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Abstract: This paper reports a new method to enhance the sensitivity of nanoparticle-based pro-
tein detection with X-ray fluorescence by exploiting the large volume reduction of hydrogel upon
dehydration. A carboxylated agarose hydrogel with uniaxial microchannels is used to allow rapid
diffusion of nanoparticles and biomolecules into the hydrogel and water molecules out of the hy-
drogel. Carboxylated hydrogels are modified to capture protein biomarkers and X-ray fluorescence
nanoparticles (iron oxide nanoparticles) are modified with antibodies that are specific to protein
biomarkers. The presence of protein biomarkers in solution binds the nanoparticles on the hydrogel
channels. The dehydration of hydrogels leads to a size reduction of over 80 times, which increases
the number of nanoparticles in the interaction volume of the primary X-ray beam and the intensity of
characteristic X-ray fluorescence signal. A detection limit of 2 µg/mL for protein detection has been
established by determining the number of nanoparticles using X-ray fluorescence.

Keywords: nanoparticles; biomarker detection; hydrogel; volume reduction; X-ray fluorescence

1. Introduction

Nanoparticles with unique physical properties are promising probes for in vitro de-
tection of biomarkers, antigens, proteins, and nucleic acids [1–6]. By converting biological
recognition events into physical signals that can be amplified, nanoparticle-based methods
achieve high sensitivity, owing to intimate contact with biomarkers in solution. However,
most of these methods (except magnetic nanoparticles that can be enriched before read-
out) require the state-of-the-art electronic and photonic devices to readout the physical
signals. The fundamental limit is that nanoparticles are immobilized as a monolayer on a
surface in sandwich configuration, where the total number of nanoparticles residing in the
interaction volume of incoming electromagnetic excitations will be low [7,8]. If the area
density (or the total number) of nanoparticles in the interaction volume could be increased
after nanoparticles are captured on the substrate, the intensity of the spectroscopic signal
emitted from the nanoparticles will be enhanced without increasing the level of excitation
and the sensitivities of instruments [9,10].

Hydrogels that have intrinsic 3D constructs, rich chemistry, and a large surface area
are good candidates for biosensing applications [11–15]. Upon dehydration, hydrogels can
experience ten- or hundred-fold changes in volume [16,17]. The large volume change ability
of hydrogels has been used to enhance the sensitivity of metal ion detection using turn-on
organic fluorophores [18]. Ideally, target biomarkers and capturing probes can be attached
on hydrogels with high binding capacity (compared to flat configuration) [19,20]. An
issue associated with a biosensing hydrogel is that interlaced networks with random pores
significantly decrease the diffusivity and permeability of molecules especially biomolecules
and large nanoparticle probes [21,22].

This article reports a new method to enhance the sensitivity of nanoparticle-based
protein detection using volume-shrink hydrogels, in which X-ray fluorescence nanoparticles
are captured on a hydrogel scaffold with an ordered channel structure (Figure 1). Instead
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of increasing the number of probes to obtain a strong signal, this method will have higher
detection sensitivity by concentrating nanoparticle probes in detection volume. The original
agarose is activated to carboxylated agarose (CA) by oxidizing its primary alcohol groups
before formation of ordered hydrogel scaffold by freeze-thaw method. The aligned channels
are produced through temperature gradient controlled ice crystallization and extend the
full length of a hydrogel thin film [23,24]. The channels allow rapid diffusion of water,
nanoparticles, and proteins. The surfaces of the hydrogels are charged as capturing agents
and the surfaces of nanoparticles are modified with the antibodies. In the presence of
target antigens, the nanoparticles are immobilized onto the hydrogel through specific
antigen-antibody interactions. After rinsing away unbound nanoparticles, the hydrogel is
dehydrated to decrease its volume and the attached nanoparticles are enriched to a small
volume, which is followed by exposing nanoparticles to an incoming X-ray irradiation
and detecting characteristic X-ray fluorescence of nanoparticles [25–28]. The nanoparticles
(iron oxide) are chosen for relatively high X-ray fluorescence yield and readiness of being
removed with a magnet if they are not bound on hydrogel.
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Figure 1. Enhanced X-ray fluorescence detection of biomarkers using nanoparticle probes with
dehydrated microchannel hydrogel.

2. Materials and Methods
2.1. Chemicals and Materials

Disuccinimidyl suberate (DSS), biotin-PEG2-amine and avidin were obtained
from Thermofisher (Waltham, MA, USA). Phosphate buffered saline (PBS) was obtained
from VWR (Radnor, PA, USA) and Tween 20 was from obtained from Acros (Geel,
Belgium). Bovine serum albumin (BSA), dimethyl sulfoxide (DMSO, 99%)
and perfluorooctyltrichlorosilane (PFTOS, 97%) were obtained from AlfaAesar (Tewksbury,
MA, USA). The following chemicals were from Sigma-Aldrich (Burlington, MA, USA):
tetramethyl-1-piperidinyloxy (TEMPO, 98%), (3-aminopropyl) triethoxysilane (APTES),
sodium hydroxide (NaOH), sodium bromide (NaBr, 99.0%), sodium hypochlorite solution
(NaClO, 10–15%), and iron oxide nanoparticles (25 nm diameter, 5 mg/mL). Agarose
powder was obtained from IBI Scientific (Dubuque, IA, USA).

2.2. Chemical Modification of Agarose

Agarose was treated with TEMPO-NaBr-NaClO to oxidize the primary alcohol groups
to carboxylated agarose (CA) as follows. First, 1 g of agarose powder was dissolved in
80 mL of water at 90 ◦C. After adjusting the pH to 11 with 1 M of aqueous NaOH, the
solution was cooled to room temperature while stirring. Then, 22 mL of an aqueous
solution containing 0.02 g TEMPO, 0.3 g NaBr, and 2 mL NaClO was added dropwise
into the agarose solution, and the pH of the solution was maintained at 10–11 by adding
a 1 M NaOH solution. The oxidation reaction was completed in 1.5 h. The solution was
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precipitated by adding a mixture of 200 mL of isopropyl alcohol and 20 mL of acetone. The
precipitate (i.e., oxidized agarose) was washed twice with ethanol, dialyzed for 48 h, and
lyophilized to remove solvents.

2.3. Preparation of Hydrogels with Aligned Channels

A freeze-thaw method was used to make hydrogels with vertical channels. First,
0.05 g of carboxylated agarose (CA) and 0.05 g of agarose were dissolved in 10 mL of
water at 100 ◦C, followed by gelation at room temperature. The hydrogel was made into
a cylinder that was 1.5 cm in diameter and cut to 2.5 cm in length. The cylinder was
placed on a copper block which was positioned at the top of a foam box. The freezing
process started when liquid nitrogen was filled in the box, creating a uniaxial thermal
gradient. The samples were allowed to freeze for 10 min and removed from the copper
block to thaw at room temperature, followed by cutting into thin slabs that were 1.5 mm
thick. Fluorescent images of the hydrogels were taken with an Olympus BX51 fluorescence
microscope (Center Valley, PA, USA) and scanning electron microscopy (SEM) images were
taken with a high-resolution field emission SEM (Hitachi S-4800, Santa Clara, CA, USA).

2.4. Biotin-Conjugation on Iron Oxide Nanoparticles

A 0.2 mL aqueous solution of iron oxide nanoparticles was mixed with 5 mL of
alcoholic solution of APTES (0.2% by weight) for 2 h under stirring. After removing
excess chemicals by centrifugation, the nanoparticles were re-suspended in 2 mL of DMSO
containing 4 mg of DSS as a crosslinker for 1 h at 37 ◦C. The solution was then added into a
2 mL aqueous solution of biotin-PEG2-amine that contains 10 mg of biotin-PEG2-amine for
2 h. The biotin modified nanoparticles were rinsed water and centrifuged twice. Attenuated
total reflectance Fourier transform infrared (ATR-FTIR) spectra of nanoparticles were
collected using a Thermo Scientific Nicolet iS10 FTIR spectrometer (Waltham, MA, USA).

2.5. Protein Detection with X-ray Fluorescence

The carboxylated agarose was immersed in avidin solutions (concentrations ranging
from 0.2 µg/mL to 2 mg/mL) for an hour at 37 ◦C and rinsed with 0.1% Tween 20 and
water twice. The carboxyl groups on carboxylated agaroses were blocked by immersion in
an aqueous solution of BSA (0.5% by weight) for 1 h at 37 ◦C, followed by rinsing with a
Tween 20 solution and water. In order to image the avidin modified hydrogel, iron oxide
nanoparticles with biotin labels were added into the hydrogels for 30 min. The excess
nanoparticles were removed from Tween 20 solutions using a magnet. The hydrogel was
then placed on a PFTOS-modified glass slide and dehydrated in an oven at 50 ◦C. A Mini-X
X-ray tube (Amptek, Bedford, MA, USA) operating at 40 kV and 15 A was used to generate
the primary X-ray. The tube was fitted with a brass collimator to reduce the beam size to
1 mm in diameter. An X-ray spectrometer (Amptek X-123, Amptek, Bedford, MA, USA)
with Si-PIN photodiode was used to collect X-ray fluorescence (XRF) signals in reflection
modes, where the tube and the detector were fixed at an angle of 45◦ between them. The
tube-sample distance and sample-detector distance are kept at 3 and 2 cm, respectively.
The whole setup was enclosed in a lead-containing-acrylic chamber.

3. Results and Discussions

Figure 2 shows the details and outcome of hydrogel dehydration. The hydrogel was
made as a cylinder that was 1.5 cm in diameter and 2.5 cm in height. The cylinder was
placed on a copper block which sat on top of a foam box before immersion in liquid
nitrogen (Figure 2A). The construct of the carboxylated hydrogel has been colored by
Rhodamine 6G and checked with a fluorescent microscope. Figure 2B shows that the
hydrogel has uniaxial channels along the length with an average width of 150 µm. The
hydrogel is lyophilized and imaged by SEM (Figure 2C), which shows the channel width
in the construct is approximately 120 µm. The 20% reduction in channel width is likely due
to volume shrinkage during lyophilization.
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Figure 2. Generation of hydrogels with uniaxial microchannels: (A) Fluorescent images (B) of a
hydrogel at transverse (left) and longitudinal (right) cross sections; SEM images (C) of the hydrogel
at transverse (left) and longitudinal (right) cross sections after lyophilization.

The diffusivity of a molecule in the hydrogel was derived by observing the distance
of the front of a fluorescent molecule with time while partially immersing the hydrogel
in the solution of fluorescent molecules. Figure 3A shows the diffusivities of rhodamine
6G and rhodamine 6G labeled BSA, where (1) rhodamine 6G shows higher diffusivity
on hydrogel with random pores (porous hydrogel) and hydrogel with channel structures
(construct) than BSA due to smaller size of rhodamine 6G compared to BSA; (2) both
rhodamine 6G and BSA show higher diffusivity in hydrogels with channel structures than
those with random pores. Figure 3B shows the optical images of the hydrogels before (left)
and after (right) dehydration, where the hydrogel changes from transparent to opaque
with an 80 times volume reduction. Figure 3C shows the fluorescence images of cross
section areas of a dehydrating hydrogel taken at three time points, where the channels in
the hydrogel become smaller as dehydration progresses. Figure 3D shows the mass ratios
of hydrogels and dehydrated constructs as a function of time. As water evaporates from
the hydrogel surface and liquid-vapor interface moves inwards, the diffusion length of
water becomes longer, which leads to lower evaporation rate. The dehydration kinetics
indicate that the CA-modified hydrogel with vertical channels (black line) dehydrates faster
than CA-modified hydrogel with random pores (blue) and native agarose hydrogel with
random pores (red).

The iron oxide nanoparticles have been modified to feature biotin at the outmost
region. Figure 4A shows the ATR-FTIR spectra collected after modification using pristine
nanoparticles (black) as a reference. The APTES-modified nanoparticles show character-
istic C-N stretching vibration of amine on APTES at 1275 cm−1 (green). DSS covalently
immobilized on APTES shows the vibrational peak of C=O from its free NHS ester at
1725 cm−1 (blue). ATR-FTIR spectrum also shows the attenuation of C=O vibrational peak
at 1725 cm−1 after covalent binding of NHS ester of DSS to amine of biotin-PEG-amine
(red). In order to have maximal exposure of nanoparticles to incoming X-ray, the cross
section of the incident X-ray beam should match the size of the hydrogel construct. The
size of a cone shaped X-ray beam is controlled by changing the distance from the X-ray
tube and the sample. Figure 4B (inset) shows an optical image of a round fluorescent spot
(diameter of 2.5 mm) produced on an X-ray sensitive film placed at 2.5 cm from the X-ray
tube. Figure 4B shows the relationship between the spot size of the X-ray beam and the
distance, where the spot size decreases as the distance decreases. Figure 4C (inset) shows an
XRF peak of iron oxide nanoparticles and the corresponding baseline, which was collected
at an accumulation time of 100 s at a distance of 2.5 cm between the X-ray tube and the
sample. The oxygen peak at the lower energy side cannot be distinguished. Figure 4C
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shows the spectra of nanoparticles (red), dehydrated hydrogel (black) and dehydrated
hydrogel with nanoparticles (blue), respectively, where the Kα peak at 6.40 keV and Kβ peak
at 7.06 keV of iron element are identified with an area ratio of 6.6:1. Dehydrated hydrogel
only shows noise, which is produced by scattering of X-ray on rough hydrogel surface.
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Figure 4. FTIR spectra of nanoparticles after surface modification: (A) As obtained nanoparticles
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X-ray fluorescence spectra (C) of nanoparticles (red), dehydrated hydrogel (black) and dehydrated
hydrogel with nanoparticles (blue), where the inset plot shows the iron peak from nanoparticles in
dehydrated hydrogels.
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Iron oxide nanoparticles were modified with biotin and then used to detect avidin
in channeled hydrogels. After immobilization of the nanoparticles on the hydrogel, the
intensity of the XRF peak of iron is used to derive the number of attached nanoparticles
within the detection volume. Figure 5A shows the relationship between the intensity of
detected iron signal before (black) and after (blue) dehydration as a function of hydrogel
thickness, which shows the number of nanoparticles increases as the thickness of hydrogel
increases in both hydrated form and dehydrated construct. A six-fold increase in the
number of detected nanoparticles has been found in a fully dehydrated sample compared
to hydrated one, which confirms the sensitivity enhancement due to hydrogel volume
reduction. The time it takes for the diffusion of nanoparticles is found nearly identical as the
thickness increases from 1.0 to 3.5 mm. Therefore, in the following experiment, the thickness
of hydrogel was set to 1.5 mm. A magnet was used to remove unbound nanoparticles prior
to hydrogel dehydration. Figure 5B shows the intensities of iron peaks of nanoparticles
in dehydrated constructs after detecting avidin at concentrations ranging from 2 mg/mL
to 2 µg/mL, where a linear relationship exists between iron peak intensity and avidin
concentration with a regression coefficient R2 of 0.958. By extrapolating the linear relation
(Figure 5B inset), the limit of the detection has been determined to be 2 µg/mL when
the nanoparticle probes are enriched in the shrunken hydrogels. A logarithmic scale
curve separates the datapoints more clearly at lower concentrations when showing the
experimental results in Figure 5B.
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4. Conclusions

The sensitivity of protein detection with nanoparticle-based X-ray fluorescence (XRF)
has been enhanced significantly without the need of sophisticated devices by taking advan-
tage of the large volume reduction potential of hydrogels upon dehydration. Carboxylated
agarose hydrogels, containing uniaxial microchannels extending through their entire length,
allow high diffusivity for biomolecules and nanoparticles and rapid dehydration of hy-
drogels. Targeted protein biomarkers have been attracted onto hydrogels via the carboxyl
groups, which was followed by the immobilization of the nanoparticles conjugated with
antibodies. Upon removal of excess nanoparticles, the dehydration of hydrogel scaffolds
causes a significant size reduction (80 times) and an enrichment of nanoparticles in the
interaction volume of a primary X-ray beam, leading to a six-fold increase in the intensity
of characteristic secondary X-ray emission from nanoparticles. The sensitivity of biotin
detection using iron oxide nanoparticle-based X-ray fluorescence is enhanced, resulting in
a six-fold increase in the contraction range of 2 mg/mL to 2 µg/mL. Shrunken hydrogen-
enhanced biomarker detection is straight-forward, easily performed, and consumes a
low level of power. Such a method can be used in a variety of fields where biomarker
detection is of importance, such as point-of-care diagnosis and environmental toxicity
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determination. This method also has the potential to detect multiple biomarkers at the
same time by using a variety of metallic or oxide nanoparticles that have characteristic
X-ray fluorescence emissions.
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