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Abstract
In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only

a limited number of photons can be collected due to various physical constraints. The result-

ing images suffer from signal dependent noise, which can be modeled as a Poisson distri-

bution, and a low signal-to-noise ratio. However, the majority of research on noise reduction

algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as

a combination of Poisson and Gaussian probability distributions to construct a more accu-

rate model and adopt the contourlet transform which provides a sparse representation of

the directional components in images. We also apply hidden Markov models with a frame-

work that neatly describes the spatial and interscale dependencies which are the properties

of transformation coefficients of natural images. In this paper, an effective denoising algo-

rithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Mar-

kov models and noise estimation in the transform domain. We supplement the algorithm by

cycle spinning and Wiener filtering for further improvements. We finally show experimental

results with simulations and fluorescence microscopy images which demonstrate the

improved performance of the proposed approach.

Introduction
Digital images are prevalent in our lives as a result of advances in multimedia, internet, com-
puters, and wide spread of portable imaging devices such as consumer digital cameras and
camcorders. Image acquisition and processing is also common in medical technology and the
service industry. Such demands have consequently led to the advancement of image sensors
such as the charge coupled device (CCD) and the complementary metal oxide semiconductor
(CMOS). Owing to the development of image sensor hardware, increased spatial resolution has
resulted in a decreased sensor pixel size, which causes the expansion of the photon noise effect
[1]. In many image applications such as fluorescence microscopy and astronomy, only a lim-
ited number of photons can be collected due to various physical constraints such as a light
source with low power to avoid phototoxicity, and short exposure time. Therefore, these
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applications acquiring images by photon counting have extremely low signal to noise ratio [2].
The aim of this study is to model and remove the noise in a low-count image.

The two predominant sources of noise in digital image acquisition are (a) the stochastic
nature of the photon-counting process at detectors, and (b) the intrinsic thermal and electronic
fluctuations of the acquisition devices. Traditional denoising algorithms have employed the
additive white Gaussian noise modeling to account for the second source of noise, which is sig-
nal-independent. Robbins proposed an empirical Bayesian framework to estimate Gaussian
noise [3]. Lee, likewise, proposed a two-step empirical Bayesian estimation [4] which estimates
the variance of signal from the neighbors of an observed pixel and applies the standard linear
least squares (LLS) solution. Malfait and Roose further exploited a methodology to realize the
Bayesian approach by applying the Markov random field [5] and Crouse et al. proposed an
algorithm which uses hidden Markov models (HMM) to obtain the variance of signal and
therefore, to denoise with Bayesian estimation [6]. Simoncelli published a research paper on
the Bayesian denoising process [7], and Mihcak et al. applied a maximum a posteriori (MAP)
estimation based on exponential marginal prior [8]. The Bayesian least squares-Gaussian scale
mixtures (BLS-GSM) algorithm developed by Portilla et al. consists of a multivariate estimator
resulting from Bayesian least-squares optimization, assuming Gaussian scale mixtures as a
prior for neighborhoods of coefficients at adjacent positions and scales [9]. Block Matching 3D
(BM3D), regarded as one of the state-of-the-art methods, improves sparsity by grouping 2D
image blocks into 3D data sequences and decreases noise effectively by collaborative Wiener
filtering [10]. These algorithms show reasonable performance for signal-independent Gaussian
noise. However, the reduction in the size of an image sensor has resulted in a higher impact of
signal-dependent noise. Consequently, the mixed Gaussian-Poisson noise model was devel-
oped [1]. Since Poisson noise is signal-dependent, it cannot have a constant noise variance,
which causes difficulties in designing a denoising algorithm. To overcome the difficulties,
variance stabilizing transforms (VSTs) such as the Anscombe transform [11] and the Fisz
transform [12] have been introduced. Donoho exploited the Anscombe VST in denoising
applications [13]. Later, many noise removal techniques employed the VST with the denoising
algorithms based on the Gaussian noise reduction algorithm for Poisson noise removal [14–
19]. Although the Anscombe VST makes the variance of Poisson noise constant and allows the
denoising algorithms based on Gaussian noise to perform effectively, it shows disappointing
results in the case of low-count images [17–19]. This is because of the inverse transformation
rather than the stabilization itself. Bias error is unavoidable after an inverse transformation
since the Anscombe transform is a nonlinear transformation. To overcome this bias problem,
Mäkitalo and Foi proposed the exact unbiased inverse of the generalized Anscombe transform
(GAT) for Poisson-Gaussian noise [20–22]. In this paper, we tested the combination of GAT
and the existing noise reduction method based on Gaussian noise for comparison with the pro-
posed algorithm.

Another effective method for Poisson noise reduction is an algorithm using the Haar trans-
form. Poisson data after the Haar transform have a binomial distribution for children coeffi-
cients given a parent coefficient. This property has been exploited not only in user-calibrated
hypothesis testing [23] but in the Bayesian framework as well [18] [24–26]. Since the Gaussian
noise reduction methods yield higher quality images with the differentiable wavelet transform
than with the Haar transform or other shift-invariant transformations, researchers have begun
to modify Poisson-intensity estimation in order to incorporate the multi-scale transformation.
Kolaczyk developed a shrinkage method using corrected hard/soft threshold based on an arbi-
trary wavelet transform to handle the nature of burst-like Poisson intensities [27], and Charles
and Rasson generalized this approach to operate for various kinds of Poisson data [28]. Nowak
and Baraniuk proposed a wavelet shrinkage method where the threshold is locally estimated
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based on cross validation estimation [29]. Lingenfelter et al. presented the optimal penalty
function to produce sparser images for maximum-likelihood solution with Poisson data [30].
Recently, a sparsity-regularized convex optimization algorithm for Poisson noise has been
developed [31], and Salmon et al. improved this approach using non-local Principal Compo-
nent Analysis for Poisson noise [32]. Giryes and Elad proposed a Poisson denoising method
using sparse representation modeling by Salmon’s method and dictionary learning [33].

Although the Poisson noise removal framework has been exploited in many publications as
stated above, there has been very little research on mixed Poisson-Gaussian noise removal.
Boulanger et al. proposed an effective denoising method of 3D fluorescence microscopy images
for Poisson-Gaussian noise [34]. This method employs the generalized Anscombe transform to
stabilize the variance of Poisson-Gaussian noise and achieves noise reduction using a mini-
mizer consisting of an objective non-local energy functional involving spatio-temporal image
patches. Poisson-Gaussian unbiased risk estimate-linear expansion of thresholds (PURE-LET)
by Luisier et al. is a recent study on this issue [2][19][35]. This methodology optimizes a
thresholding algorithm in the transform domain of the undecimated wavelet transform
(UWT) and block discrete cosine transform (BDCT) to denoise images corrupted by mixed
Poisson-Gaussian noise. PURE-LET minimizes the noise according to the data-adaptive
unbiased estimation of the mean squared error (MSE) by a non-Bayesian framework. This
algorithm plays an important role in treating Poisson-Gaussian noise directly. However,
PURE-LET approximates the unbiased MSE estimation to minimize the cost function. In this
paper, we propose an effective noise removal algorithm for Poisson-Gaussian noise using
HMM and contourlet transform. The Poisson-Gaussian distribution model is used to estimate
the noise parameters of an image, and these parameters are applied to our proposed denoising
algorithm for noise reduction.

Materials and Methods

Fluorescence Microscopy image data set
The first set of images was acquired from a Nikon C1 Plus confocal laser microscope at the
Medicinal Bioconvergence Research Center at Seoul National University. The data set con-
tained 100 samples with a 512x512 size of fixed HeLa cells, labeled with three fluorescent dyes:
Alexafluor555 in the red channel, Alexafluor488 in the green channel, and DAPI in the blue
channel. The average of 100 images was used as the baseline for PSNR calculation.

The second data set was obtained from a Nikon A1R confocal laser microscope at the
Department of Life Science of Ewha W. University. The data set contained 40 images of fixed
HeLa cells of 512x512 size, labeled with two fluorescent dyes: golgin97 in the green channel,
and DAPI in the blue channel. The average of 40 images was used as the baseline also.

Noise modeling and estimation
Noise can be classified into signal-dependent noise and signal-independent noise. Signal-
dependent noise is modeled by a Poisson distribution which is obtained from photon counting
and signal-independent noise is normally modeled by a Gaussian distribution [36].

In this section, we follow the Poisson-Gaussian noise modeling of Foi et al. [1]. The
observed signal z can be represented as the sum of the original signal y and noise as

zðxÞ ¼ yðxÞ þ ZpðyðxÞÞ þ ZgðxÞ ; ð1Þ

where x 2 X is the pixel position in the image domain X. The noise model is represented with
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two mutually independent parts, the signal-dependent Poisson component ηp, and the signal-
independent Gaussian component ηg.

Assume that χ(y(x) + ηp(y(x))) has the Poisson distribution, where χ> 0 is a scale factor.
The probability distributions of Poisson and Gaussian noise are denoted as follows:

wðyðxÞ þ ZpðyðxÞÞÞ � PðwyðxÞÞ; and ZgðxÞ � Nð0; bÞ; ð2Þ

where χ> 0 and b� 0 are real scalar parameters and P(�) and N(�) represent the Poisson and
normal distributions. The mean and the variance of the Poisson distribution are the same.
Therefore, the variance can be obtained from the intrinsic property of a Poisson distribution as
follows:

varfwðyðxÞ þ ZpðyðxÞÞÞg ¼ EfwðyðxÞ þ ZpðyðxÞÞÞg ¼ wyðxÞ: ð3Þ

Since E{ηp (y(x))} = 0 and χ2 var{ηp (y(x))} = χy(x), the variance can be represented as var
{ηp (y(x))} = y(x) / χ from Eq (3). Therefore, the Poisson noise component ηp has a variance
proportional to the signal y(x). That is var{ηp (y(x))} = ay(x), where a = χ−1. On the other hand,
the variance of Gaussian noise ηg is constant and it will be represented as b.

As a result, the overall noise variance of z in Eq (1) has an affine form,

s2ðyðxÞÞ ¼ ayðxÞ þ b: ð4Þ

The standard deviation σ becomes sðyðxÞÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayðxÞ þ b

p
. In this paper, the minimum and

the maximum value of brightness y(x) are normalized to 0 and 1, respectively. Thus the stan-

dard deviation ranges from sð0Þ ¼ ffiffiffi
b

p
to sð1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

aþ b
p

.
The Poisson noise parameters are estimated using the noise estimation algorithm in [1][37].

The noise parameter estimation process is as follows. Firstly, the image in the wavelet domain
is segmented into smooth regions using level sets. Secondly, local mean and variance are esti-
mated for each uniform region after the wavelet analysis. Finally, the optimal parameters â and

b̂ are estimated by maximum likelihood (ML) estimation.

ðâ; b̂Þ ¼ arg max
a;b

Lða; bÞ ¼ arg min
a;b

ð�lnLða; bÞÞ; ð5Þ

where Lða; bÞ ¼
YN
i¼1

Z 1

�1
pððŷ i; ŝ iÞjyi ¼ yÞp0ðyÞdy. Eq (5) can be rewritten as

ðâ; b̂Þ ¼ arg min
a;b

�
XN
i¼1

ln
Z

pððŷ i; ŝ iÞjyi ¼ yÞp0ðyÞdy
 !

: ð6Þ

The noise variance of z is therefore calculated using Eq (4) and the estimated parameters â

and b̂.

Contourlet Transform
Signal modeling in the wavelet domain has been employed for an effective image noise reduc-
tion. Most natural images, however, are composed of not only discontinuous corners but also
smooth curves. While the wavelet can express corners, it cannot capture the smoothness along
contours in a compact manner. Hence, new algorithms such as curvelet and contourlet trans-
forms have been developed to improve such shortcomings [38–39].

The curvelet transform, which was developed for better noise removal, consists of a 2-D
rotation operation and a frequency domain division based on the polar coordinates [38]. As a
result, information of the various directional features in images can be obtained to retain curves
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and edges compactly. The decomposition into the curvelet is simple in the continuous domain,
but becomes problematic in the discrete domain. Geometrical problems such as significant bias
in horizontal and vertical directions appear in the generalized rectangular-sampling grid. To
overcome such difficulties, Do and Vetterli proposed the contourlet transform, which has simi-
lar effectiveness as the curvelet transform, for the direct use in the discrete domain [39].

The contourlet transform consists of two filters: the Laplacian pyramid (LP) filter and the
directional filter bank (DFB). The LP filter is used in the existing wavelet filter as a low pass fil-
ter to separate high and low frequencies. The directional filter bank provides information on
image direction components as described in Fig 1. After passing the LP filter, images are parti-
tioned into high and low frequencies. While the high frequency component is divided accord-
ing to direction in the DFB, the low frequency component is, after down sampling, divided into
low and high frequency bands by the LP filter. DFB filtering is recursively applied to high fre-
quency components. Since the contourlet transform can extract multi-resolution and multi-
directional information, the boundaries of natural images can be described effectively. Typi-
cally, the LP filter proposed by Burt and Adelson is used [40]. The LP filter produces band-pass
images by generating image differences between the down-sampled images and the original
images. Although the biggest drawback of the LP filter is over sampling, the filter produces
desired band-pass images without mixing frequency components at each pyramid level. While
the wavelet filter can mix frequencies in the high-band channel after down sampling, the LP

Fig 1. Contourlet Filter bank consisting of Laplacian Pyramid (LP) and Directional Filter Bank (DFB) [39].

doi:10.1371/journal.pone.0136964.g001
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filter does not mix frequencies since the images that only pass the low frequency filter are
downsampled [41]. In many cases, the DFB filter is based on the design of Bamberger and
Smith [42]. The directional filter produces wedge-shaped frequency division subbands for 2ℓ at
ℓ—level binary tree decomposition.

To evaluate the sparsity between the wavelet transform and the contourlet transform, the
histograms of their coefficients are compared with respect to the Lena image after adding Pois-
son-Gaussian noise (S1 Fig). The wavelet filter and directional filter used for the comparison
are ‘Daubeichies8’ and ‘dmaxflat5’, respectively. The filter type does not practically affect the
performance. Fig 2 shows that the sparsity of the contourlet transform is much higher than
that of the wavelet transform. The ratio of zeros in the contourlet coefficients is 4.83%, while
that in the wavelet coefficients is 1.88%. Zeros in the contourlet coefficients is almost twice as
many as that in the wavelet coefficients.

The contourlet filter bank achieves continuous domain expansion at L2ð<2Þ using the con-
tourlet transform. The connection between discrete contourlet transform and continuous
domain expansion can be established with a new multiresolution analysis structure in a similar
method of the link between the wavelet transform and filterbank [43].

The Contourlet HMM for Poisson-Gaussian Noise Reduction
Signal modeling, as well as the noise pdf, is important for effective noise removal. Existing algo-
rithms have applied a generalized Gaussian [25] or Gaussian scale mixtures [6] for signal
modeling. In this paper, the HMMmethod proposed by Crouse et al. is adopted to model the
signal pdf for its efficacy [3]. In this section we summarize the HMM signal modeling and pres-
ent our extension for Poisson-Gaussian noise.

The HMM denoising method by Crouse et al. is based on the wavelet transform and the sig-
nal-independent noise model. In this paper, the contourlet transform is employed, whereas the
Crouse’s method uses the wavelet transform. The contourlet transform results in better sparsity
than the wavelet transform as shown in Fig 2. The marginal distribution of natural images in
contourlet domain is highly non-Gaussian. Furthermore, the dependency relationship exists
between the parent and child coefficients in the contourlet transform, which is an important
reason for applying the HMM. As shown in Fig 3(A), the parent coefficient has its four children

Fig 2. The comparison of sparsity between wavelet and contourlet transforms on the Lena image. (a) wavelet, (b) contourlet.

doi:10.1371/journal.pone.0136964.g002
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in two separate directional sub-bands, while parent-children relationship in the wavelet
domain is always in the same direction. Fig 3(B) plots the absolute values of the parent and
child coefficients in log scale. It demonstrates the dependency between the parent and the child
coefficients of the Lena image.

The contourlet HMM utilizes the clustering and persistence properties of contourlet trans-
form coefficients. Clustering and persistence are additional useful properties of contourlet
transform besides major properties such as locality, multiresolution and energy compaction.
Clustering is the property where adjacent coefficients tend to be large (small), if a contourlet
coefficient value is large (small). Persistence shows that the values of contourlet coefficients are
very likely to propagate across scales; if a contourlet coefficient is large (small) in one scale,
then the parent coefficient is large (small).

Two statistical models can describe contourlet properties in HMM. First, the independent
mixture model is used to decompose the marginal probability of each coefficient as a mixture
density with a hidden state variable to reflect the non-Gaussian property of the contourlet coef-
ficients. Second, probabilistic graphs are used to represent the dependencies between contour-
let coefficients. The hidden Markov chain model captures the horizontal dependencies within
each scale and the hidden Markov tree (HMT) represents the vertical dependencies across
scale.

The mixture model is composed of two-state zero-mean gaussians: the pdfs of the state vari-
able S, pS(1) and pS(2) = 1 − pS(1), and the variances of Gaussian pdfs in each state. In most of
the mixture model applications, the contourlet coefficientW is observable, however, the state
variable S cannot be observed, thus appropriately called hidden.

In general, anM-state Gaussian mixture model of random variableW is given as follows.

1. a discrete random state variable S which has the values s 2 1, 2, � � �,M, according to the pdf
pS(s).

2. the Gaussian conditional pdfs pW|S (w | S = s), s 2 1, 2, � � �,M.

Fig 3. Parent-child relationship of contourlet coefficients. (a) a parent coefficient and its pertinent four child coefficients (b) parent-child dependency of
contourlet coefficients in log scale.

doi:10.1371/journal.pone.0136964.g003
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Hence, the probability density function pW is a weighted sum of the Gaussian conditional
pdfs:

pWðwÞ ¼
XM
m¼1

pSðmÞpWjSðwjS ¼ mÞ: ð7Þ

The HMM parameters for theM-state Gaussian mixture model for each contourlet coeffi-
cientWi are

1. pS1ðmÞ: the pdf for the root node S1
2. εmri;rðiÞ ¼ pSijSrðiÞ ½mjSrðiÞ ¼ r�: the conditional probability that Si is in statem when the given

Sρ(i) is in state r

3. μi,m and s2i;m: the mean and variance of contourlet variableWi when the given Si is in state

m.

These parameters can be grouped by model parameter vector θ.
To estimate the HMM parameters for given data, the expectation maximization (EM) algo-

rithm is employed. The training data w is incomplete; the complete data (w, s) is composed of
the training data and the hidden state s. The goal is then to maximize the incomplete log-likeli-
hood function ln p(w | θ), where the EM algorithm performs this challenging maximization
with an iterative process separately taking two simple steps, E step and M step. The E step cal-
culates the expected value ES[ln p(w, S | θ) | w, θl] in the l th iteration. Then the M step maxi-
mizes the log-likelihood function of θ to acquire θl+1 for the next iterative process. Once the
parameters are obtained, then the Bayesian noise removal process can be applied. After the
contourlet coefficient wk

i of the noise signal and the state s
k
i are obtained, the conditional esti-

mation for the contourlet coefficient vki of the original signal is as follows:

E½Vk
i jWk

i ¼ wk
i ; S

k
i ¼ m� ¼ s2

i;m

s2
ni
þ s2

i;m

wk
i ; ð8Þ

where s2
ni
is the noise variance in contourlet domain.

The conditional mean estimation of vki can be obtained by using the hidden state probabili-
ties pðSki jwk; yÞ as by-products of the EM algorithm through the chain rule of conditional
expectation.

E½vki jwk; y� ¼
X
m

pðSki ¼ mjwk; yÞ � s2
i;m

s2
ni
þ s2

i;m

wk
i ð9Þ

Finally the denoised signal is acquired by the inverse transform of the estimated contourlet
coefficient.

In what follows, we describe the denoising method for Poisson-Gaussian noise. While the
variance of Gaussian noise is constant, the variance of Poisson-Gaussian noise is related to the
signal intensity. In other words, each pixel has different noise variance and thus it cannot be
controlled using the traditional HMM. Therefore, we extend the contourlet HMM to deal with
Poisson-Gaussian noise (PG-HMM). The parameters of Poisson-Gaussian noise a and b
defined in Section 2, which are the noise estimates in the image domain, can be estimated by
the noise estimation method in [1]. The variance of the noise component in the image domain
in Eq (1) is denoted as s2

ei
, where e(x) = ηp (y(x)) + ηg (x) denotes the sum of Poisson and

Gaussian noise which can be calculated by Eq (4). The original signal yi is approximated by the
low-pass filtered value of the noisy image. We then need to estimate the noise variance in
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contourlet domain. Let zi and hi denote the observed pixel values and the contourlet filter coef-
ficients, respectively. The noise component in contourlet domain ni is given by

ni ¼
X

ei�khk ¼ ei � hi; ð10Þ

where ei is the noise component in the image domain, hi is the contourlet filter coefficient, and� is the convolution operator. Since the noise in contourlet domain is a linear combination of
image noise, we need to derive an equation for contourlet noise variance s2

ni
.

The noise variance of pixel i, denoted as s2
ei
, is equal to E½e2i �, since E[ei] = 0. Now, we derive

the noise variance in contourlet domain, s2
ni
, using Eq (10) as follows:

s2
ni
¼ E½n 2

i � ¼ E½ð
X

ei�khkÞ2�: ð11Þ

Here, the cross product terms of (∑ ei−khk)
2 can be eliminated because neighboring noise

components are assumed to be statistically independent. Thus, we obtain

s2
ni
¼ E½

X
ðei�k

2hk
2Þ� ¼

X
ðE½ei�k

2�hk
2Þ ¼

X
ðs2

ei�k
h2
kÞ ¼ s2

ei
� h2

k: ð12Þ

As shown in Eq (12), the noise variance in contourlet domain is obtained by filtering the
estimated noise variances in the image domain using the square of the contourlet filter coeffi-
cients. Finally, the denoised image can be obtained through Eq (9) using the HMM parameters
and the Poisson-Gaussian noise variance in contourlet domain.

To improve noise removal performance, the Wiener filtering and cycle-spinning methods
are cascaded. TheWiener filter is designed to minimize the mean squared error. Cycle spinning
for noise removal is a simple and efficient method which can be applied to a shift variant trans-
form [44,45]. The equation for cycle spinning is as follows:

ŷ ¼ 1

K1K2

XK1 ;K2
i¼1;j¼1

S�i;�jðT�1ðD ½TðSi;jðzÞ�ÞÞ; ð13Þ

where Si,j represents a 2-D circulant shift with i and j shifts in horizontal and vertical directions
respectively. K1 and K2 are the total number of horizontal and vertical shifts, respectively. T
represents a shift variant transform which is the contourlet transform in our case and D repre-
sents the presented contourlet transform based HMM denoising algorithm. The variable ŷ is
the noise removed image obtained by the cycle spinning method. Noise removed images can be
obtained repeating 2-D circular shift by K1K2 times. Consequently, the cycle spinning method
improves the peak signal to noise ratio (PSNR) by averaging the noise reduced images.

A sketch of the GP-contourlet HMM denoising algorithm is illustrated in Fig 4 and pre-
sented in Algorithm 1. While the conventional HMM algorithm does not deal with signal-
dependent noise, our proposed algorithm reduces Poisson-Gaussian noise successfully. Experi-
mental results in the following section show that the proposed method shows the best perfor-
mance for many images corrupted by strong Poisson noise both visually and in terms of PSNR
values.

Algorihm 1. GP-contourlet HMM.

1. Compute GP noise parameters a and b using Eq (6).

2. Compute the variance in the image domain using Eq (4).

3. Apply the contourlet transform.

Poisson-Gaussian Noise Reduction

PLOS ONE | DOI:10.1371/journal.pone.0136964 September 9, 2015 9 / 19



Cycle spinning

4. for i = 1 to K1, j = 1 to K2 do

5. Compute the variance in the transform domain using Eq (11) and the parameters, a and b,
obtained at step 1.

Expectation Maximization

6. Estimate HMM parameter vector y ¼ ðpS1ðmÞ; εmn
i;rðiÞ; mi;m; s

2
i;mÞ using EM algorithm.

Bayesian estimation

7. Estimate denoised contourlet coefficients using Eq (9).
8. end for
9. Apply the inverse contourlet transform to recover the denoised image.

Wiener filtering

10. Apply Wiener filtering to the denoised signal for further noise reduction.
11. Obtain the final denoised signal.

Denoising experiments
Implementation of Denoising Algorithm. The Laplacian pyramid (LP) filter and the

Directional filter bank (DFB) filter of the contourlet transform used in the experiments are as fol-
lows: we adopted ‘Daubeiches8’ for the LP and ‘dmaxflat5’ for the DFB [46]. We confirmed experi-
mentally that the numbers of scales and directions in contourlet domain do not influence the
performance significantly. We therefore divided the images into five scales and each scale into four
directions. Grayscale images Camera man, Lena, Boat, Barbara and Peppers were used as test
images with different noise levels. The images are available in S1 File. We first confirmed the valid-
ity of the derived Poisson noise variance in contourlet domain, and then evaluated the performance
of the PG contourlet HMM noise reduction algorithm using synthetic and real data.

Fig 4. Block diagram for the proposedmethod (CT: contourlet transform).

doi:10.1371/journal.pone.0136964.g004

Poisson-Gaussian Noise Reduction

PLOS ONE | DOI:10.1371/journal.pone.0136964 September 9, 2015 10 / 19



Quantitative Evaluation Measure. As a measure of quality, we used the peak signal-to-
noise ratio (PSNR), defined as PSNR ¼ 10 log10ðI2max=MSEÞ, where Imax is the maximum inten-
sity of the original image andMSE is the mean squared error. The output MSEs of the denoised
images were averaged over 10 realizations of pseudo-random noise. The standard deviation of
noise was estimated from the noisy image using the noise estimation algorithm proposed by
Foi et al. [1].

Results and Discussion
We evaluate the performance of the PG-HMM noise reduction algorithm and apply the pro-
posed method to confocal microscopy images in this section.

The verification of estimated noise variance
To verify the accuracy of estimated noise variance, we performed a computer simulation using
the 50th row of the Lena image as an example. We compare the noise variance calculated from
multiple realizations of noise, which will be used as a ground truth, the noise variance esti-
mated in the image domain and the theoretical noise variance predicted by Eq (12). The noise
variance estimated in the image domain was obtained by Eq (4). In practice, the accuracy of the
sample noise variance depends on the number of noise generations. The plots of simulated
noise variance illustrated in Fig 5 are results of 100 times and 1000 times of noise generations.
The blue solid line, green dashed line, red dotted line and cyan dash-dot line indicate the noise
variance by Eq (12), the sample noise variance by Eq (11) from 100 times of noise generation,
the sample noise variance by Eq (11) from 1,000 times of noise generation, and the noise vari-
ance estimated in the image domain, respectively. As shown in the plot, the result is more accu-
rate as the number of the noise generation increases. In addition, Fig 5 demonstrates that the

Fig 5. Plots of noise variances in the wavelet domain for the 50th row of the Lena image; noise variances by Eq (12) (blue solid line), sample noise
variances from 100 times of noise generation (green dashed line), 1,000 times of noise generation (red dotted line) and noise variance estimated in
the image domain (cyan dash-dot line).

doi:10.1371/journal.pone.0136964.g005
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variance predicted by Eq (12) closely matches the noise variance estimated from multiple noise
generation while it is significantly different from the image domain noise variance from Eq (4).
The validity of the proposed Poisson noise estimation can be confirmed regardless of test
images.

Comparisons with existing denoising algorithms
In this section, we compare our proposed method with various denoising algorithms to show
the effective denoising of our method on Poisson-Gaussian noise. In Table 1, we evaluate the
performance of each block shown in Fig 4. Here, the total noise variance is fixed and only the

Table 1. Denoising performance evaluation of each block shown in Fig 4 in terms of PSNR (dB) for various noise ratio of Poisson and Gaussian
components with fixed noise variance.

Image

Noise variance

a 0 2.65 5 5.59 5.78

b 737.32 202 102 52 0

Lena

Noisy image 19.46 19.46 19.47 19.47 19.45

Gaussian wavelet HMM 29.10 28.95 28.25 27.94 27.79

Gaussian contourlet HMM 29.45 29.28 28.51 28.22 27.91

Gaussian contourlet HMM with modified Anscombe 29.09 28. 68 28.65 29.13 29.10

Mixed Poisson-Gaussian contourlet Bayesian estimator 28.38 28.17 28.04 28.21 28.12

Proposed mixed Poisson-Gaussian contourlet HMM without cycle spinning 29.71 29.54 29.47 29.32 29.46

Proposed mixed Poisson-Gaussian contourlet HMM with cycle spinning 30.14 30.09 30.04 29.96 30.02

doi:10.1371/journal.pone.0136964.t001

Table 2. Comparison of the proposedmethod with the BM3Dmethod and PURE-LET in terms of PSNR (dB) for various low-count cases.

Image

Noise variance

a 1 1/2 1/3 1/5 1/10

b 0.12 0.22 0.32 0.52 12 0

Camera man

Noisy image 3.26 6.20 8.84 10.85 13.34

BM3D with GAT 19.76 21.44 22.43 23.79 25.52

UWT/BDCT PURE-LET 20.44 21.61 22.27 23.36 24.74

Poisson-Gaussian contourlet HMM 19.59 22.59 23.06 24.43 25.16

Peppers

Noisy image 2.72 5.66 7.28 9.36 12.01

BM3D with GAT 21.94 23.54 24.55 25.82 27.39

UWT/BDCT PURE-LET 22.31 23.68 24.35 25.55 26.91

Poisson-Gaussian contourlet HMM 19.16 23.05 24.77 26.00 27.55

Barbara

Noisy image 3.29 6.19 7.85 9.90 12.47

BM3D with GAT 20.72 22.22 23.03 24.17 25.83

UWT/BDCT PURE-LET 20.93 21.60 22.08 22.56 23.48

Poisson-Gaussian contourlet HMM 20.14 21.93 23.05 23.82 24.80

Boat

Noisy image 2.33 5.29 6.94 9.03 11.69

BM3D with GAT 20.99 22.65 23.15 24.20 25.65

UWT/BDCT PURE-LET 21.38 22.38 22.92 23.80 25.17

Poisson-Gaussian contourlet HMM 20.22 22.45 23.00 24.12 25.72

Lena

Noisy image 2.89 5.82 7.48 9.52 12.17

BM3D with GAT 22.72 24.37 24.80 26.14 27.64

UWT/BDCT PURE-LET 23.23 24.30 24.68 25.80 27.23

Poisson-Gaussian contourlet HMM 22.19 23.17 24.72 25.88 26.98

doi:10.1371/journal.pone.0136964.t002
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ratio of Poisson and Gaussian noise is altered. The PSNRs of HMM based on the Gaussian
noise are degraded as the Poisson component is increased. As shown in Table 1, the contourlet
transform is more effective than the wavelet transform, and the cycle spinning improves the
performance.

Next, we compare our approach with the PURE-LET algorithm, which is a state-of-the-art
denoising algorithm for Poisson-Gaussian noise, and BM3D, which is one of the most effective
methods in Gaussian-based denoising algorithms. We provide comparative results of our
method with the BM3D algorithm combined with the generalized Anscombe transform. The
experimental results for low photon counts are shown in Table 2. Our method shows the best
noise reduction for Cameraman and Peppers in low count images, while BM3D is better for
Boat and Lena by a small margin. Fluorescence microscopic images are the results of photon-
limited imaging, thus the performance of the algorithm for low-count images is important. In
this respect, the experimental results are quite encouraging. For subjective comparison of
image quality, we present the denoising results of the test images degraded by simulated Pois-
son noise with peak intensity 3 and Gaussian noise with standard deviation 0.3 in Figs 6 and 7.
Although all three methods have similar PSNRs, Fig 7 shows that the proposed method pro-
vides fewer visual artifacts with a smoother face and preserves edges better than the PURE-LET
or BM3D techniques. Our method restores the nose and mouth of the face for a more natural
look and does not demolish the boundary as shown in Fig 6. To give the reader an indication of
the typical computation times, for Cameraman (512x512) the various denoising methods

Fig 6. Denoising results on Lena image (http://en.wikipedia.org/wiki/File:Lenna.png.) with a = 1/3 and b = 0.32. (a) original image, (b) noisy image
(7.48 dB), (c) BM3D (24.80 dB), (d) PURE-LET (24.68 dB), (e) the proposedmethod (24.72 dB).

doi:10.1371/journal.pone.0136964.g006
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require time approximately as follows: BM3D with GAT 2.5 s, UWT/BDCT PURE-LET 13.5 s,
and the proposed method 10.2 s. The compared algorithms were implemented in MATLAB
and BM3D is a pre-compiled execution file. These results are obtained with an Intel Core i7-
3770 processor, running at 3.4 GHz.

Application to fluorescence microscopy images
In this section, we present denoising results of photon-limited fluorescence microscopy images.
Our proposed method and the BM3D method are applied to two fluorescence microscopy
image sets. The first set of images was acquired from a Nikon C1 Plus confocal laser micro-
scope at the Medicinal Bioconvergence Research Center at Seoul National University. The data
set contained 100 images with a 512x512 size of fixed HeLa cells, labeled with three fluorescent
dyes: Alexafluor555 in the red channel, Alexafluor488 in the green channel, and DAPI in the
blue channel. The average of 100 images is used as the baseline for PSNR calculation. The data
set is available in S2 File. The visual quality of the cell image is evaluated from Fig 8. Fig 8A and
8B presents the baseline and the observed data with single acquisition, respectively. Fig 8C and
8D shows the denoised images from the BM3D and the proposed method, respectively. As

Fig 7. Denoising results on the magnified Lena image with a = 1/3 and b = 0.32. (a) original image, (b) noisy image, (c) BM3D, (d) PURE-LET, (e) the
proposed method.

doi:10.1371/journal.pone.0136964.g007
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observed in Fig 8, the proposed algorithm significantly reduces the level of noise and still recov-
ered the details in the green channel. The comparison of PSNR between the proposed method
and the BM3D method in each channel is presented in Table 3. Our proposed method per-
forms better than the BM3D method, except for the blue channel. The BM3D is preferable in
the blue channel as it is particularly effective with periodic textures or flat regions.

The second data set was obtained from a Nikon A1R confocal laser microscope at the
Department of Life Science of Ewha W. University. The data set contains 40 images of fixed
HeLa cells of 512x512 size, labeled with two fluorescent dyes: golgin97 in the green channel,
and DAPI in the blue channel. An average of the 40 images is used as the baseline, which is pre-
sented in Fig 9(D). The data set is available in S3 File. To evaluate the denoising performance

Fig 8. Denoising results on the first set of HeLa cell images. (a) an average of 100 images used as the
ground truth, (b) single acquisition image, (c) BM3D, (d) the proposed method.

doi:10.1371/journal.pone.0136964.g008

Table 3. Comparison of the proposedmethod with the BM3Dmethod in terms of PSNR (dB) for each channel on the first set of HeLa cell images.

R channel G channel B channel total

Noisy image 28.64 dB 21.95 dB 28.41dB 26.33 dB

BM3D with GAT 32.69 dB 25.23 dB 39.97 dB 32.63 dB

Poisson-Gaussian contourlet HMM 35.58 dB 29.53 dB 36.94 dB 34.02 dB

doi:10.1371/journal.pone.0136964.t003
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for different noise levels, we obtained three image sets with different laser intensities as shown
in Fig 9A–9C. The denoising results for the single acquisition image with laser intensity 0.4 are
presented in Fig 9D–9F. The PSNR results are provided in Table 4. While the proposed algo-
rithm is more effective than the BM3D when the laser intensity is weak, the BM3D is more
effective than our proposed method when the laser intensity increases.

Conclusions
In this paper, an effective denoising algorithm for mixed Poisson-Gaussian noise in low-count
images is presented. We applied the contourlet transform for sparse representation of signal,
and adopted the HMM for effective signal modeling in the transform domain. The contourlet

Fig 9. The second set of HeLa cell images and denoising results. First low: the second set of HeLa cell images with different laser intensities. (a) 0.2, (b)
0.4, (c) 0.8. Second low: denoising results on HeLa cell image with laser intensity 0.4. (d) an average of 40 images used as the ground truth, (e) BM3D, (f) the
proposed method.

doi:10.1371/journal.pone.0136964.g009

Table 4. Comparison of the proposedmethod with the BM3Dmethod in terms of PSNR(dB) for vari-
ous laser intensities on the second set of HeLa cell images.

Laser intensity

0.2 0.4 0.8

Estimated a when b = 0 27.33 9.35 3.95

BM3D with modified Anscombe 14.86 dB 23.21 dB 29.11 dB

Proposed contourlet HMM with Bayesian estimation 16.12 dB 23.44 dB 27.64 dB

doi:10.1371/journal.pone.0136964.t004
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transform not only separates of images into high and low frequency components but also pro-
vides information about the directional components in the images using the Laplacian pyramid
filter and the directional filter bank. The HMM algorithm adopts an independent mixture
model to match the non-Gaussian nature of the contourlet coefficients and adopts hidden Mar-
kov models to characterize the key dependencies between the contourlet coefficients. Further-
more, this method estimates optimal HMM parameters using the EM algorithm. The Poisson-
Gaussian noise variance in contourlet domain is obtained by filtering the noise variance of
each pixel with the square of the contourlet filter coefficients. Using the estimated HMM
parameters of the signal and noise variances, the signal-dependent noise is reduced through
Bayesian estimation.

We finally show the experimental results with simulations and fluorescence microscopy
images and demonstrate the improved performance of the proposed approach when photon
count is limited through extensive comparisons with the traditional Bayesian estimator and
state-of-the-art techniques. We demonstrate that the performance of the proposed method,
which is based on accurate source pdf modeling with HMM and Gaussian mixture, is compara-
ble to those of high performance denoising methods such as BM3D combined with the modi-
fied Anscombe transform or PURE-LET. Our approach has the following advantages. First,
noise variance in the transform domain is estimated more accurately using the convolution.
Second, the noise reduction performance is superior in very low-count images. Third, the pro-
posed method show good performance for the images with irregular patterns such as cell
images. Although the computation time is not low compared with existing methods, it can be
shortened by modifying HMM training process. The denoising performance of the proposed
method can be improved further by incorporating the nonlocal means algorithm, since our
method is based on a point-wise technique. The proposed method can be modified for feature
detection or segmentation as well as for denoising 1-D signals.

Supporting Information
S1 Fig. Lena image.
(TIF)

S1 File. Test image data set. Camera man (Figure A), Boat (Figure B), Barbara (Figure C)
and Peppers (Figure D)
(ZIP)

S2 File. The first data set of HeLa cell images.
(ZIP)

S3 File. The second data set of HeLa cell images.
(ZIP)
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