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A B S T R A C T   

The development of ship technology and information technology has been driving the continuous 
improvement of ship intelligence, with safety being an inevitable requirement in the shipping 
industry. A machine vision-based ship collision warning method is proposed for high monitoring 
system cost and limited information acquisition in safety design of autonomous ship navigation. 
The method combines machine learning with image algorithms. Firstly, the backbone of YOLOv7 
detector is replaced by EfficientFormerV2 network to achieve model lightweight while ensuring 
detection accuracy. Public datasets SeaShips, Flow and self-made ship pictures are combined, and 
the network is trained on this dataset. StrongSORT is used for target tracking. Secondly, a data 
fusion algorithm is introduced to determine the target point at the bow-bottom of the ship based 
on the time-varying attitude of the camera and the time-series features of the bounding boxes. 
Ship navigation trajectory estimation is performed using image algorithms. Finally, a collision 
evaluation model is established to calculate the collision risk index. Experimental results 
demonstrate that the improved YOLOv7 network maintains similar mAP.5 and Recall compared 
to the original model, while reducing the parameters by 31.2 % and GFLOPs by 58.4 %. The 
accuracy of target ship trajectory estimation is high, with MAE values below 1.5 % and RMSE 
values below 2 % in experiments. In ship collision warning experiments, the proposed method 
accurately identifies navigating vessels, estimates the trajectories, and provides timely warnings 
for imminent collision accidents. Compared to traditional ship collision warning methods, this 
paper offers a more intelligent and lightweight solution.   

1. Introduction 

With the continuous growth of global maritime trade, ensuring the safety of ship navigation has become a critical concern [1]. Ship 
collisions are particularly serious accidents in maritime transportation, posing threats not only to the involved ships but also to the 
safety of crew members [2]. Additionally, fuel leakage resulting from damage to the ships fuel tanks can lead to severe environmental 
pollution [3]. Consequently, the development of ship collision warning systems is imperative in preventing collision accidents. 

Existing research on collision warning for navigating ships and floating objects, the focus of information acquisition has mostly 
focused on radar monitoring and wireless communication. Lee et al. [4] utilized millimeter-wave communication terminals to provide 
collision warning for fishing boat operations and compared various maritime risk assessment models. Kazimierski et al. proposed a 
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tracking algorithm based on data fusion, utilizing Automatic Identification System (AIS) for radar information processing [5]. 
However, these methods rely on costly equipment and suffer from low radar image resolution or limited target classification capa-
bilities in complex scenes [6]. Liu et al. combined static and dynamic information of AIS to evaluate ship collision risk by integrating 
the relative position vector and the relative velocity [7]. In recent years, with the advancement of computer vision and machine 
learning technologies, visual detection has emerged as an efficient, accurate, and automated detection approach. The intelligentization 
of ships, encompassing information perception, communication, and navigation, is a crucial direction for the future of the maritime 
industry. 

Compared with expensive detection equipment such as lidar, cameras are more lightweight and low-cost. Water surface target 
detection is predominantly conducted in two approaches: traditional image processing and deep learning [8]. Traditional image al-
gorithms rely on water surface background features and filtering theory for target recognition, providing fast detection and recognition 
speeds. However, they are susceptible to complex environmental factors such as target scale and lighting variations, leading to 
challenges in meeting robustness requirements. On the other hand, deep learning-based methods primarily extract target features 
through convolutional neural networks (CNNs). Minami et al. proposed a floating object detection algorithm based on image color 
space gradients, enabling recognition of river debris through the color characteristics [9]. Liu and Zhu developed an improved con-
volutional neural network-based ship detection algorithm by incorporating channel attention mechanism (CAM) and weighted 
bidirectional feature fusion network (BiFPN), facilitating efficient detection and recognition of naval vessels on the sea surface [10]. 
These technologies enable automated detection and recognition of floating objects by analyzing features such as shape and texture. 
Zhang et al. utilized Faster R–CNN to detect small clustered vessels in coastal and inland water areas using high-resolution remote 
sensing images [11]. Based on Retinex theory, Guo et al. proposed a LVENet model to guarantee reliable vessel detection under 
low-visibility conditions [12]. Visual detection techniques enable real-time detection and tracking of objects such as ships on the water 
surface. In the presence of potential collision risks, the system issues timely alerts for necessary measures, effectively preventing 
collision accidents from navigating ships. Kristan et al. performed unsupervised floating obstacle detection using video footage 
captured by unmanned surface vehicles (USVs), achieving rapid and continuous detection of water surface targets [13]. Machine vision 
has been widely applied in land-based scenarios. By utilizing cameras, sensors, and image processing algorithms, machine vision 
technology enables real-time monitoring and analysis of the environment and obstacles, providing timely collision warnings [14]. 
Target detection research significantly contributes to maritime safety, offering profound scientific implications and extensive appli-
cation prospects. 

Traditional ship collision warning system relies on positioning data provided by the AIS system [15]. AIS (Automatic Identification 
System) is a shipborne broadcast response system. Through the AIS system, vessels can continuously transmit their identity, position, 
heading, speed, and other data to nearby ships and shore authorities on the VHF public wireless channel. For certain non-AIS intel-
ligent ship collision warning scenarios, such as small vessels without equipped lidar or instances where the AIS system malfunctions, a 
low-cost and lightweight ship collision warning solution needs to be proposed. 

In order to facilitate deployment in resource-constrained scenarios and address the challenges of high monitoring system cost and 
limited information acquisition in ship collision warning, an intelligent and cost-effective machine vision-based ship collision warning 
method is proposed in this paper. The method utilizes an improved lightweight YOLOv7 detection model and StrongSORT to analyze 
images captured by cameras fixed on the ship, detecting and tracking navigating ships or floating objects in the scene. Moreover, based 
on the bounding box and camera attitude, spatial coordinate calculation is performed to identify potential collision targets. Finally, the 
collision risk index (CRI) is computed to recognize and alert imminent collision behavior, ensuring the safety of ship navigation. 

Fig. 1. Method framework.  
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2. Methodology 

2.1. Framework 

The proposed ship collision warning method based on monocular vision comprises three main parts: object detection and tracking, 
spatiotemporal feature extraction, and collision risk evaluation. In object detection and tracking, an improved lightweight YOLOv7 
detection model is proposed to identify texture features of target ships. The convolutional feature extraction layers in the backbone 
were replaced with the EfficientFormerV2 network, reducing the model’s parameters while maintaining high detection accuracy. The 
StrongSORT is used for tracking after object detection. 

In spatiotemporal feature extraction, a data fusion-based target point selection algorithm is proposed. This algorithm performs 
spatiotemporal feature extraction of navigating ships by utilizing the bounding box information and camera attitudes, allowing for the 
calculation of navigation trajectory. Finally, a model is applied to calculate the collision risk index between two ships, evaluate the risk 
level, and issue corresponding warnings. 

The method can be summarized as the following processes: 1) The improved lightweight YOLOv7 and StrongSORT algorithms are 
utilized to detect and track target ships, obtaining their image information. 2) Based on the acquired image information and camera 
attitude provided by Inertial Navigation System (INS), the coordinates of the target ships are estimated. Additionally, the ship’s speed 
and direction are estimated. 3) Through mathematics model, the collision risk index is calculated to provide warnings for potential 
collisions. The overall algorithm flow is illustrated in Fig. 1. 

2.2. Improved YOLOv7 and StrongSORT 

YOLOv7 is an advanced object detection model that shows significant improvements in detection accuracy, speed, and improve-
ments over previous versions like YOLOv5. YOLOv7 incorporates data augmentation and network structure optimizations to enhance 
model performance [16]. It also utilizes adaptive training strategies to dynamically adjust the learning rate and batch size during 
training, allowing better adaptation to different data distributions and scenarios. 

In CNN-based neural network architectures, convolution operations are used to extract essential features from images. However, 
due to the local receptive field of CNN, multiple convolutional layers need to be stacked to increase the receptive field [17], leading to 
increased network complexity. In the recognition of navigating ships, adding attention mechanisms allows the neural network to focus 
more on specific texture features of ships or other large floating objects, while disregarding irrelevant information such as complex 
backgrounds on the sea surface. Compared to CNN convolutional models, Transformers can capture long-range contextual de-
pendencies with the help of self-attention mechanisms [18]. However, the original Transformer architecture has drawbacks such as 
high memory consumption and computational cost. In this study, images are input to the network with a size of 640x640x3, and the 
feature extraction layers were replaced with the EfficientFormerV2 network, incorporating an attention mechanism to enhance feature 
extraction capability while reducing model parameters. This enables efficient deployment on resource-constrained hardware [19]. 
EfficientFormerV2 utilizes a fine-grained architecture search algorithm to jointly optimize model size and speed, balancing between 
model size and detection speed. The performance evaluation metric, Mobile Efficiency Score (MES), is calculated by Equation (1): 

MES = Score ⋅
∏

i

(
Mi

Ui

)− αi

(1)  

where Mi is the corresponding metric, Ui is the corresponding unit, Score is the predefined base score, αi is the corresponding weights. 
In this paper, the YOLOv7 backbone feature extraction network is replaced with the EfficientNetV2 network, achieving model 
lightweight while balancing detection speed and accuracy. 

StrongSORT is a multi-object tracking algorithm that enables efficient and accurate object tracking in high-density target scenarios 
[20]. It is designed to handle complex situations such as target occlusion, scale variation, and motion blur. The algorithm adopts an 
end-to-end multi-object tracking framework that formulates the tracking problem as an optimization task. StrongSORT utilizes algo-
rithms for sample resampling and reassignment to achieve efficient target tracking. Additionally, A confidence-based object detection 
strategy is incorporated, which improves target identification and enhances tracking accuracy. The framework of StrongSORT is shown 

Fig. 2. StrongSORT framework.  
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in Fig. 2. 
Compared to DeepSORT (the previous version of StrongSORT), the feature extractor BoT and ResNeSt50 are used to replace the CNN 

to enhance feature extraction capabilities [21,22]. Although DeepSORT can preserve long-term information, it is sensitive to detection 
noise. To suppress noise, the feature library mechanism is replaced by exponential moving average (EMA). The enhanced correlation 
coefficient maximization (ECC) model is used for camera motion compensation. ECC is a parametric image alignment technique that 
estimates global rotation and translation between adjacent frames. In DeepSORT, ordinary Kalman filters are susceptible to low-quality 
detections and ignore information on the scale of detection noise. To solve this problem, the NSA Kalman algorithm in GIAOTracker is 
used in StrongSORT. Matching cascades are also replaced by vanilla global linear assignments to improve matching accuracy [23]. 

2.3. Trajectory recognition algorithm 

In the process of transforming a point from the pixel coordinate system captured by a camera to the earth coordinate system, four 
coordinate systems are involved: the earth coordinate system, camera coordinate system, image coordinate system, and pixel coor-
dinate system. Assuming the imaging point of the camera fixed on the ship serves as the origin of the earth coordinate system. It is 
feasible to calculate the coordinates in the earth coordinate system for any point on the image. Fig. 3 provides a schematic diagram 
illustrating the transformations between these coordinate systems. 

In the scenario where the camera is fixed on a ship or buoy, with the ship in a stationary state beneath calm water. The origin of the 
earth coordinate system coincides with the origin of the camera coordinate system. The camera’s extrinsic rotation matrix is an identity 
matrix, and the translation vector is a zero vector. While the ship experiences movement due to wind and waves, the camera’s position 
also changes, and is always in a non-stationary state. Any point in space has a specific set of coordinates in the earth coordinate system. 
In the camera coordinate system, the mapping of this point onto the camera photosensitive surface determines the relationship be-
tween the camera coordinate system and the image coordinate system. Finally, this is transformed into a digital signal recognizable by 
the computer, establishing the relationship between the image coordinate system and the pixel coordinate system [24,25]. Therefore, 
the transformation from the spatial coordinate system to the pixel coordinate system involves three transformations and four coor-
dinate systems. 

The transformation matrix between the earth coordinate system and the camera coordinate system is: 
⎡

⎢
⎢
⎣

XC

YC

ZC

⎤

⎥
⎥
⎦ = Rt

⎡

⎢
⎢
⎣

XW

YW

ZW

⎤

⎥
⎥
⎦+ Tt (2)  

where [XC,YC, ZC] is the coordinates of a point in the camera coordinate system, [XW,YW,ZW] is the coordinates of the same point in the 
earth coordinate. Rt, Tt denote the camera’s time-varying rotation matrix and translation vector, respectively. These parameters can be 
measured using attitude sensors such as an Inertial Navigation System (INS). 

Without considering lens distortion, the camera is treated as an ideal pinhole model. The projection of a point [XC,YC, ZC] in space 
onto the entire two-dimensional image space in the camera coordinate system yields the projected point [Xp,Yp] in the image coor-
dinate system based on the geometric relationships of imaging: 

Fig. 3. Coordinate transformation. OW − XWYWZW : earth coordinate system; OC − XCYCZC: camera coordinate system; XpOpYp: image coordinate 
system; uOuvv: pixel coordinate system. 
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xp = f
XC

ZC

Yp = f
YC

ZC

(3) 

The conversion of simulated signals in the image coordinate system to computer digital signals involves the projection of points [Xp,

Yp] in the image coordinate system onto points [u, v] in the pixel coordinate system. This relationship can be expressed as: 
⎡

⎢
⎢
⎣

u

v

1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

fx 0 u0

0 fy v0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Xp

Yp

1

⎤

⎥
⎥
⎦ (4) 

From solving the system of Equation (2) to Equation (4), Equation (5) is utilized to transform a point from the pixel coordinate 
system [u, v] to the earth coordinate system [XW,YW, ZW] is: 

Zc

⎡

⎢
⎣

u
v
1

⎤

⎥
⎦ =

⎡

⎢
⎣

fx 0 u0

0 fy v0

0 0 1

0
0
0

⎤

⎥
⎦

⎡

⎣
RT

t − Tt

0→ 1

⎤

⎦

⎡

⎢
⎢
⎢
⎣

Xw

Yw

Zw

1

⎤

⎥
⎥
⎥
⎦

(5)  

where 

⎡

⎣
fx 0 u0
0 fy v0
0 0 1

⎤

⎦ is the camera intrinsic matrix, which can be determined using the Zhang’s calibration method [26]. fx, fy rep-

resents the use of pixels to describe the length of the focal length in the XY direction, that is, the focal length of the image in both 
directions. [u0, v0] is the principal point, which is a point on the image plane that the optical axis intersects. It is often considered the 
center of the image. u0 represents the coordinate of the principal point in the horizontal direction of the image, and v0 represents the 

coordinate of the principal point in the vertical direction of the image. 

[
RT

t − Tt

0→ 1

]

is the extrinsic matrix. In calm water, it is 

reasonable to assume that Yw = H, where H is the distance between the camera and the water surface. In this paper, the selection of 
target points is performed based on the position and movement direction of target bounding boxes. However, since the camera may 
experience motion due to ship vibrations, it becomes necessary to project the coordinates of the target bounding box onto the camera 
coordinate system aligned with the calm water surface. In the i-th frame, the calm-water pixel coordinates of the top-left corner of the 
bounding box [ui,vi] can be calculated as Equations (6) and (7): 

ZW

⎡

⎢
⎢
⎣

ui

vi

1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

fx 0 u0

0 fy v0

0 0 1

0

0

0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

XWi

− H
ZWi

1

⎤

⎥
⎥
⎥
⎥
⎦

(6) 

The image resolution is m×n. and [wi, hi] represents the size of bounding boxes. The target research point [ut , vt ] selected further 
analysis can be calculated as follows: 

Fig. 4. target point selection.  
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{
ut = ui + wiCu + Du[(1 − Cu)H(α) + CuH(− α)]

vt = vi + hi
(7)  

where Cu is the u-coordinate position coefficient; Du is the motion direction coefficient, α is the angle between the motion direction of 
the target bounding box and the v− axis, and H(α) is the unit step function. The parameters above can be calculated by Equations (8)– 
(11), and Fig. 4 is the schematic diagram of the algorithm. 

Cu =
2ui + wi

2m
(8)  

Du =
2wiα

π
(9)  

α = tan− 1Δui

Δvi
(10)  

H(α) =
{

1,α > 0

0,α ≤ 0
(11) 

By projecting the target point [ut , vt ] into the earth coordinate system, the earth coordinate of the target point [Xwt , − H,Zwt ] can be 
obtained by combining Equations (6) and (7). Further, the velocity of the target point can be obtained by Equation (12): 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vrx =
XWt − XWt− 1

Δt

vrz =
ZWt − ZWt− 1

Δt

(12) 

However, due to the differences in the size of the bounding boxes in different frames, applying smoothing techniques to the tra-
jectory is urged. In this paper, a second-order Butterworth filter is used to perform low-pass filtering on the target point sequence. The 
transfer function of the filter is defined as Equation (13): 

|H(ω)|2 =
1

1 +

(
ω
ωc

)2n (13)  

where n is the order of the filter; ωc is the cutoff frequency. 

2.4. Collision risk assessment model 

The visually detected ship’s navigation trajectory is utilized for ship collision prevention through collision warning systems. The 
degree of collision likelihood between ships is commonly represented by the collision risk index, which ranges from 0 to 1. In this 
paper, the collision risk index of the target ship is determined by weighted summing the membership degrees of various risk factors, as 
expressed in Equation (14) [27]: 

CRI = aDCuDC + aTCuTC + aDuD + aθuθ + aKuK (14)  

where aDC、 aTC、 aD、 aθ、 aK are weights of the parameter; uDC、 uTC、 uD、 uθ、 uK are the membership degrees of distance closest 
point of approach (DCPA)、time closest point of approach (TCPA)、distance (D)、relative bearing angle (θ) and speed ratio (K). The 
formulas for calculating DCPA and TCPA are as Equation (15): 

⎧
⎪⎪⎨

⎪⎪⎩

DCPA = D ⋅ sin(Qr)

TCPA = D ⋅
cos(Qr)

vr

(15)  

where Qr represents the relative bow angle between the two ships; vr represents the relative velocity between the two ships. 
The collision risk index can be calculated from the target ship’s navigation trajectory coordinates over time, with the imaging point 

of the camera fixed on the ship being as the origin of the earth coordinate system. The membership degrees for each risk factor are 
obtained using the calculations described in Equation (16) to Equation (20) [28]. 
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uDC =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1,DCPA ≤ d1

1
2
−

1
2

sin
[

π
d2 − d1

(

DCPA −
d1 + d2

2

)]

, d1 ≤ DCPA ≤ d2

0,DCPA ≥ d2

(16)  

uTC =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, |TCPA| ≤ t1
(

t2 − |TCPA|
t2 − t1

)2

, t1 ≤ |TCPA| ≤ t2

0, |TCPA| ≥ t2

(17)  

uD =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1,D ≤ d1
(

d2 − D
d2 − d1

)2

, d1 ≤ D ≤ d2

0,D ≥ d2

(18)  

uθ = 0.5 ×

[

cos(θ − 19◦) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
440
289

+ cos2(θ − 19◦)

√ ]

−
5
17

(19)  

uK =
1

1 +
2

K
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2 + 2KsinC + 1

√
(20)  

where d1 is the minimum safe meeting distance, and d2 is the minimum distance between the striking ship and struck ship; t1 is the 
collision time, and t2 is the collision avoidance time; C is the collision angle and can be calculated as C = θT − θ0, where θT and θ0 are 
the course of the striking ship and struck ship. Each parameter can be calculated as Equation (21) to Equation (23): 

d1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.1 −
0.2θ
180◦

, 0◦ ≤ θ ≤ 112.5◦

1.0 −
0.4θ
180◦

, 112.5◦ ≤ θ ≤ 180◦

1.0 −
0.4 × (360◦ − θ)

180◦
, 180◦ ≤ θ ≤ 247.5◦

1.1 −
0.2 × (360◦ − θ)

180◦
, 247.5◦ ≤ θ ≤ 360◦

(21)  

t1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

d2
1 − DCPA2

√

Sr

(22)  

t2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

d2
2 − DCPA2

√

Sr

(23) 

Based on extensive statistical research, the weights of the factors influencing collision risk index are determined as follows: aDC =

0.40、 aTC = 0.367、 aD = 0.167、 aθ = 0.033、 aK = 0.033. 
After performing the calculations in the above equations, the collision risk index of the target ship can be obtained, with values 

ranging [0, 1]. A collision risk index of 1 signifies the highest level of collision threat between the ships, indicating an imminent 
collision risk. Conversely, a collision risk index of 0 indicates no collision threat between the ships. Based on the magnitude of the 
collision risk index, the collision warning algorithm categorizes the collision risk into five levels. The 5th level collision warning 
indicates the lowest level of risk, with only a possibility of collision between the two ships. On the other hand, the 1st level collision 
warning signifies the highest level of danger, indicating a high probability of collision and necessitating immediate action. 
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3. Dataset and parameters 

3.1. Dataset source and introduction 

This paper focuses on the recognition of sailing ships and floating objects on the sea surface in complex environments. In order to 
increase the robustness and anti-interference ability of the model, the public datasets SeaShips and FloW [29,30], are randomly 
sampled and combined. The ship model pictures used in the subsequent experiments were also added to the dataset for model training. 

The images were annotated using the annotation tool LabelImg. Subsequently, the dataset was randomly split into training, vali-
dation, and testing sets. The training set consisted of 80 % of the images, while the validation and testing sets accounted for 10 % each. 
To meet the requirements of recognition in complex environments and enhance the robustness of the model, data augmentation was 
used in this experiment as shown in Fig. 5. The training set images were randomly subjected to rotation, noise addition, occlusion, and 
other processing methods. This approach increased the quantity of the dataset and enriched the diversity of the samples. The sample 
distribution of the dataset is shown in Table 1 (see Table 2). 

3.2. Platform and parameter settings 

The experiments in this study were conducted in Windows 10 Professional operating system. The CPU was AMD Ryzen 7 5800H@ 
3.2 GHz. The GPU was Nvidia RTX3060 Ultra W OC 12 GB, and the CUDA version was 11.3. The program was implemented using 
Python 3.7 and based on the PyTorch. The hyperparameters for network training are shown in the table below. 

4. Results and discussion 

4.1. Networks comparative experiment 

To comprehensively evaluate the model’s performance, Recall (R) and Mean Average Precision (mAP) are used as performance 
metrics. Recall measures the proportion of correctly detected positive samples among all positive samples, reflecting the model’s 
ability to detect positive samples. It can be calculated using Equation (24): 

R =
TP

(TP + FN)
(24)  

where TP (True Positive) is the number of positive samples correctly detected, and FN (False Positive) refers to false negatives, 
indicating the number of positive samples that were not correctly detected. 

Mean average precision (mAP) is a comprehensive metric that combines Precision and Recall. It represents average of the average 
precision (AP) scores calculated for multiple different sample categories. The mAP can be calculated as Equation (25): 

mAP =
1
N

∑N

1

(∫ 1

0
pi(r)dr

)

(25) 

To evaluate the superiority of the improved YOLOv7 on the dataset, several object detection model such as SSD, Faster R–CNN, 
YOLOv7-tiny, and YOLOv7 were used for comparative experiments. The results are shown in Table 3. 

The improved YOLOv7 model the other four models on the self-built dataset. Compared to SSD, Faster R–CNN, and YOLOv7, the 
improved lightweight YOLOv7 network achieves higher Recall and mAP.5 while having fewer parameters. The Recall improves by 8.0 
%, 7.9 %, and 1.1 %, respectively, and the mAP.5 improves by 7.7 %, 5.9 %, and 0.1 %, respectively. The improved lightweight 
YOLOv7 network also reduces parameters by 29.9 %, 37.6 %, 31.2 %, and GFLOPs by 75.3 %, 76.4 %, 58.4 %, respectively. Although 
YOLOv7-tiny has a much smaller parameter size and GFLOPs, the Recall and mAP.5 decrease by 5.6 % and 4.3 %, respectively. The 

Fig. 5. Dataset augmentation.  
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accuracy of the model drops significantly. The experiments demonstrate that the improved YOLOv7 network, incorporating the 
Transformer attention mechanism, achieves smaller model size while maintaining detection accuracy, making it advantageous for ship 
detection. 

4.2. Trajectory accuracy experiment 

A scaled ship model was used for experiments in order to verify the vision algorithm proposed in this paper. Since it is difficult to 
accurately measure the earth coordinates of the ship model outdoors, an indoor trajectory accuracy experiment and an outdoor 
collision warning experiment were set in this paper for cross-validating the performance of the algorithm. A trajectory accuracy 
experiment was conducted in laboratory using a high-precision Stewart platform as shown in Fig. 6. The model ship was securely 
mounted on the Stewart platform, and the platform motion was precisely controlled by program. An industrial camera was fixed at a 
specified observation point for recording. In the laboratory, the parameters of the Stewart platform and the coordinates of the 
observation point were known or measured in advance. The high-precision Stewart platform had a maximum pose error of 0.05mm/ 

Table 1 
Dataset distribution.  

Name Images Sample Types Train Validation Test 

Value 8200 7 6560 820 820  

Table 2 
Hyperparameters in training.  

Hyperparameters Value 

Initial learning Rate 0.01 
Coefficient 0.1 
Momentum 0.937 
Weight Decay 0.0005 
Batch size 8 
Input size 640*640 
Optimizer Adam  

Table 3 
Model comparison experiment results.  

Model Input Size Params GFLOPs Recall mAP.5 

SSD 640 36.5 M 179.8 0.874 0.898 
Faster R–CNN 640 41.0 M 188.1 0.875 0.916 
YOLOv7-tiny 640 6.1M 13.9 0.898 0.932 
YOLOv7 640 37.2 M 106.5 0.943 0.974 
Ours 640 25.6 M 44.3 0.954 0.975  

Table 4 
Accuracy experiment results.  

Exp MAE RMSE 

① 0.0073 0.0105 
② 0.015 0.0161 
③ 0.0147 0.017 
④ 0.0148 0.0176 
⑤ 0.0149 0.0196  

Table 5 
Risk rating.  

Risk Degree CRI Risk Assessment 

Level I 0.8–1.0 Very Dangerous 
Level II 0.6–0.8 Dangerous 
Level III 0.4–0.6 Normal 
Level IV 0.2–0.4 Safe 
Level V 0~.02 Very Safe  
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0.001◦, ensuring the accuracy of the actual trajectory of the model ship. 
Based on the known parameters, the vertical distance between the camera lens and the upper surface of the Stewart platform (H) 

was measured as 0.513 m. The platform executed circular motion with a radius of 0.4 m in the XWOZW plane. The camera captured the 
motion of the model ship, and trajectory calculations were performed. The entire time series trajectory of the model ship’s motion is 
depicted in Fig. 7. 

For the trajectory accuracy experiment, the model ship was fixed at five different positions on the upper platform, and the platform 
executed the same circular motion with a radius of R = 0.4 m for each experiment. Due to the presence of radial distortion in the 
camera lens, image correction was performed during the calculations. The trajectory accuracy experiment and resulting trajectories 
are presented in Fig. 8. 

In each experiment, several circular trajectories with a radius of R = 0.4 m were selected for analysis. Fig. 9 compares the visually 
calculated trajectories from the five experiments with the actual trajectories of the model ship. The accuracy of the visually calculated 
trajectories was evaluated with the Mean Absolute Error (MAE) as Equation (26) and Root Mean Square Error (RMSE) as Equation (27). 

MAE =
1
n
∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
XWi − X′

Wi

)2
+
(
ZWi − Z′

Wi

)2
√

(26)  

Fig. 6. Experiment equipment.  

Fig. 7. Calculated ship model motion series. From the beginning to the end of the Stewart platform movement in a single experiment, the ship 
model space coordinate time series recognized by the image algorithm. 
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
XWi − X′

Wi

)2
+
(
ZWi − Z′

Wi

)2
√

(27) 

Fig. 8. Accuracy experiment and results.  

Fig. 9. Computed Trajectories and Real Trajectories. The dotted line is the actual displacement curve of the point on the Stewart platform, and the 
solid line is the coordinate average of the maximum circular motion of the ship model identified by the algorithm in the five experiments. 

Fig. 10. Collision experiment and camera frames.  
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where [XWi,ZWi] is the real trajectory coordinate, [X′
Wi,Z′

Wi] is the identified trajectory coordinate by the algorithm. MAE is the average 
of the absolute errors, which can better reflect the actual situation of the predicted value error. RMSE is the square root of the sum of 
squares of the deviations between the observed value and the true value and the square root of the ratio of the number of observations 
m, which is used to measure the deviation between the observed value and the true value. 

During the trajectory accuracy experiment, the Root Mean Square Error (RMSE) between the calculated trajectories and the actual 
trajectories remains within 2 %, and the Mean Absolute Error (MAE) remains within 1.5 % as shown in Table 4. This indicates that the 
visual coordinate estimation algorithm proposed in this paper achieves high accuracy. The consistency between the model-calculated 
trajectories and the actual measured trajectories validates the accuracy and reliability of the proposed method described in this paper. 

4.3. Collision warning experiment 

To validate the collision warning capability of the visual algorithm, two ship models were used for the outdoor experiment. As 
shown in Fig. 10, a pre-calibrated camera and an Inertial Navigation System (INS) were installed on a monitoring ship model to capture 
images and attitude data. The monitoring ship model remained stationary without any active manipulation. A target ship model was 
maneuvered to approach the monitoring ship. The visual tracking information was utilized to calculate the trajectory of the target ship 
for collision warning purposes. 

The video frames captured by the camera were processed for object detection and tracking. Concurrently, the data collected by the 
INS was processed to convert the real-time 6-Dof attitude of the camera into a rotation matrix and translation vector. Both the camera 
and attitude sensor operated at a sampling frequency of 30Hz. In object detection, the size of the target in the image and the receptive 
field size of the network model determines the resolution of the input image. The receptive field refers to the region of the input image 
that influences each neuron in the neural network. In Convolutional Neural Networks (CNNs), the receptive field of a convolutional 
layer is determined by the size of the convolutional kernel. The resolution of the input image directly affects the number of receptive 
fields. Higher resolutions may require more convolutional layers to capture additional details and features in the image. Larger input 
image resolutions help the network comprehensively understand and capture the content of the image [31]. In collision warning 
experiments, the size of the target ship model gradually changes from far to near in the image. To reduce network computation while 
ensuring recognition accuracy, the resolution of the input video is resized to 800*800. 

Based on the trajectory of the target ship model, collision warning was conducted by calculating the collision risk index. The 
monitoring ship model had a length of 0.32 m, and the camera lens center was positioned 0.18 m above the water surface. Figs. 11 and 
12 present the results of the 6-DoF attitude of the monitoring ship model and the recognition outcomes of the target ship model 
trajectories in five experiments, respectively. 

For the collision warning experiments, the influence of environmental factors such as weather, lighting, and human factors was 
minimized. The experiments were conducted on a calm lake under sunny conditions. It was assumed that visibility was good, the 
operator possessed sufficient skills, the water conditions were favorable, and both vessels had good maneuverability. The results of the 
five collision warning experiments are illustrated in Figs. 13 and 14. 

From Fig. 14, it can be observed that in the five experiments, the target ship model gradually approached the monitoring ship 
model, resulting in an increasing collision risk (see Table 5). In Experiment 1, the azimuth of the target ship model exhibited a 
meandering path towards the monitoring ship model, resulting in increased fluctuations in the risk of collision. In Experiment 2, the 
azimuth of the target ship model was most directly pointed towards the monitoring ship model, leading to an early attainment of level 
1 collision risk. The consistency of the collision risk indexes and ship model’s trajectories in all five experiments demonstrates the 
feasibility and effectiveness of ship collision warning through the visual algorithm. 

5. Conclusions and discussion 

In the absence of AIS system assistance, maritime navigation is exposed to the potential threat of collision accidents. When ships 
operate in non-AIS states, lacking timely location and navigation data remains a challenge even in modern maritime environments. 
This absence can lead to an increased risk of collisions, as ships may not have a comprehensive understanding of the surrounding 
navigational environment. To address this potential safety concern, our research focuses on utilizing machine vision technology, 
particularly in scenarios without AISsupport, to develop an efficient ship collision warning system. Through this approach, we aim to 
enhance navigational safety and ensure secure maritime operations in situations where AIS assistance is unavailable. The research also 
aims to address the challenges of high monitoring system cost and limited information acquisition in safety design of autonomous ship 
navigation. The key research contributions are as follows.  

1) A lightweight YOLOv7 network is proposed by replacing the backbone with EfficientFormerV2, achieving model lightweight 
without compromising detection accuracy. The improved YOLOv7 network outperforms SSD, Faster R–CNN, YOLOv7-tiny, and the 
original YOLOv7 models on the dataset. The Recall and mAP.5 demonstrate improvements of 8.0 %, 7.9 %, 5.6 %, 1.1 % and 7.7 %, 
5.9 %, 4.3 %, 0.1 % respectively. The parameters are reduced by 31.2 % and GFLOPs are reduced by 58.4 %, making it more easily 
deployable in resource-constrained environments.  

2) A data fusion-based spatiotemporal feature extraction algorithm is proposed for ship collision warning. 
a. The target point selection is based on the time-varying bounding boxes of the target ship, combined with the navigation di-

rection characteristics. 
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b. The ship’s trajectory is computed in the earth coordinate system using the pixel coordinates of the target ship. A collision risk 
assessment model is established to calculate the ship’s collision risk index (CRI), enabling timely warning of potential collision 
accidents. 

However, the method proposed in this paper is simultaneously influenced by both hydro-meteorological factors and ship dynamic 
factors. Adverse weather conditions such as heavy fog, rain, and snow can reduce visibility, thereby decreasing the accuracy of image 
recognition. Additionally, variations in sea conditions directly affect the posture and motion of vessels, potentially causing noticeable 
swaying or pitching in waves, making them more challenging to identify visually. In subsequent research, in order to reduce the 
interference of these environmental factors on the recognition algorithm, the research direction can be carried out from aspects such as 

Fig. 11. Observed 6-dof attitude time series of the monitoring ship in five experiments. The five different-colored curves in each diagram represent 
the 6-dof motion of the monitoring ship in each experiment. 
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image defogging technology and attention mechanism. 
Overall, the proposed method demonstrates the potential to enhance safety in ship navigation by effectively detecting and tracking 

maritime objects. The fusion of visual and spatial-temporal information provides a new low-cost method for ship collision warning, 
contributing to the prevention of collision accidents and improving maritime safety standards. 

Data Availability statement 

Data will be made available on request. 

Ethics declarations 

All participants provided informed consent to participate in the study. 

Fig. 12. Ship model trajectory in five experiments. In five experiments, the target ship sailed towards the monitoring ship from different starting 
points. The position of monitoring ship is at (Xw = 0,Zw = 0). The position of monitoring ship is at (Xw = 0, Zw = 0). 

Fig. 13. Trajectory and collision risk index in Exp 1. As the target ship approaches, the risk of collision increases.  
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