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Summary The anti-vascular action of the tubulin binding agent combretastatin A-4 phosphate (CA-4-P) has been quantified in two types of
murine tumour, the breast adenocarcinoma CaNT and the round cell sarcoma SaS. The functional vascular volume, assessed using a
fluorescent carbocyanine dye, was significantly reduced at 18 h after CA-4-P treatment in both tumour types, although the degree of reduction
was very different in the two tumours. The SaS tumour, which has a higher nitric oxide synthase (NOS) activity than the CaNT tumour, showed
~10-fold greater resistance to vascular damage by CA-4-P. This is consistent with our previous findings, which showed that NO exerts a
protective action against this drug. Simultaneous administration of CA-4-P with a NOS inhibitor, Nω-nitro-L-arginine (L-NNA), resulted in
enhanced vascular damage and cytotoxicity in both tumour types. Administration of diethylamine NO, an NO donor, conferred protection
against the vascular damaging effects. Following treatment with CA-4-P, neutrophil infiltration into the tumours, measured by
myeloperoxidase (MPO) activity, was significantly increased. Levels of MPO activity also correlated with the levels of vascular injury and
cytotoxicity measured in both tumour types. Neutrophilic MPO generates free radicals and may therefore contribute to the vascular damage
associated with CA-4-P treatment. MPO activity was significantly increased in the presence of L-NNA, suggesting that the protective effect of
NO against CA-4-P-induced vascular injury may be, at least partially, mediated by limiting neutrophil infiltration. The data are consistent with
the hypothesis that neutrophil action contributes to vascular injury by CA-4-P and that NO generation acts to protect the tumour vasculature
against CA4-P-induced injury. The protective effect of NO is probably associated with an anti-neutrophil action. © 2000 Cancer Research
Campaign
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The identification of tumour vasculature as a potential target in
cancer therapy is based on the critical dependence of solid tumour
growth upon a functional blood-vessel network (Folkman, 1990).
In contrast to anti-angiogenic strategies, anti-vascular targeting
aims to cause a rapid and extensive shut-down of the established
tumour vasculature, leading to secondary tumour cell death. One
of the most promising tumour vascular-targeting drugs is the
tubulin-binding agent combretastatin A4-P (CA-4-P), which is
currently in Phase I clinical trial. CA-4-P is cleaved to the active
but less soluble CA-4 by endogenous non-specific phosphatases.
CA-4-P has a high affinity for tubulin at or near the colchicine
binding site, thereby inhibiting the polymerization of the tubulin
polymers of the cytoskeleton (Pettit et al, 1989; Woods et al,
1995). Systemic administration of CA-4-P causes vascular shut-
down, at relatively non-toxic doses, in a range of rodent and
human tumours (Chaplin et al, 1996; 1999; Horsman et al, 1998;
Grosios et al, 1999). Selectivity to tumour tissue was demonstrated
in a rat model (Tozer et al, 1999). Although in vitro studies have
demonstrated profound anti-proliferative/cytotoxic and apoptotic
effects of CA-4-P against proliferating human umbilical vein
endothelial cells (HUVECs) (Iyer et al, 1998; Dark et al, 1997;
Grosios et al, 1999), these are only found at relatively high doses.
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The in vivo response of the tumour vasculature is more likely
associated with non-cytotoxic effects on endothelial cells, such as
condensation of the β-tubulin cytoskeleton and permeability
changes, which have been reported for combretastatin A-1 and
CA-4-P (Watts et al, 1997; Grosios et al, 1999; S. Galbraith,
unpublished data).

Further information is required regarding the mechanism of
action of CA-4-P under in vivo conditions. The present study was
designed to investigate the role of nitric oxide (NO) in determining
the tumour vascular damage induced by CA-4-P. Recent evidence
suggests that NO protects against several vascular-damaging
strategies. Using two murine tumour types with very different NO
production rates, it was found that the high NO-producing tumour
was less susceptible to injury induced by oxidative stress
following ischaemia-reperfusion (I/R) insult than the low NO-
producing tumour (Parkins et al, 1995; 1997). More direct
evidence was obtained by nitric oxide synthase (NOS) inhibition,
which increased the oxidative stress associated with I/R injury
(Parkins et al, 1998) and vascular injury following photodynamic
therapy (Korbelik et al, 1997; 2000). Overall, the protective action
of NO was observed in a total of six tumour types. Recently, the L-
arginine analogue, Nω-nitro-L-arginine (L-NNA) has been shown
to potentiate the tumour vascular damage induced by CA-4-P,
while having very little effect in a range of normal tissues (Tozer et
al, 1999).

Studies of normal tissue inflammation have shown that vascular
damage is mediated largely by neutrophil adhesion to the endo-
thelium, with subsequent generation of oxidizing species by
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neutrophilic myeloperoxidase (MPO) (Grisham et al, 1986; Kettle
and Winterbourn, 1997; Kettle et al, 1997; van der Vleit et al,
1997; Eiserich et al, 1998). Nitric oxide strongly attenuates
neutrophil-endothelial adhesion (Kubes et al, 1991; Zimmerman et
al, 1992) and this pathway is therefore a potential candidate for
explaining the protective effect of NO against CA-4-P-induced
vascular injury.

In the present study we investigated the role of NO in CA-4-P-
induced vascular injury in two types of murine tumour; the CaNT
and SaS tumours, which have significantly different NOS activi-
ties. Using these tumour models, we tested the hypothesis that the
anti-neutrophil actions of NO were responsible for the protective
role of NO against CA-4-P-induced vascular damage.

MATERIALS AND METHODS

Animals and tumours

Female CBA/Gy f TO mice, aged 12–16 weeks, were used
throughout this study. Tumours were implanted in the dorsal
subcutaneous region of anaesthetized mice (Metofane, Janssen,
Ontario, Canada) with either a crude suspension of the syngeneic
breast adenocarcinoma CaNT, containing ~ 1 × 106 cells, or a 
1 mm3 piece of the round cell sarcoma SaS. Tumours were used
for experiment when their geometric mean diameter (gmd)
reached 6–8 mm (~200–400 mg). The tumour concentration of
nitrate, the oxidized form of NO in vivo, is approximately 3 µmol
1–1 for CaNT and 8 µmol 1–1 for SaS tumours, as measured by
high-performance ion chromatography of microdialysed tumour
samples (unpublished data). All animal procedures were carried
out under a project licence in accordance with the Home Office
(Scientific Procedures) Act, 1986.

Measurement of vascular volume

The vascular volume of tumours, indicating the volume of
perfused blood vessels as a fraction of the volume of tumour tissue
was assessed histologically for control and CA-4-P-treated
tumours from the perivascular distribution of the fluorescent
carbocyanine dye DiOC7 (Molecular Probes, Netherlands) (Trotter
et al, 1989). Tumours were assayed at 18 h after treatment with
CA-4-P. Briefly, tumours were excised 10 min following a tail
vein injection of DiOC7 (0.6 mg ml–1 in 75% DMSO in saline,
equivalent to 1 mg kg–1) and stored frozen at – 20°C. Cryostat
sections (10 µm) were prepared and observed using a fluorescence
microscope (excitation 480 nm, emission 510 nm). The vascular
fraction, i.e. vessels showing perivascular staining by the dye, was
estimated by counting a minimum of 100 fields from sections cut
at three levels through each tumour, using a morphometric method
based on that originally described by Chalkley (Chalkley, 1943;
Hill et al, 1995).

Cell survival excision assay

Measurement of clonogenic cell survival was performed at 18 h
after tumour treatment, using an in vivo:in vitro excision assay as
previously described (Parkins et al, 1994). Briefly, excised
tumours were enzyme-digested to yield viable tumour cells that
were plated in culture dishes and incubated until macroscopic
colonies were visible and could be counted. Relative cell survival
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was calculated from the number of clonogens per gram of treated
tumour as a fraction of those grown per gram of control tumours.

Drug treatments

Disodium combretastatin A-4 3-O-phosphate (CA-4-P) was kindly
provided by Oxigene Corporation (Sweden). The tumour concen-
tration of NO was manipulated by either: inhibition of NO
synthase by Nω-nitro-L-arginine (L-NNA) (Sigma, UK) or 
1400 W; or supplementation of NO concentration by intravenous
injection of diethylamine NO (DEANO) (Molecular Probes,
Netherlands), an agent that releases NO upon chemical dissocia-
tion. L-NNA and 1400 W were dissolved in saline and adminis-
tered via intraperitoneal injection at 20 mg kg–1 (0.01 ml g–1 body
weight). 1400 W was kindly provided by Dr LL Thomsen (Glaxo
Wellcome Research, Welwyn, Hertfordshire, UK). DEANO,
dissolved in 1 mM NaOH, was administered via intravenous injec-
tion to achieve a dose of 20 mg kg–1. In combination experiments,
CA-4-P and L-NNA or DEANO were administered simultane-
ously.

Measurement of tumour myeloperoxidase activity

Following treatment by CA-4-P, the degree of neutrophil infiltra-
tion was investigated using a modification to a spectrophotometric
assay of myeloperoxidase (MPO) (Hotter et al, 1997). Briefly,
tumours were homogenized in hexadecyltrimethylammonium
bromide in phosphate buffer and after centrifugation the
supernatants were assayed for myeloperoxidase activity.
Myeloperoxidase activity was assayed spectrophotometrically at
630 nm using the substrate 3,3′,5,5′-tetramethylbenzidine and
hydrogen peroxide in phosphate buffer. One unit (U) of enzyme
activity is defined as the quantity of protein that produced an
increase in absorbance of 1 unit per minute. MPO activity data is
presented without correction for the presence of haemoglobin. The
total protein content of each homogenate was determined using a
commercial kit (Sigma, UK) and enzyme content expressed as 
U mg–1 protein.

Statistical analysis of data

All the numerical data from analysis of vascular volume, cyto-
toxicity, neutrophil infiltration and myeloperoxidase activity are
expressed as mean value ± 1 standard error of the mean (SEM).
Statistical analysis was carried out using Student’s t-test (signifi-
cance achieved if P < 0.05).

RESULTS

Vascular shutdown studies

Figure 1 shows functional vascular volume measured in the CaNT
and SaS tumours at 18 h following treatment with various doses of
CA-4-P. The results indicate that significant dose-dependent
reductions in functional vascular volume were achieved in both
tumour types, with virtually complete shutdown of functional
vasculature after 300 mg kg–1 dose in CaNT tumours (0.107 ±
0.07% compared to 2.91 ± 0.39% for controls). The SaS tumour
vasculature was more resistant to CA-4-P than that of the CaNT
with only a partial reduction of functional vascular volume
© 2000 Cancer Research Campaign
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Figure 1 The functional vascular volume of two types of murine tumour
measured 18 h following treatment by a single dose of combretastatin A4-P
(CA-4-P). The breast adenocarcinoma CaNT (upper panel) was
approximately 10-fold more sensitive to CA-4-P compared to the sarcoma
SaS (lower panel) (filled bars). Simultaneous administration of CA-4-P with
the NOS inhibitor L-NNA (20 mg kg–1) significantly potentiated the vascular
damage in both tumour types (hatched bars). A significant protective action
against CA-4-P damage was observed by administration of the NO donor
DEANO (20 mg kg–1), for the highest CA-4-P doses investigated (open bars).
Bars are means ± 1 SEM with six tumours per group (* P < 0.05 in
comparison with controls; ** P < 0.05 for enhancement by L-NNA or
protection by DEANO)
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Figure 2 Clonogenic cell survival was measured in CaNT and SaS tumours
at 18 h after treatment with a single dose of CA-4-P, at 50 or 500 mg kg–1

respectively, given alone or in combination with L-NNA (20 mg kg–1). Tumour
cytotoxicity was potentiated in both tumour types by simultaneous
administration with L-NNA. The results from both tumour types suggest that
intrinsic cellular generation of NO acts to protect against tumour cytotoxicity
by CA-4-P. Bars are means ± 1 SEM with six tumours per group (* P < 0.05
for enhancement by L-NNA)
following the higher dose of 500 mg kg–1 (1.44 ± 0.23% compared
to 3.29 ± 0.53% for controls).

Simultaneous administration of the NOS inhibitor L-NNA with
CA-4-P resulted in a significantly enhanced shutdown of the
vasculature in both tumour types, compared to CA-4-P alone. In
the CaNT tumour no functional vessels were visible 18 h after
treatment with 300 mg kg–1 CA-4-P and L-NNA. The inhibitor
alone tended to reduce vascular volume, but this was not signifi-
cant. Simultaneous administration of CA-4-P with DEANO, an
agent that chemically releases NO, resulted in significant protec-
tion against the anti-vascular actions of CA-4-P. The protective
action of DEANO was observed in both tumour types and the NO
donor had no significant effect in the absence of CA-4-P.
Administration of the highly selective iNOS inhibitor 1400 W, at
20 mg kg–1, did not result in potentiation of the anti-vascular
actions of CA-4-P in the SaS tumour (1.57 ± 0.18% compared to
1.44 ± 0.23% for 500 mg kg–1 CA-4-P alone) (results not shown).

Clonogenic cell survival studies

The cytotoxicity associated with a prolonged reduction in tumour
vascular volume was assessed using a clonogenic cell survival
assay (Figure 2). Tumour cytotoxicity was measured at 18 h
following CA-4-P treatment with 50 mg kg–1 for CaNT tumour-
bearing mice or 500 mg kg–1 for SaS tumour-bearing mice. This
10-fold difference in CA-4-P dose was chosen to achieve a similar
© 2000 Cancer Research Campaign
reduction in functional vascular volume in the two tumours, based
on the data shown in Figure 1. Cell survival was significantly
reduced in both tumour types when L-NNA was administered
simultaneously with CA-4-P, although the effect was much larger
for the CaNT tumour. The inhibitor alone did not significantly
reduce tumour viability in CaNT or SaS tumours (surviving frac-
tion = 0.57 and 0.78, respectively). A dose-response for CA-4-P-
induced cytotoxicity was observed for the CaNT tumour with
surviving fraction at 18 h reduced to 0.008 ± 0.006 for a single
dose of 300 mg kg–1 (results not shown).

Neutrophil recruitment and myeloperoxidase activities

The degree of neutrophil infiltration into CaNT and SaS tumours
was indicated by the total tumour content of neutrophilic
myeloperoxidase (MPO), measured at 18 h following CA-4-P
treatment (Figure 3). We assume that, at this time, neutrophils
were mostly disseminated within the tumour as we have found for
I/R injury (unpublished data). The MPO activity for control SaS
tumours was approximately 30-fold lower than that for CaNT
tumours. Both tumour types showed a CA-4-P dose-dependent
increase, although the MPO activity reached remains less in the
SaS than in the CaNT tumour. In both tumour types, the simulta-
neous administration of L-NNA with CA-4-P resulted in an
increase in MPO activity compared to CA-4-P alone. This was
significant in all cases except for the 500 mg kg–1 dose in the SaS
British Journal of Cancer (2000) 83(6), 811–816
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Figure 3 The degree of neutrophil infiltration induced by CA-4-P treatment
of CaNT (upper panel) and SaS tumours (lower panel) was indicated by the
total tumour activity of myeloperoxidase (MPO), an enzyme characteristically
expressed by neutrophils. A clear CA-4-P dose-dependent increase in MPO
activity was shown in both tumour types, although the maximum level
reached in SaS tumours was significantly lower than that in CaNT tumours
(note the 10-fold difference in the vertical axes) (filled bars). Simultaneous
administration of L-NNA (20 mg kg–1) with CA-4-P resulted in significant
potentiation of neutrophil infiltration in both tumour types with the exception of
the 500 mg kg–1 dose for the SaS tumour (hatched bars). Bars are means 
± 1 SEM with 4–10 tumours per group (*P < 0.05 in comparison with controls;
** P < 0.05 for enhancement by L-NNA)
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Figure 4 The time-dependency of administration of CA-4-P with L-NNA
(20 mg kg–1) was investigated in CaNT tumours by measurement of the total
tumour myeloperoxidase content. A similar degree of neutrophil infiltration
was observed for all intervals except when CA-4-P was given at 6 h after 
L-NNA. Symbols: ▲ = control untreated; O = CA-4-P (50) alone; 
■ = combinations of CA-4-P and L-NNA (20). Bars are means ± 1 SEM with
4–6 tumours per group (*P < 0.05 in comparison with controls; **P < 0.05
for enhancement by L-NNA)
tumour. Data for 50 mg kg–1 CA-4-P alone indicates an approxi-
mately 50-fold difference in MPO activity between the two
tumour types, which decreases to approximately 10-fold in the
presence of L-NNA. Correction of MPO activity for the presence
of haemoglobin in tumour samples did not alter the trends shown
by either tumour type.

The potential importance of sequencing the administration of
CA-4-P and L-NNA on neutrophil infiltration was investigated in
the CaNT tumour (Figure 4). The results indicate that L-NNA
given up to 6 h after CA-4-P has a similar effect on neutrophil
infiltration as simultaneous administration, although only the
simultaneous administration was significantly different from CA-
4-P treatment alone. However, pre-treatment with L-NNA is only
effective if given within 3 h of CA-4-P treatment.

DISCUSSION

The present study investigated CA-4-P damage in two different
types of murine tumours, previously assessed to have widely
differing intrinsic generation of NO. These tumours have previ-
ously been characterized for their response to vascular damage
following oxidative stress, induced by I/R injury (Parkins et al,
1995; 1997; 1998). The data indicated that NO protects against
both neutrophil infiltration and vascular damage following I/R
injury, most probably mediated by the inhibitory action of NO
against the oxidative stress induced by binding of blood
British Journal of Cancer (2000) 83(6), 811–816
neutrophils to tumour vascular endothelium. In those studies,
neutrophil infiltration was quantified by assay of myeloperoxidase
activity and found to correlate with the number of infiltrated
neutrophils assessed by immuno-histochemical staining. This
correlation was evident whether or not the MPO activity was
corrected for the presence of haemoglobin (unpublished data). The
potentiation of I/R injury evoked by administration of L-NNA was
not evident following administration of 1400 W, a potent and
selective inhibitor of the inducible isoform of NOS (iNOS). Our
current results with CA-4-P are very similar to these, indicating
strong parallels between vascular damage evoked by I/R and CA-
4-P. In particular, we can say that there is a protective effect of NO
production against both types of injury, even in the low NO-
producing CaNT tumour, and that this is not due to NO produced
by inducible NOS (iNOS). We can therefore hypothesize that NO,
produced by constitutive endothelial cell NOS (eNOS), is impor-
tant in evoking protection against vascular injury induced by both
I/R and CA-4-P.

It is evident from the present results that a large part of the
protection evoked by NO may be associated with a reduction in
neutrophil infiltration. A similar protective role for NO, against
neutrophil infiltration, has recently been reported for vascular
damage following oxidative stress induced by photodynamic
therapy (PDT) (Korbelik et al, 1997; 2000). However, it is not
clear from the present study whether the anti-neutrophil actions
of NO account entirely for its protective role. A cytoprotective
© 2000 Cancer Research Campaign
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effect of NO can occur if partially reduced oxygen intermediates
interact with NO and redirect the reactions along a less-
damaging pathway (Wink et al, 1993). The vascular effects of
CA-4-P occur very rapidly, within minutes of administration
(Tozer, unpublished data) and some of the protection evoked by
NO may occur before there is any significant CA-4-P-induced
neutrophil adherence or infiltration. Although the important roles
of NO and neutrophilic myeloperoxidase have been addressed in
the present experiments, the observed protective role of NO may
be explained, in part, by other published mechanisms. Recent
reports have indicated that neutrophilic myeloperoxidase can
react directly with nitrate, from NO, to yield nitrotyrosine
(Eiserich et al, 1996; 1999). Incorporation of nitrotyrosine into
tubulin alters its protein function and has been reported to confer
resistance to the cytoskeleton against the action of the tubulin-
binding agent, colchicine (Skoufias and Wilson, 1998; Eiserich
et al, 1999). The present data on the differences between the two
tumour lines would be consistent with this hypothesis if the
cytoskeleton of endothelial cells in the SaS tumour contains a
higher content of nitrosated proteins than in the CaNT tumour,
due to differences in NO concentration. This aspect of nitrotyro-
sine-induced resistance to tubulin-binding agents, especially 
CA-4-P, will form part of our future work to identify its role in
vascular targeting.

The present results indicate that CA-4-P-induced reduction in
vascular volume does not directly correlate with the degree of
cytotoxicity measured in the two different tumour types.
Although vascular volume was reduced at 18 h following CA-4-
P treatment, cytotoxicity will depend upon the extent and dura-
tion of vascular shutdown over the whole 18-h period. This
time-course may be very different for the two tumour types and
cytotoxicity will depend upon the blood-flow remaining in the
patent vasculature and changes in oxygen and nutrient consump-
tion of tumour cells following treatment. Our previous studies of
I/R injury indicate that recovery of perfusion, following a period
of ischaemia, is associated with increased tumour cytotoxicity
due to generation of reactive oxygen species from tissue re-
oxygenation. Therefore, any differences in the time-course of
vascular volume changes between the tumour types would also
influence the final cytotoxicity observed. A dose-dependent
recovery of blood perfusion has been observed in the rat P22
carcinosarcoma tumour following CA-4-P treatment (Tozer,
unpublished data). Significant tumour type-dependent differ-
ences in the enzymes xanthine oxidase and dehydrogenase,
which are associated with generation of reactive oxygen species
upon vascular reperfusion, have been measured in these tumour
types and these could influence the cytotoxicity results that we
observed following vascular injury by CA-4-P (Anderson et al,
1989; Parkins et al, 1997).

The time-dependence for L-NNA potentiation of CA-4-P-
induced neutrophil infiltration appears relatively insensitive for
intervals up to 6 h, although significant potentiation was only
achieved for simultaneous administration and was lost if CA-4-P
was given 6 h after L-NNA. This loss of potentiation was probably
due to recovery of NO production at this time. It is likely that L-
NNA influences tumour exposure to CA-4-P via a reduction in
tumour blood-flow. However, altered pharmacokinetics of CA-4-P
are unlikely to explain the current results, as a reduction in flow is
likely to decrease tumour exposure to CA-4-P and this is inconsis-
tent with the potentiating effect of L-NNA.
© 2000 Cancer Research Campaign
The sensitivity of different tumour types to tubulin-binding
agents appears to be, at least partly, determined by mechanisms
dependent upon the intrinsic generation and local concentration of
NO, combined with factors associated with the tumour content of
neutrophilic MPO. The relative importance of these pathways is
currently being investigated.

The modifying effects of NO on CA-4-P induced tumour
vascular damage may have therapeutic potential. For instance, we
have previously shown, in a rat model, that the combination of L-
NNA and CA-4-P potentiates vascular damage in the tumour but
not in normal tissues (Tozer et al, 1999). It is concluded from the
present study that much of this is due to tumour-dependent levels
of NO acting to reduce tumour infiltration of neutrophils, thereby
reducing damage to the tumour vascular endothelium following
CA-4-P. Such an understanding of the role of NO in tumour
vascular function will not only be important for the future devel-
opment of CA-4-P as a cancer chemotherapeutic agent but also for
the future development of new vascular targeting agents.
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