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ABSTRACT: This paper investigates the nonlinear relationship
between tobacco harmful content tar reduction and laser
perforation parameters. To find a model to demonstrate the
relationship between the laser perforation parameters and the
cigarette tar reduction level, an online platform based on Python
Streamlit was built to collect and publish related data. After the
initial analysis of the collected experimental data, the quadratic
nonlinear regression model demonstrates a significant fit to the
experimental data. However, although the nonlinear regression has
much higher accuracy than the linear regression plane, the
prediction normalized root mean squared error (NRMSE) is still
high, over 10%, which indicates that the regression relationship is
more complex than the simple quadratic function expression. On
the other hand, the sample dataset used for modeling is very limited, which restricts its exploration and the development of a model
comparable to those built with big data. To address this challenge for small sample size data in modeling this complex nonlinear
relationship, a novel rational-quadratic Minkowski (RM)-based kernel was designed. This RM-kernel model acquires higher accuracy
than other kernels in both SVM and Gaussian process regression. Furthermore, this new kernel also shows less sensitivity to
hyperparameter change, the greater ability to capture complex relationships, and more flexibility than the RBF kernel and RQ kernel.
Subsequently, the kernel-based RM regression model was successfully implemented for laser perforation parameter selection,
yielding consistent results that align with human sensory test data.

1. INTRODUCTION
Nowadays, Industry 4.0 is revolutionizing the way of
manufacturing in companies.1 The smart factories are
equipped with advanced sensors and embedded software to
collect and analyze data to improve the production efficiency
and decision making. The performance of machine learning in
recognizing patterns is closely related to the size of the
dataset.2 There have been numerous rules of thumb suggested
for determining the minimum number of samples required to
have enough statistical power for regression analysis.3

However, due to various kinds of limitations, the scarcity of
the labeled data sample size is common in the industry, as the
sample response always requires costly and time-consuming
laboratory testing. This dilemma also exists in wide areas of the
tobacco industry, in which the laser perforation technique used
for filter ventilation is one of them. Filter ventilation is an
important technique in the tobacco industry to reduce the
unhealthy content of a single cigarette during smoking. This
method involves adjusting the air flow passing through the
filter of a cigarette in order to dilute the concentrations of

compounds found in mainstream smoke. By doing so, the
tobacco industry can create cigarettes that produce lower levels
of tar, nicotine, and CO (TNCO) while still maintaining the
addictive properties of nicotine. The WHO Study Group on
Tobacco Product Regulation (TobReg) has advised the
tobacco industry to regulate and lower toxicant levels in
cigarette smoke.4 The microholes perforated by the laser beam
dilute the mainstream smoke of the cigarettes during
combustion, so as to reduce the unhealthy content and
improve the sensory quality.4−6 Although there is some
argument about the effect of the filter ventilation technique
due to the smoker’s personal compensation smoking behavior,
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it is widely proved and accepted that smoke dilution can
reduce the harmful carbon monoxide and tar in mainstream
smoke.4,7−13 At present, researches have studied many
different aspects of related techniques, such as drilling
methods, tar reduction process, regular physical and chemical
index of smoke and aroma components, etc.14−22 It has been
reported that some tobacco components are known to vary
linearly with the amount of ventilation, and some other
components vary in relationships that are not line-
ar.4,8,10,13,23−25 To assist the industry designer for healthier
tobacco products, an experiment here was conducted to further
investigate the effect of laser perforation parameters on both
harmful content reduction and mouth feel.24

For the laser perforation process, there are two kinds of laser
techniques most widely used for cigarette filter ventilation: (1)
online laser perforation directly inside the cigarette machine
and (2) offline or preperforation performed by tipping paper
manufacturers.15−18,26 According to ref27 the online perfo-
ration technique has an advantage in controlling the stability of
the ventilation rate for cigarette filter ventilation. Therefore,
this research uses the online laser perforation technique as
shown in Figure 1, where high-energy laser beams are used to

penetrate and vaporize tipping paper and plug wrap paper
during the rolling process of slim cigarettes to create
microholes instantly. In Figure 1, the upper part is the inner
structure of the laser perforation architecture of the laser head.
The laser beam is focused by the coated lens and transferred to
be a pulse beam. These coated lenses are controlled by a
remote computer to adjust the lens’ rotor. The lower part of
Figure 1 is the whole cigarette perforation machine’s structure.
Each cigarette is sent to the fixed position under the laser head
through the main wheel before rolling past an auxiliary wheel
to create rows of perforation holes. Since these wheels are also
remotely controlled, the number of laser holes per row can be
manipulated. Because of these flexible components, laser
perforation can be easily adapted to the required parameter
even remotely. However, the perforation parameter is limited
for physical and mechanical reasons, and the lab evaluation
experiment is complex, which restricts the sample data size.

To collect sample data and select a proper model to estimate
the effect of the various laser perforation parameters on
cigarette quality, several models for small sample data machine
learning were embedded in the backend of an online system
whose web services can be remotely accessed by both the lab

investigator and laser perforation controller. The architecture
of this online test platform can be seen in Figure 2. After the

perforation parameters were recorded in the online system
database, the perforated cigarettes were sampled and their
corresponding smoke chemicals and filter ventilation level were
evaluated in the lab by a smoking machine and gas
chromatograph, among other things, whose results will also
be uploaded online.

In our analysis of laser perforation data of brand “H”, it is
found that the holes/row and pulse time have a close nonlinear
relationship with the harmful content reduction level. Initial
analysis of the experimental data revealed that a quadratic
nonlinear regression model provides a significant fit. Despite
achieving higher accuracy than linear regression, the
normalized root-mean-square error (NRMSE) remains above
10%, suggesting a more complex relationship beyond a simple
quadratic function. The limited size of the dataset restricts
further exploration and hinders the development of a model
comparable to those built with larger datasets.2 To overcome
this challenge inherent in modeling nonlinear relationships
with small sample sizes, we propose a novel rational-quadratic
Minkowski (RM)-kernel for kernel methods since kernel
methods are popularly used for small dataset modeling because
they strike a good balance between capturing nonlinearity and
avoiding overfitting. For kernel method-dependent nonlinear
regression, the kernel function is used to transform the input
data into a higher dimensional space in order to find the best
separation between the classes. The choice of kernel thus can
have a significant impact on the performance of the model, as it
determines how the data are mapped and how nonlinear
relationships are captured. Among the kernel methods, support
vector regression (SVR) and Gaussian processes (GP) are
widely recognized as popular choices. Section 5 demonstrates
the implementation of the proposed RM kernel within SVR
and Gaussian process regression, revealing superior perform-
ance in the laser perforation regression task compared with
other kernels. This proposed kernel model is also applied to
the laser parameter and mouth feel relationship in Section 5.1.
The source python code of this GP-RM (Gaussian process
with Rational Minkowski) kernel and related data can be seen
in https://www.github.com/JxxxHuo/RMkernel.

Figure 1. Mechanical structure of cigarette laser perforation.

Figure 2. Architecture of the laser perforation estimation system.
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2. DATA SOURCE EXPERIMENTS
2.1. Materials and Instruments. 2.1.1. Main Materials.

Fine slim cigarettes from the same brand were used; tipping
paper: 72 mm; cigarette paper: 19 mm × 4000 m × 32g 60
CU; and filter rod: 120 mm × 16.9 mm.
2.1.2. Main Instruments. An AB204-S electronic balance,

Mettler Toledo, Switzerland; ZJ coiler, Changde Tobacco
Industrial Machinery Factory; SODIMAX comprehensive test
bench, SODIM; FD240 blast drying oven, BINDER; RM200A
rotary smoking machine, BORGWALDT; Agilent 6890N gas
chromatograph, Agilent Company of the United States; and
LASERZJ online cigarette laser drilling system were used (laser
model: CO2 pulsed laser; wavelength: 10.6 ± 0.4 μm;
divergence: ≤ 2.0 mrad; laser diameter: 9 ± 1 mm; drilling
Pulse time: 2−1000 μs; number of holes: 4−99 holes).
2.2. Experiment Design. 2.2.1. Cigarette Rolling

Specifications. Cigarette circumference: 17.00 ± 0.20 mm;
cigarette length: 30 + 67.0 ± 0.4 mm; cigarette weight: 0.55 ±
0.05 g/cigarette; online laser drilling equipment parameter
adjustment test, number of punching rows: 2 rows; punching
position: 13 mm from the lip end; number of punching holes
in each row: 7−20; and pulse duration: 50−130 μs.
2.2.2. Sample Preparation. The test needs to collect data

on the number of online laser double row perforations, laser
pulse duration time, and tar content of slim cigarettes. The
values of perforation quantity and pulse time cover a wide
range, and the measured tar content covers the determination
of nonperforated samples. Table 1 shows these values in detail.
The two laser perforation parameters were directly imported
from the perforation machine from the factory product line,
which are the main parameters of the laser perforation
machine.
2.2.3. Detection of Physical and Chemical Indicators. Test

samples were tested for nicotine, tar, carbon monoxide,
moisture, and total particulate matter in mainstream smoke
according to national standards: GB/T 19609-2004, GB/T
23355-2009, GB/T 23356-2009, and GB/T 23203.1-2008.

3. STATISTICAL ANALYSIS
According to some research, both the ventilation parameter
and smoke chemical emissions have close relationship with the
laser perforation parameter.28 To further investigate the effect
of laser perforation, in this research, tar values were specifically
measured from cigarettes with laser holes and compared to
those without laser holes, as shown in Figure 3. The red cross
represents the tar value measured from cigarettes without
holes, and the black square represents the tar value measured
from cigarettes with holes. These samples listed in the index
were collected from the same brand ”H” with two tar value
standards according to different leaf sources. These sample
values are shown as two parallel lines in Figure 3. Therefore, to
evaluate the effect of laser perforation on tar reduction within
one standard, a tar reduction ratio is used instead of tar as the
output metric in this paper. For cigarette sample i, its tar
reduction ratio yi is defined as

= _ _ _ _

_ _
y

Tar Tar
Tari

i i

i

without holes with holes

without holes (1)

In the following analysis, the laser perforation parameters,
the holes per row, and the laser pulse time are the input
variables represented as X1 = {x11, x12..., x1n} and X2 = {X21,

X22, ..., X2n} separately. The output is the dependent variable
tar reduction ratio as Y = {y1, y2, ..., and yn}.

Table 1. Perforation Parameter and Tar Content

holes/row
time
(μs)

tar
(mg)

tar without a hole
(mg)

tar reduction ratio
(%)

14 80 4.39 7.09 38.08181
12 100 6.03 9.56 36.92469
14 80 6.08 9.56 36.40167
12 100 4.53 7.09 36.10719
16 60 4.7 7.09 33.70945
14 70 6.35 9.56 33.57741
16 60 6.4 9.56 33.05439
14 70 4.86 7.09 31.45275
12 80 6.59 9.56 31.06695
12 80 5.01 7.09 29.33709
18 50 6.9 9.56 27.82427
7 130 6.93 9.56 27.51046

20 40 5.17 7.09 27.08039
18 50 5.18 7.09 26.93935
20 40 7 9.56 26.77824
7 130 5.28 7.09 25.52891

12 70 5.3 7.09 25.24683
12 70 7.16 9.56 25.1046
14 60 7.27 9.56 23.95397
7 100 5.44 7.09 23.27221

12 60 7.38 9.56 22.80335
12 60 5.5 7.09 22.42595
14 60 5.5 7.09 22.42595
7 110 7.45 9.56 22.07113
7 100 7.53 9.56 21.23431
7 110 5.65 7.09 20.3103

12 50 7.67 9.56 19.76987
7 90 5.71 7.09 19.46403

14 50 7.75 9.56 18.93305
12 50 5.77 7.09 18.61777
7 90 7.89 9.56 17.46862

14 50 5.89 7.09 16.92525

Figure 3. Tar values of samples.
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4. DATA MODEL
4.1. Linear Regression. To explore the relationship

between the tar reduction ratio and laser perforation
parameters, initially, a linear regression plane based on Ypred
= X1 + X2 is generated as shown in Figure 4. In this figure, the

grid lines are generated from sequential independent variables
of [min(X1), max(X1)], [min(X2), max(X2)] and dependent
variables of Ypred. As seen in Figure 4, some samples are within
the plane. The tar reduction ratio, Y, generally decreases with
input variables X1 and X2. The residual standard error of this
linear model is 0.03777 on 29 degrees of freedom. However,
most of the data points are far from the plane, and the
prediction error is big.
4.2. Nonlinear Regression. Then, a nonlinear least-

squares regression (NLS) model with a second-order
polynomial function f(x, β), a quadratic function as eq 2, is
built, in which β = {β0, β1, β2, ..., β5} represents the polynomial
parameters.

= + + + + +y x x x x x xi i i i i i i0 1 1 2 2 3 1
2

4 2
2

5 1 2 (2)

Within the samples, the residual ei of sample i is

=e r f x( , )i i i (3)

The nonlinear regression process is to find the vector β of
parameters such that the curve fits best to the given data in the
least-squares that can minimize ∑i = 1

n ei2. After the regression
process, a grid plane generated from this model and the sample
data as diamonds are shown in Figure 5, in which most of the
sample data are close to the grid plane. The residual standard
error of this nonlinear least-squares regression model is
0.01921 on 26 degrees of freedom, which shows better
performance than the linear regression model. However, the
accuracy of the nonlinear regression depends on an acceptable
parameter estimate and a good model fit. The heavily adjusted
parameters after training will also easily induce overfitting
especially for models trained from a small sample dataset.29 As
shown in the test results of Table 2 in Section 5, the LOOCV
test results of the normalized root mean squared error of

nonlinear regression is above 10%, while the R2 value is less
than 0.9.

4.3. Support Vector Regression. As one of the most used
machine learning algorithms for small sample datasets, the
kernel-based support vector machine (SVM) is widely
considered good at dealing with a small size dataset, for
which the deep learning neural networks always fail.2 The
essential idea of SVR is to construct a hyperplane or a set of
hyperplanes that can separate the data in a high-dimensional
space for use in classification or regression.30 The SVR method
used for solving regression problems is called SVR (support
vector regression). The standard SVR is normally to solve

+ + *

+ +

+ *

* =

*
= =

w w

w x

w x

C C

b y

y b

i n

min
1
2

subject to ( ) ,

( ) ,

, 0, 1, ..., , 0

w b
T

i

n

i
i

n

i

T
i i i

i
T

i i

i i

, , ,
1 1

(4)

In this equation, C, ϵ, and γ are important soft margin
parameters. As SVR is a supervised machine learning algorithm
that works by finding the optimal hyperplane that maximizes

Figure 4. Linear regression between the tar reduction ratio Y and
input perforation parameters: hole numbers/row X1 and pulse time
X2.

Figure 5. Nonlinear plane generated between the laser perforation
parameters and the tar reduction ratio. The diamonds represent the
lab data.

Table 2. Result Comparison

kernel name
NRMSE

(%) RMSE R2 RPD
time cost

(s)

linear 19.1 0.040 0.564 1.527 0.0610
nonlinear 10.1 0.021 0.877 2.881 0.0653
SVM-Linear 18.47 0.645 0.584 1.550 91.235
SVM-RBF 8.49 0.296 0.912 3.374 54.447
SVM-RQ 9.74 0.340 0.884 2.940 47.605
SVM-RM 7.00 0.245 0.940 4.089 47.697
GP-Linear 19.06 0.665 0.557 1.503 0.333
GP-RBF 7.02 0.245 0.940 4.078 0.541
GP-RM 7.02 0.245 0.940 4.078 0.968
PLS-regr 19.06 0.6653 0.5573 1.5030 0.0404
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the margin between two classes of data points. The soft margin
parameter, also known as the slack variable or regularization
parameter, is used to control the complexity of the decision
boundary. In eq 4, the function ϕ(x) is used to map data to
high-dimensional space, which transforms the input vectors
x n i n t o t h e f e a t u r e s p a c e

= [ ]x x xx( ) (( )), (( )), ..., (( ))n
T f

1 2 .31,32 To avoid
coordinate computation, the kernel function of ϕ(x) as

=K x x x x( , ) ( ) ( )i j i
T

j (5)

is used to operate in a high-dimensional space by simply
computing the inner products between all pairs of data. This
equivalent dimension mapping process provides more general-
ity for the learning model. All the above algorithms are
implemented by the Python machine learning library scikit-
learn.33

4.4. Gaussian Process Regression. Gaussian process
regression (GPR) is a nonparametric Bayesian approach for
regression analysis, where the predicted function is represented
as a Gaussian process. Instead of estimating the specific
parameters of a function, GPR models the entire function
space, providing not only predictions but also uncertainty
estimates.34,35 A Gaussian process is uniquely defined by its
mean function and covariance function. The kernel function
k(x, x′) models the covariance between each pair in x.
Generally, the Gaussian process can be expressed as

f m kx x x x( ) ( ( ), ( , )) (6)

= [ ]m fx xwhere, ( ) ( ) (7)

=k f fx x x x( , ) Cov( ( ), ( )) (8)

In this expression, denotes that f(x) is a Gaussian
process. m(x) is the mean function, representing the expected
value of f(x), and k(x, x′) is the covariance function or called
kernel, which determines the covariance between f(x) and
f(x′). Gaussian process regression (GPR) is also non-
parametric; it is a Bayesian approach to regression analysis,
where the predicted function is represented as the Gaussian
process. The predictive distribution of GPR can be represented
as

*| * = * *p y x X y( , , ) ( , )2
(9)

* = * +k K I y( )T
n
2 1

(10)

* = * * * + *k x x k K I k( , ) ( )T
n

2 2 1 (11)

where K is the covariance matrix between the training
inputs, k* is the vector of covariances between the training
inputs and the new input, k(x*, x*) is the covariance between
the new input and itself, and σn

2 is the variance of the noise.
The covariance function, namely the kernel function k(·,·) is a
crucial component in Gaussian process (GP) regression
because it determines the way the data are related to the
outputs or the predictor variables are related to the inputs. A
kernel function maps the input data into a higher dimensional
space and can determine the complexity of the model, the
smoothness of the functions, and how well the model fits the
data. In GP regression, the choice of kernel function affects the
trade-offs in terms of flexibility and interpretability of the
model. Commonly used kernels include the squared

exponential (SE) kernel, Mateŕn family of kernels, and the
radial basis function (RBF) kernel.36

4.5. Rational-Minkowski Kernel. Both GPR and SVR are
kernel-based nonparametric machine learning algorithms;
namely, they all do not impose any constraints on the shape
of the underlying functions. However, it is necessary to
customize the kernel for specific data characteristics to improve
the performance of these two types of models. Choosing the
most appropriate kernel highly depends on the problem at
hand because it depends on what we are trying to model.
Different kernels work better with different types of data, and
selecting the appropriate one can improve the accuracy of the
resulting classifier or regressor. As mentioned in the context,
one way to customize a kernel for specific data characteristics is
to use domain-specific knowledge or problem-specific
constraints to guide its design. The high correlation and
nonlinearity between the laser perforation parameters and the
tar reduction ratio require a proposed kernel to better fit their
small sample regression. This is the reason a new rational
kernel based on the Minkowski distance is designed for laser
perforation data.

The Minkowski distance is a metric in a normed vector
space that can be considered a generalization of both the
Euclidean distance and the Manhattan distance. Thus, we
design a new rational-Minkowski (RM) kernel, which replaces
the squared Euclidean distance in the rational-quadratic (RQ)
kernel with Minkowski distance. The Minkowski distance of
order p between two points =x x x x( , , ..., )a a a an1 2 and

=x x x x( , , ..., )b b b bn
n

1 2 is defined as

i
k
jjjjjj

y
{
zzzzzz= |

=
D x x x x( , )a b

i

n

a b
p

p

1

1/

(12)

Therefore, the rational-Minkowski (RM) kernel is

i

k
jjjjjjj

y

{
zzzzzzz= +

|=k x x
x x

( , ) 1
( )

2a b
i
n

a b
p p

2 1
1/

2
(13)

Note that it is only a quasi-metric if 0 < p < 1.
σ2 is the overall variance (σ is also known as amplitude), is

the length scale, and α is the scale mixture (α > 0).
The expression of the RM kernel is similar to the rational-

quadratic (RQ) kernel except that the RQ kernel uses
Euclidean distance. The advantage of the RQ kernel is widely
known as it captures both linear and quadratic relationships
between the data points, making it suitable for a wide range of
problems in machine learning such as regression or
classification. Similarly, the RM kernel also has the virtue
that it can catch both linear and special nonlinearity of data,
and the Minkowski distance is a generalization of both the
Euclidean distance and the Manhattan distance. Thus, the
reason for us to use the Minkowski distance instead of the
Euclidean distance is that the Minkowski distance is a more
general metric for normed vector space when it is used to
determine the similarity between the sequences. It is believed
that the Minkowski distance has the ability to capture long-
range dependencies better than Euclidean distance since
Euclidean distance is limited to L2, the Euclidean norm.

To demonstrate the characteristics of this proposed kernel
and compare it with some existing kernels, a synthetic dataset
was constructed from a linear equation of two standardized
322 variables with x ∈ [−10, 10] as the input variable of kernel
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functions. Figure 6 shows the visual representation of the
kernel covariance matrix. Every kernel in these images has two
input variables, xa ∈ x and xb ∈ x. The maximum values of the
covariance matrix of the kernels RBF, RQ, and RM are the
same as we set the same length scale = 2 and the overall
variance σ2 = 1. However, the overall spread of RBF is much
smaller than RQ and RM. With norm order p = 5, the spread
of RM is much wider than RBF and RQ. Figure 7 shows the
distance plot in line with respect to k(0, x), in which the
similarity output of each kernel covariance decreases toward 0
as the input is farther away from the center. The center has the
maximum similarity at xa = xb. From the center, the similarity
decreases exponentially by the RBF kernel and RQ in an
inverted U-shape. If the length scale value is higher, then, the
zero roots (where the parabola intersects the x-axis) is further
away from the center. With the same length scale value = 2,
the parabola of RM has the widest spread. In addition, the
spread of the RM parabola does not change with the p value.
Minkowski kernel curves nearly overlap each other, although p
varies from 1 to 10 and the slope is rather flat compared to
RBF and RQ. The shape of RM is in a sharp triangle in Figure
7, which is quite different from the U top of RBF and RQ.
Generally speaking, the RM kernel covariance matrix has many
different characteristics compared to RBF and RQ.

To further compare the smoothness which is estimated by
maximum absolute derivative between different kernels, we use
a sine function with added random noise to generate a one-
dimensional vector with 15 points for training and 100 points
for the test as shown in Figure 8. Due to the nonlinearity of the

Figure 6. Kernel image of the visual representation.

Figure 7. Kernel visualization.
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sine function, Figure 8 shows that the RBF, RM, and RQ
kernels in the Gaussian process can accurately predict the sine
wave. Gaussian process regression with the RBF kernel shows
more sensitivity to hyperparameters like length scale . As the
increased will produce smoother predictions, when the length
scale is increased from = 0.5 to = 2, the RBF kernel is
underfit and the smoothness level is as high as 6.61. By
contrast, the RM and RQ kernels are unaware of the length-
scale parameter change and keep the same prediction accuracy
and smoothness level. The RM kernel has a wider confidence
interval area than RQ( = { }0.5, 2 ) and RBF( = 0.5). The
confidence interval area of RM is in a proper size, and the size
is stable for various length scale values, indicating that RM can

better accommodate noise in the data and capture more
complex relationship than RBF and RQ.

5. RESULTS OF LASER PERFORATION DATA
ANALYSIS

All the above kernels were then implemented to our laser
perforation data, and the regression performances of different
learning models are compared. In the Sklearn python library
used in this project, the hyperparameters of the Gaussian
process are automatically optimized by the conjugate gradient
algorithm by default. As shown in Figure 9, with all the laser
perforation data as the training and test data, the RM kernel in
both SVR and Gaussian process regression has better fitness
than the other kernels.

Figure 8. Kernel visualization.
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To further estimate the performance numerically, Table 2
uses several measures to compare these models’ performance
by leave-one-out cross-validation. Several parameters derived
from these validation results are used to estimate the learning
model’s performance as listed in Table 2. The first measure is
NRMSE (normalized root mean squared error), and the
second measure is RMSE (root mean squared error).
Essentially, they all measure the prediction error, which is
the difference between the prediction and observation in the
absolute value. NRMSE normalizes the RMSE with the mean
of observation values, which is helpful for comparing different
datasets within their own scales. Here, the time cost is the total
time cost of the computation duration of leave-one-out cross-
validation. It should be noted that the soft margin parameters

C and ϵ parameters of SVR have been optimized by a search
grid.

= =

y y
RMSD

( )
i
I

i i

1
2

(14)

=
y

NRMSD
RMSD

(15)

where y̅ is the mean of the real tar ratio.
The third analytical measure used for result comparison is

the coefficient of determination, namely R2 or R-squared,
which is the proportion of variance in the dependent variable ŷt
predicted from the independent variables yt.

Figure 9. Tar reduction prediction results from different kernel-based regression algorithms.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c08978
ACS Omega 2025, 10, 2908−2918

2915

https://pubs.acs.org/doi/10.1021/acsomega.4c08978?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08978?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08978?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08978?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c08978?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=R
SS
SS

12 res

tot (16)

in which

= =SS y y( ) e
i

i i
i

ires
2 2

(17)

=SS y y( )
i

itot
2

(18)

R2 measures how well real values are replicated by a model
based on the proportion of the total variation of model
outcomes. There are several different kinds of definitions for
coefficient determination, and the formula varies accordingly.
The higher the R2 value, the less likely it is for the model to
overfit. The fourth measure is the ratio of performance to
deviation (RPD), which is the ratio between the standard
deviation of a variable and the standard error of prediction. It is
often used to report the quality of a model in the field of
spectroscopy in particular. The higher the RPD, the more
stable the prediction accuracy will be when the input varies.

In Table 2, the results show that the performance of
nonlinear kernel methods surpasses the no-kernel methods in
all parameters. The SVR and GP models with a linear kernel
have worse performance than direct nonlinear regression. The
SVR performance measurement results in Table 2 are
concluded from massive SVR tests with SVR hyperparameters
C, γ, and ϵ. The SVR parameters are grid-searched in the range
C ∈ [1, 200], γ ∈ [10−7, 10], and ϵ ∈ [0.01, 1]. Table 2 shows
that the SVR-RM regression model has the best accuracy in
SVR kernel methods. However, when C is lower than the
threshold, the SVR-RM NRMSE value can be as high as over
24.5% when C = 1 and ϵ = 1 as shown in Figure 10 grid search
of SVR-RM. The NRMSE error increases with ϵ and the C has
a negligible effect when C is larger than 17. The best
performance appears when ϵ < 0.01 and C > 20. The most
critical disadvantage of SVR is time cost, as SVR needs the grid
search method to find the best C, γ, and ϵ parameters, which is

an exhaustive search method that tries all possible combina-
tions of the hyperparameters in a predefined grid.

Compared to SVR-RM, the GP-RM model also has high
accuracy but is more stable and costs much less time. This is
because although SVR and GPR are nonparametric models,
they all require hyperparameter tuning. While SVR most often
uses a grid search method and GPR uses the L-BFGS-B, a
quasi-Newton optimization algorithm, L-BFGS-B is generally
faster than exhaustive search methods like grid search,
especially when the objective function is smooth and
differentiable. SVR’s objective function (the combination of
fitting the data and penalizing complexity) is often nonconvex,
meaning that it has many local minima. This makes gradient-
based optimization methods (such as L-BFGS) unreliable for
finding the global optimum. Many SVR hyperparameters (such
as the kernel type and regularization parameter C) are discrete
or have a limited set of possible values. Grid search
systematically explores these options, which are effective but
can be computationally expensive. GPRs often have a smooth
and well-defined objective function, which is the logarithmic
marginal likelihood. This function is typically unimodal or has
a few well-defined local minima. This makes GPRs more
suitable to use faster L-BFGS to tune hyperparameters.
Another advantage of the Gaussian process compared to
SVR also lies in its ability to handle nonlinearly separable data
and provides probabilistic predictions. Gaussian processes are
able to model complex, nonlinear relationships between inputs
and outputs by defining a covariance function that captures the
underlying structure of the data. In addition, as the sample size
is small, there is a correlation between the two input features.
GPR uses kernel functions to define the covariance among the
data points. These kernels can capture complex dependencies
and correlations between features. GPR also provides
uncertainty estimates for its predictions, which can be helpful
in understanding the impact of correlated features. The choice
of kernel function and its hyperparameters can often be learned
from the data using maximum likelihood estimation or other
Bayesian techniques. Gaussian processes regression thus are
able to automatically learn the appropriate complexity of the
model based on the data, resulting in more efficient and
effective regression.
5.1. Model Application. For the tobacco industry, there

must be a balance between the filter ventilation level and
sensory satisfaction. At present, the tobacco sensory score was
investigated by human investigators. Table 3 gives an example
of the laser perforation data design results. According to the
tobacco company’s product standard, the tar value of each
cigarette is expected to be around 7 mg/cig. The hole/row
parameter is then set sequentially from 7 to 20. With the GP-
RM model, the corresponding pulse time was then selected
and is listed in Table 3, which can lead to the expected tar
reduction ratio (the without-hole cigarette tar is 9.56 mg/cig).
After the cigarettes with these parameters were laser-
perforated, human investigators smoked and gave a sensory
score to these cigarettes following the GB5606 4−2005
standard procedure. As shown in Table 3, the sensory scores
are all close to 90, which is consistent with the same tar
reduction ratio level. The most proper pairs of laser perforation
holes/row and pulse time were then selected from this table,
which are also kept in the online system in Figure 2.

Figure 10. NRMSE color-warm map of SVR-RM regression cross-
validation results with different C and ϵ values.
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6. CONCLUSIONS
Laser perforation is a widely used technique in the tobacco
industry to reduce the harmful content per cigarette in recent
years. With the development of Industry 4.0, in this paper, an
online platform was built to collect laser perforation data from
lab and factory manufacturing. After data analysis, it is found
that there is a special complex nonlinearity relationship
between the laser perforation parameters (holes/row and
pulse time) and tar reduction ratio. This relationship cannot be
well explained by a nonlinear function directly. As the tobacco
tar measurement process is complex, there can be only limited
laser perforation parameters tested with the laboratory tar
measurement. Therefore, it is required that an learning
algorithm can deal with a small sample dataset and complex
special nonlinear computation well to model this study.
Hereby, a proposed kernel based on the rational-quadratic
Minkowski distance, which is called the RM kernel, was built
and embedded in kernel-based learning algorithms such as
Gaussian process regression and SVR to model this special
nonlinearity. The latter test results show that this new RM
kernel can fit the laser perforation regression better than the
other tested kernels in both SVR and GP learning with good
performance. With more data tested in further investigation,
the RM kernel shows less sensitivity to hyperparameter change,
the greater ability to capture complex relationship, and more
flexibility than the RBF model. The GP-RM model was
implemented into the laser perforation parameter selection
process by tar reduction ratio prediction for different paired
holes per row and pulse time. With the selected laser
perforation parameters for the expected tar reduction value,
the selected cigarette samples were then tasted by human
investigators and received a consistent sensory score, which is a
reference for further industrial application.

7. DISCUSSION
Although initially developed for modeling nonlinear regres-
sions of tar reduction levels, further investigation into the
rational-Quadratic Minkowski (RM) kernel reveals its
potential for broader applicability. This stems from the RM
kernel’s demonstrated efficacy in this study, suggesting its
utility across diverse domains.
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