence,
our test sequences were arbitrarily chosen to span the range
of MFE accuracies. (The Qrr sequences have unknown na-
tive structures and varying MFE predictions.) We observed
little correlation with profile characteristics.

For each sequence, we generated 25 Boltzmann sam-
ples using GTfold (43). Below and in the Supple-
mentary Data, we report averages and standard devia-
tions across samples for the same sequence, and high-
light minimum/median/maximum values for comparisons
among the 15 test sequences.

We find that profiling consistently identifies a small set
of substructures that dominate the observed base pairing
information. These results validate our VcQrr3 case study;
by reducing the noise of low-frequency base pairs, profil-
ing extracts a concise and informative substructural signal.
Moreover, the thresholding of features and selected profiles
is reproducible across multiple runs, and reliably character-
izes the Boltzmann ensemble.

High sample compression

A Boltzmann sample typically contains many different he-
lices and secondary structures. Equivalence classes and
thresholds reduce the noise of low-frequency base pairs,
highlighting the substructural signal presented in features
and selected profiles. As seen in Figure 6, and in Supplemen-
tary Tables S1 and S2, there are a large number of unique
helices on average in each sample and an even larger number
of distinct structures.

Consolidating very similar substructures and truncating
the low-frequency tails of the distributions produces a much
stronger and clearer signal. On average, the number of fea-
tures and selected profiles are low enough to be investigated
by hand—a substantial reduction in scale from the original
sample.

We calculated compression ratios for each step and the
final results. The typical noise reduction in moving from he-
lices to features is nearly 19-fold and more than 80-fold for
structures to selected profiles.
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Figure 7. Frequency histograms for VcQrr3 case study with superimposed
cumulative distribution functions for (a) the top 20 helix classes and (b) all
13 profiles. Coverage is computed by counting the number of helices (re-
spectively structures) with multiplicity included in the feature set (respec-
tively selected profiles). The features cover 93.8% of observed helices (with
multiplicity), and structure coverage for the selected profiles is 90.7%. Re-
sults for all test sequences are in Supplementary Table S3.

Taken together these numbers demonstrate that profiling
consistently extracts a concise core of frequent substruc-
tures from a noisy Boltzmann sample.

Low information loss

Importantly, high sample compression does not cost signifi-
cant structural information. We measure this by calculating
the coverage provided by features and by selected profiles,
which is the threshold location on the cumulative density
function. This is pictured in Figure 7(a) and (b) respectively
for VcQrr3, with results for all test sequences in Supplemen-
tary Table S3.

The information loss in moving from helices to features
is very low, since the typical coverage is nearly 90%. The
typical selected profile coverage is nearly 8§3% accounting
for a disproportionate amount of the observed structures.
Hence, the noise reduction achieved by equivalence classes
and thresholds extracts a small set of substructures which
dominate the observed base pairing information.

Reproducible results

A significant advantage to denoizing the structural signal
from the Boltzmann sample is the reproducibility of profil-
ing across multiple trials. While we certainly cannot remove
all variability from this stochastic process, our results con-
firm a high level of stability in the occurrence of features
and of selected profiles.

A feature’s stability is the percentage of the 25 trials in
which it appears; if a helix class is above the average entropy
threshold in 20 Boltzmann samples, its stability is 0.8. We
calculate the feature reproducibility of a sample by averag-
ing the stabilities of its features. Each sequence thus has an
average feature reproducibility over 25 trials.

As seen in Figure 8(a) and Supplementary Table S4, aver-
age feature reproducibility is very high with minimal stan-
dard deviation for all test sequences. Hence, there is rela-
tively little variation between sets of features across different
trials.

This analysis is repeated for selected profiles. However,
any differences in features will propagate to instabilities in

Nucleic Acids Research, 2014, Vol. 42, No. 22 el71

1111111111 II‘I 1

" " ﬂmﬁpﬁlj

z z
506 3064
5] S
E] ]
805 S 05
5 <Y
2044 204
o @
<3 )
€03 503+
g 2
<
0.2 <024
0.1 0.1

0
V1V2V3T1T2T3S5152S3H1IH2H3P1P2P3

(b) Selected profiles

0
V1V2V3T1T2T3S1S2S3HIH2H3P1P2P3

(a) Features

Figure 8. Average reproducibility of (a) features and (b) selected profiles
across 25 trials for each of 15 test sequences. Error bars indicate standard
deviations.

20

15 . o

10 +

[ —momemesames sosmmm soe o s
[cmessme = o oo

@ ® © (@ (@ 0

Figure 9. Box plots showing range of standard deviations in frequencies
across 25 VcQrr3 Boltzmann samples. Columns correspond to (a) base
pairs, (b) helix classes and profiles conditioned on feature sets (¢) {¢; —
¢}, (d) {c1 — ¢7}, (e) {c1 — ¢6, c3} and (f) {¢1 — ¢g}. (Features are in-
dexed in Table 1.) Box midline indicates the median (second quartile). Top
and bottom edges mark the first (Q;) and third (Q3) quartile, with inter-
quartile range R. Whiskers indicate the furthest point within 1.5R of Q;
and Q3. Open circles are within 3R; closed circles are beyond.

profiles. Hence, as pictured in Figure 8(b), the selected pro-
file reproducibility, while still high, is lower and more vari-
able. Nonetheless, a feature or selected profile output in one
trial has a high probability of being output in another.

Characteristic frequencies

Lastly, we confirm that profiling identifies a true substruc-
tural signal from the Boltzmann ensemble. Specifically, we
measure the reliability of our helix classes and profiles by the
standard deviations of their average frequencies across our
25 independent samples. The amount of acceptable varia-
tion is benchmarked by the estimated base pair probabili-
ties, a known characteristic signal (18).

For each base pair b, consider the random variable X}
whose values are the different observed frequencies of b
across the 25 Boltzmann samples with equal probability.
Note that if a base pair does not occur in a sample, its fre-
quency for that trial is zero. The mean and standard devia-
tion of X, are then p, = E[X;] and 05, = / E[(Xp — p)?].

For VcQrr3, the standard deviations for all 439 observed
base pairs are visualized in Figure 9, column (a). Hence, a
VcQrr3 structural signal is reliable if the maximum varia-
tion in sampled frequencies is on the order of 20 structures.
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Repeating this analysis for each of the 236 helix classes
observed in 25 trials gives the results in Figure 9, column (b).
As expected, consolidating helices into helix classes results
in a more reliable signal than individual base pairs.

Yet, there can be small fluctuations in feature selection
across different Boltzmann samples. Hence, we confirm that
the features from any trial yield characteristic profiles for
every trial. Conditioning on a given set of features permits
comparisons across all trials, and confirms that the resulting
profile frequencies are reliable.

Let Fbe the set of features for a single Boltzmann sample,
and p a profile according to F. We perform the same type of
analysis for the random variable X, across the 25 trials as
for the observed base pairs. The results are given in Figure 9,
columns (¢)—(f) for the four feature sets observed in our 25
VcQrr3 trials. There were 12 profiles with F = {¢; — ¢},
15 with {¢; — ¢}, 18 with {¢; — ¢g, ¢s} and 21 with {¢
— ¢g}. (Feature information is in Table 1.) In each case, the
standard deviations for profiles are on the order of those for
base pairs.

Results for the other test sequences are given in Supple-
mentary Tables S5, S6 and S7 and Figure S2. In all cases,
the variability of the profile frequencies for a given set of
features is on the order of the base pair frequency varia-
tion. Thus, in any given sample, we have confidence that the
selected profiles are a true signal from the Boltzmann en-
semble.

Hence, a sample of 1000 structures is sufficient for profil-
ing to extract a clear and concise, informative, reproducible
and characteristic signal regarding significant combinations
of helices for sequences at this length scale.

DISCUSSION

We return to our VcQrr3 motivating example to discuss the
benefits of profiling small RNA molecules, especially the
generation of experimentally testable hypotheses.

Profiling’s balance between abstraction and specificity
supports and complements experimental research. By fo-
cusing on significant combinations of features, profiling
highlights similarities and differences at the substructure
level unhampered by sampling noise. With this information,
a molecular biologist can target specific nucleotides in ex-
periments to elucidate function.

For example, sequence alignment (6) revealed a highly
conserved and likely functional region at nucleotides 20—
51 in VeQrr3. According to the summary profile graph in
Figure 5, six of the seven features (all but ¢,) intersect this
region. Both ¢; =[(1, 25, 8)] and ¢3 = [(32, 43, 4)] have very
high frequency, so the real variation occurs in subregions
26-31 and 44-51.

Nucleotides 26-31 between ¢; and ¢3 have three distinct
possibilities accounting for 94% of the sampled structures:
stem extension for intersection profile (1)(5(3))(2), single-
stranded or rare helices for profile p, = (1)(3)(4)(2), and
multibranch loop for profile ps = (1)(7(3)(4))(2). The first
is the most probable (66.6%). However, the second (20.5%)
includes the MFE structure which closely resembles that for
VcQrr2. Furthermore, the third (6.8%) includes the analog
of the VcQrr4 MFE structure. Hence, all three cases would
merit further study and experimentation.
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That a conserved region has a multimodal structural sig-
nal is vital information since it suggests possible functional
scenarios. For instance, VcQrr3 target activation may re-
quire nucleotides 26-31 to be single-stranded. If so, these
six nucleotides should have particular functional value.

By now, extensive experiments have tried to pinpoint ex-
act mechanisms for VcQrr target interactions (44.,45). This
has involved exhaustive, systematic point mutations to ver-
ify key functional nucleotides (46—48). Crucially, these ex-
perimental results validate the new profiling insights.

Evidence indicates base pairing with four known targets
occurs in this subregion: quorum sensing response regula-
tor LuxO at 26-33 (49), high cell density master regulator
HapR at 26-45 (7), low cell density master regulator AphA
at 5-30 (46,50) and gene vca0939 at 26-44 (44).

Furthermore, certain mutations in the 26-31 subregion
knock out function in the last three cases: position 31 for
HapR control (47), 25-28 for AphA activation (46) and
position 28 for vca0939 (48). Thus, experimental evidence
confirms 26-31 as especially important within the con-
served region.

The profiling analysis also suggests that subregion 4451
has a multimodal structural signal. Nucleotides 44-46 are
base paired in profiles p; and p3 which contain ¢5 and single-
stranded or in rare helices in p, and p4. Likewise, 48-50 are
base paired in ¢4 and not in ¢g, which occur in disjoint pro-
files.

As with 26-31, the different possible structures have func-
tional implications; it may be that base pairing with Qrr tar-
gets is regulated by the occurrence of different helix classes.
Although this subregion has not yet been the subject of
much experimental testing, the single-stranded nucleotides
58-68 in the ¢¢ hairpin include another region, 58-65, of
perfect conservation among Qrr sequences (6).

Thus, profiling identifies two critical subregions within
the conserved region revealed by Qrr sequence alignment.
Both have multiple different structural possibilities across
the selected profiles. The importance of subregion 26-31 is
validated by previous experiments, making 48-50 (as well
as 58-65) a leading candidate for further investigation. It
would be particularly interesting to know if VcQrr3 adopts
different profile conformations in vivo, with major biomed-
ical implications if virulence is deactivated in any.

CONCLUSION

For RNA sequences on the order of 100 nt, profiling iden-
tifies dominant combinations of base pairs in low-energy
secondary structures according to the NNTM. By design,
this approach extracts a substructural signal from a Boltz-
mann sample which is clear and concise, informative, repro-
ducible and reliable. Moreover, by their combinatorial na-
ture, profiles can be easily compared and contrasted, espe-
cially through the summary profile graph. Since features are
tied to specific base pairs, this computational analysis gen-
erates new functional insights, facilitating experimental re-
search such as understanding small RNAs’ role in the mech-
anisms of cholera.

However, like all thermodynamic RNA secondary struc-
ture methods, profiling is fundamentally dependent on the
NNTM’s approximation of nature. In particular, it is pos-
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sible to have a strong but inaccurate signal, or to have no
strong signal at all, from the Boltzmann ensemble. While
this is seldom an issue for short sequences, the problems
become more acute as length increases (8,9). These issues
manifest in profiling as a combinatorial explosion of pro-
files for longer sequences, consistent with the exponential
growth in the number of possible secondary structures (51)
and abstract shapes (25). Thus, although the feature signal
remained strong in extensive testing of longer sequences, the
profile signal decayed with sequence length.

Nonetheless, profiling has value beyond its demonstrated
worth in analyzing small RNAs. It provides a new frame-
work for understanding the scope and limitations of the
structural signal from a Boltzmann ensemble, with poten-
tial for future enhancements. For example, the distribution
of helix classes is an ensemble signature, and its stability
under NNTM perturbations can be analyzed, yielding a
parametric understanding of this substructure landscape.
In summary, the advantages offered by profiling’s combi-
natorial nature and balanced level of abstraction should be
of significant utility to both theorists and experimentalists
alike.

AVAILABILITY

The RNAStructProfiling C code is freely available via
http://gtfold.sourceforge.net/profiling.html.
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Supplementary Data are available at NAR Online.
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