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The sliding clamp protein PCNA is a key

controller of multiple processes in DNA and

chromatin metabolism, regulating replication,

repair and chromatin assembly through inter-

action with a huge number of partner proteins

(Fig 1). In many of these transactions, the part-
ners bind via a conserved PCNA-interacting

peptide or PIP, first identified in CDKN1/p21.1

Sequential and competitive binding of these

PIPs within the interdomain connector loop

(IDCL) of PCNA provides a means to ensure

ordered reactions.2,3

Adding to the roll call of PCNA partners,

Cooper et al.4 have now employed bimolecu-
lar fluorescence complementation (BiFC)

screening to look for proteins that bind to

PCNA ‘bait’ in normally proliferating human

cells; unlike in vitro interaction studies and het-

erologous yeast 2 hybrid screens, BiFC screen-

ing in cycling human cells provides a platform

for physiologically relevant protein interaction

discovery. Combining FACS sorting with the
speed and depth of reads possible with next

generation sequencing also allows the scale-

up of this type of screen for identification of

drug targets. Notably, this screen4 identified

novel PCNA partners that do not necessarily

interact through the canonical PIP (though a

number of the expected partners were also

detected). Interactions were not universal
across all cells – perhaps because the initial

screen did not enrich for S phase cells – nor

particularly robust (the signal was lost on

detergent treatment), while use of a skeletal

muscle cDNA library probably influenced the

range of partner proteins identified – SetD3,

for instance, is important in muscle differentia-

tion. Nevertheless, this screen is powerful and

interactions with RNF7, Maf1 and SetD3 were

validated by a range of direct assays.

So what might these novel partners tell us
about how PCNA acts in cells? SetD3 is a histone

H3 lysine methyltransferase that adjusts the

histone code to promote a transcription-compe-

tent chromatin conformation. Perhaps interac-

tion here simply adds to PCNA’s repertoire in

assisting copying of the histone code immedi-

ately after replication fork passage, as postulated

from its association with Caf1 and Asf1. While
SetD3 does not have every residue of a classical

PIP, the motif QKGLSVTF may be adequate for

association with PCNA’s IDCL. Notably the aro-

matic residues play a critical role in binding affin-

ity with tyrosine (e.g. p21 PIP D QTSMTDFY)
conferring much tighter PCNA binding than

phenylalanine (e.g., Fen1 PIPD QGRLDDFF).
Maf1 and RNF7 are small proteins without

identifiable PIPs; but lack of a PIP does not pre-

vent other partners such as RF-C from binding

PCNA with high affinity, nor proteins that bind

through the alternative APIMmotif.5

Regulation of the cell cycle through PIP-

dependent degradation of key protein such as

p27, Cdt1 and – most recently - Cdc66 pro-
vides yet another critical role for PCNA. Its

Figure 1. PCNA’s many partners. Interactions with PCNA (structure from PDB 1axc) can be through
classical PIP motif (Qxx[L/I/M]xx[F/Y][F/Y],1,2 (pale boxes)) binding to the interdomain connector
loop in PCNA or via an APIM motif ([K/R]VF[I/V]K)5 (dark boxes). The newly identified PCNA partners
Maf1, RNF7 and SetD34 (black arrows) contribute to transcription, ubiquitination and chromatin
regulation.
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interaction with RNF-7, an essential Skp1-

cullin/cdc53 F box ubiquitin ligase is therefore

not unexpected, and may help to ensure that

replication occurs once and only once per cell
cycle. Given that MCM disassembly from ter-

minating replication forks requires MCM7

ubiquitination by an as yet unidentified cullin-

family protein,7 PCNA at a terminating replica-

tion fork might also provide a platform for

recruitment of an ubiquitin ligase at the right

time and place to regulate replisome disas-

sembly. Integration of nutritional status and
stress signals is essential to ensure appropri-

ate cell cycle progression; increasing evidence

supports a cytosolic role for PCNA in signaling,

with APIM peptide-containing proteins impli-

cated in cell cycle control and damage signal-

ing.5 Hence the finding that Maf1, a

transcriptional repressor, binds PCNA might
provide a further link between cytosolic sig-

naling (in this case via mTORC, which targets

Maf1) and transcriptional responses. PIP or no

PIP, PCNA partners play a huge role in the cell

and PCNA is turning out to be one of the

major hubs coordinating cellular metabolism.
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