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Abstract

Parkinson disease (PD) is a chronic progressive neurodegenerative disorder character-

ized pathologically by early loss of neuromelanin (NM) in the substantia nigra pars

compacta (SNpc) and increased iron deposition in the substantia nigra (SN). Degener-

ation of the SN presents as a 50 to 70% loss of pigmented neurons in the ventral lat-

eral tier of the SNpc at the onset of symptoms. Also, using magnetic resonance

imaging (MRI), iron deposition and volume changes of the red nucleus (RN), and sub-

thalamic nucleus (STN) have been reported to be associated with disease status and

rate of progression. Further, the STN serves as an important target for deep brain

stimulation treatment in advanced PD patients. Therefore, an accurate in-vivo delin-

eation of the SN, its subregions and other midbrain structures such as the RN and

STN could be useful to better study iron and NM changes in PD. Our goal was to use

an MRI template to create an automatic midbrain deep gray matter nuclei segmenta-

tion approach based on iron and NM contrast derived from a single, multiecho mag-

netization transfer contrast gradient echo (MTC-GRE) imaging sequence. The short

echo TE = 7.5 ms data from a 3D MTC-GRE sequence was used to find the NM-rich

region, while the second echo TE = 15 ms was used to calculate the quantitative sus-

ceptibility map for 87 healthy subjects (mean age ± SD: 63.4 ± 6.2 years old, range:

45–81 years). From these data, we created both NM and iron templates and calcu-

lated the boundaries of each midbrain nucleus in template space, mapped these

boundaries back to the original space and then fine-tuned the boundaries in the
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original space using a dynamic programming algorithm to match the details of each

individual's NM and iron features. A dual mapping approach was used to improve the

performance of the morphological mapping of the midbrain of any given individual to

the template space. A threshold approach was used in the NM-rich region and sus-

ceptibility maps to optimize the DICE similarity coefficients and the volume ratios.

The results for the NM of the SN as well as the iron containing SN, STN, and RN all

indicate a strong agreement with manually drawn structures. The DICE similarity

coefficients and volume ratios for these structures were 0.85, 0.87, 0.75, and 0.92

and 0.93, 0.95, 0.89, 1.05, respectively, before applying any threshold on the data.

Using this fully automatic template-based deep gray matter mapping approach, it is

possible to accurately measure the tissue properties such as volumes, iron content,

and NM content of the midbrain nuclei.
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1 | INTRODUCTION

Parkinson disease (PD) is a chronic progressive neurodegenerative disor-

der affecting approximately 1% of individuals over 60 years of age

(Kowal, Dall, Chakrabarti, Storm, & Jain, 2013). PD is characterized path-

ologically by early neurodegeneration of neuromelanin (NM) in the sub-

stantia nigra pars compacta (SNpc) and increased iron deposition in the

substantia nigra (SN) (Dexter et al., 1991; Greenfield & Bosanquet, 1953;

He et al., 2021). Degeneration of the SN is a hallmark of the progression

of a number of neurodegenerative diseases. In addition to PD, extensive

neuronal loss in the SNpc also occurs in atypical parkinsonian disorders

including progressive supranuclear palsy (PSP) and multiple system atro-

phy (MSA), although different subregions of the SN are affected in these

disorders (Dexter et al., 1991; Fearnley & Lees, 1991). The SN is com-

posed of two anatomically and functionally distinct regions, the SN pars

reticulata (SNpr) and the SNpc. The SNpc contains a dense distribution

of NM containing dopaminergic neurons while iron content tends to be

higher in the SNpr (Damier, Hirsch, Agid, & Graybiel, 1999; Olszewski &

Baxter, 1954). However, clusters of SNpc dopaminergic neurons (known

as nigrosomes) are deeply embeddedwithin the SNpr, thus the boundary

between the SNpr and the SNpc is difficult to delineate, especially in the

caudal region of the SN (Damier et al., 1999). The regional selectivity of

PD is relatively specific with a 50 to 70% loss of pigmented neurons in

the ventral lateral tier of the SNpc at the onset of symptoms (Cheng,

Ulane, & Burke, 2010; Dauer & Przedborski, 2003; Fearnley &

Lees, 1991; Ross et al., 2004). In addition to the SN, iron deposition and

volume changes of the red nucleus (RN) and subthalamic nucleus (STN)

have been reported to be associated with the disease status and rate of

progression (Colpan & Slavin, 2010; Lewis et al., 2013). Also, the STN

serves as an important target for deep brain stimulation (DBS) treatment

in advanced PD patients (DeLong & Wichmann, 2015; Guridi

et al., 2018). Inappropriate placement of the DBS electrodes will cause

multiple side effects, such as muscle contraction, akinesias, dizziness,

and mood changes (Boon et al., 2020; Guehl et al., 2006). Precise preop-

erative imaging ismandatory in surgical planning tomaximize therapeutic

benefits and minimize side effects (Lang et al., 2006; T. Liu et al., 2013).

Therefore, an accurate and comprehensive in-vivo delineation of the SN

and its subregions, as well as the RN and the STN, could be useful to fully

investigate the iron and NM changes in PD and other movement disor-

ders affecting themidbrain.

To date, many studies still use manual or semi-automated

approaches to demarcate the deep brain gray matter (Chen

et al., 2014; Sun et al., 2020; Xiong et al., 2020). However, manual

segmentation is time-consuming, especially when large amounts of

data need to be evaluated. And, unless the raters are well trained,

manual drawings are less reliably duplicated from individual to individ-

ual or site to site. Some studies include the use of templates to map

iron and/or NM content (Huddleston et al., 2017; Langley et al., 2019;

Langley, Huddleston, Sedlacik, Boelmans, & Hu, 2017; Uchida

et al., 2020). Creating standardized templates may have a significant

impact on recognizing changes in the distribution of iron and NM;

automatically calculating the deep gray matter volumes; quantifying

the iron content and changes in the NM signal; and, finally, on the reli-

ability of these measurements. Anatomical templates of the SN using

conventional magnetic resonance imaging (MRI) sequences have been

used previously (Murty et al., 2014; Pauli, Nili, & Tyszka, 2018). Pauli

et al. employed T1W and T2W images to create a high-resolution

probabilistic in vivo subcortical nuclei atlas and succeeded in

segmenting the SN into the SNpc and SNpr. However, this atlas was

based on the images from a young adult population (mean ± SD age:

28.9 ± 3.6 years) which may not be suitable for studies on elderly sub-

jects. Furthermore, both T1W and T2W contrast images cannot be

easily used to delineate the highly inter-digitated boundaries between

the SNpc and SNpr in elderly subjects. Based on the anatomical con-

nection of the SN subregions to different parts of the brain

(Beckstead, Domesick, & Nauta, 1979; Parent & Hazrati, 1994),
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several studies used diffusion-based tractography to segment the SN

into the SNpc and SNpr (Menke, Jbabdi, Miller, Matthews, &

Zarei, 2010) or subdivide the SN/ventral tegmental area (VTA) into

dorsomedial and ventrolateral subregions (Chowdhury, Lambert,

Dolan, & Duzel, 2013). However, the estimated structural connectivity

has well-known biases and is highly dependent upon the data acquisi-

tion and fiber tracking algorithm and tends to have low resolution

(Maier-Hein et al., 2017; Thomas et al., 2014). Thus, direct visualiza-

tion and segmentation of the SN and its subregions using high resolu-

tion imaging would appear to be a more desirable option especially

when it comes to detecting subtle pathological changes of the SN.

The best approach to determine the boundaries of the midbrain

nuclei and study pathological changes in PD patients appears to come

from the use of T2*-weighted gradient echo (GRE) imaging and/or sus-

ceptibility weighted imaging (SWI) where iron containing regions appear

hypointense (Cho et al., 2011; Kwon et al., 2012). The development of

quantitative susceptibility mapping (QSM) (de Rochefort et al., 2010;

Haacke et al., 2015) enables the quantification of iron stored in ferritin

and hemosiderin (Bilgic, Pfefferbaum, Rohlfing, Sullivan, &

Adalsteinsson, 2012). Previous studies using QSM have shown that the

tissue magnetic susceptibility correlated well with brain iron in PD

patients (Acosta-Cabronero et al., 2017; Ghassaban et al., 2019; Haacke

et al., 2015; He et al., 2020). In addition, QSM has been shown to be

superior to traditional T2W imaging in preoperative target guidance of

DBS (Dimov, Gupta, Kopell, & Wang, 2018). However, QSM alone is not

able to separate the SNpc from the SN because both the SNpc and SNpr

contain iron. This limitation can be solved by using NM-sensitive MRI

(NM-MRI) developed in the last few years (Pavese & Tai, 2018). The

SNpc and ventral tegmental area (VTA) are mainly composed of the

dopaminergic neurons containing NM, but the SNpr is not. Hence, the

hyperintense signal seen in NM-MRI in the midbrain is spatially associ-

ated with the SNpc and VTA region as validated by postmortem histo-

logical studies (Keren et al., 2015). Thus, the overlap between the NM

volume (SNpc plus VTA) and iron containing SN volume (SNpc plus

SNpr) is thought to represent the SNpc (He et al., 2021).

So far, there is no study to segment the SNpc accurately and reli-

ably using both QSM and NM-MRI imaging. Some studies have tried to

create an SN atlas using only QSM (Guo et al., 2018; Keuken

et al., 2014; Visser, Keuken, Forstmann, & Jenkinson, 2016), while

others have created a NM template based on the NM-MRI imaging

using manual drawing, automated segmentation, or artificial intelligence

(Ariz et al., 2019; Krupicka et al., 2019; Nakamura, Okada, Kunimatsu,

Kasai, & Koike, 2018; Safai et al., 2020). The goal of using a template

would be to make the identification of the boundaries easier. However,

template mapping is not perfect and the ideal space to mark the bound-

aries is in the original pristine data space. Whether in template space or

original space, simple thresholding methods have their drawbacks. Set-

ting the threshold to higher or lower values can lead to dramatic

changes in the estimated volume of the NM or iron content (Safai

et al., 2020), especially in PD patients with severe NM degeneration

and iron deposition in the SN. Variable contrast in the images can also

make it difficult to use a number of algorithms such as region growing.

Despite the fact that the SN has high iron content compared to the

surrounding regions, it is not uniformly distributed and there are reduc-

tions in iron in the nigrosome 1 (N1) territory (Blazejewska et al., 2013).

Gaps in the structure such as the N1 territory can also make it difficult

to automatically segment the SN and NM regions-of-interest (ROIs).

Therefore, in this work, we attempted to create a fully automatic

midbrain nuclei segmentation approach based on iron and NM con-

trast derived from a single, high resolution, multi-echo magnetization

transfer contrast gradient echo (MTC-GRE) sequence as follows: cal-

culate the boundaries of each structure in template space, map these

boundaries back to the original space, and then fine tune the bound-

aries in the original space using a dynamic programming algorithm

(DPA) to match the details of each individual's NM and iron features.

2 | MATERIALS AND METHODS

2.1 | Subjects

This study was approved by the local ethics committee and all sub-

jects signed a consent form. Eighty-seven healthy subjects (mean age

± SD: 63.4 ± 6.2 years old, range: 45–81 years, 53 females) were rec-

ruited from the local community by advertisement. The exclusion

criteria for the healthy subjects included the following: (a) structural

abnormalities, such as tumor, subdural hematoma, or contusion from a

previous head trauma; (b) a history of stroke, addiction, neurologic or

psychiatric disease, and (c) large-vessel disease and/or diseases with

large volume white matter lesions (i.e., Fazekas grade III).

2.2 | Data acquisition

MR imaging was carried out on a 3T Ingenia scanner (Philips Healthcare,

TheNetherlands) using a 15-channel head array coil. The imaging parame-

ters of the 3D gradient echo SWI sequence with an activated magnetiza-

tion transfer contrast (MTC) pulse were as follows: shortest TE = 7.5 ms,

ΔTE= 7.5 ms with a total of seven echoes, TR= 62 ms, flip angle= 30�,

pixel bandwidth = 174 Hz/pixel, matrix size = 384 � 144, slice

thickness = 2 mm, slice number = 64, spatial in-plane

resolution = 0.67 � 1.34 mm2 interpolated to 0.67 � 0.67 mm2, a sense

factor of 2, elliptical sampling of k-space and a total scan time of 4 min

47 s. The MT on-resonance radio-frequency pulse used a nominal flip

angle of 90�, zero frequency offset, and a set of three-block pulses each of

duration 1.914 ms. The minimum TR was 62 ms because of the specific

absorption rate safety considerations. Due to this long repeat time, seven

echoeswere collected.

2.3 | Data processing

2.3.1 | QSM reconstruction

The first echo of the MTC-SWI magnitude image (TE = 7.5 ms) was

used to delineate the NM content since that provided the key MT
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contrast. The second echo (TE = 15 ms) was used for QSM recon-

struction to evaluate iron deposition in the SN, RN, and STN. The sus-

ceptibility maps were created using the following steps: the brain

extraction tool, BET (threshold = 0.2, erode = 4, and island = 2000),

to segment the brain (Smith, 2002), a 3D phase unwrapping algorithm

(3DSRNCP) to unwrap the original phase data (Abdul-Rahman

et al., 2007), sophisticated harmonic artifact reduction (SHARP) to

remove unwanted background fields (threshold = 0.05 and

deconvolution kernel size = 6) (Schweser, Deistung, Lehr, &

Reichenbach, 2011), and a truncated k-space division (TKD)-based

inverse filtering technique (threshold = 0.1) (Haacke, Tang,

Neelavalli, & Cheng, 2010) with an iterative approach (iteration

threshold = 0.1 and number of iterations = 4) to reconstruct the final

QSM maps (Tang et al., 2013).

2.3.2 | Manual ROI segmentation

The ROIs for the NM-rich region, SN, RN, and STN were manually

traced by a single rater on MTC magnitude images and QSM maps

zoomed by a factor of four using SPIN software (SpinTech, Inc., Bing-

ham Farms, MI). The NM-based SN boundaries were traced from the

last caudal slice for three to five slices cranially until the NM-rich

region was no longer visible. The iron-based SN boundaries were

traced starting from one slice below the most cranial slice where the

STN was visible and continued for four to six consecutive slices to the

most caudal slice. The RN ROIs were outlined from the last caudal

slice for three to four slices cranially. The STN ROIs were traced from

the top of the RN for two slices cranially. For all the ROIs, a DPA was

used to determine the final boundaries to alleviate the subjective bias.

All these boundaries were then reviewed by a second rater and modi-

fied accordingly in consensus with the first rater.

2.3.3 | Developing the segmentation approach

Preparing the template and creating the atlas

The process for creating the midbrain template used the following

steps: the NM template was based on the 7.5 ms echo time MTC data

acquisition starting with the original full brain 64-slice data. One of

the best cases was chosen as our template, and the images were

zoomed in-plane by a factor of four for all 64 slices. All other cases

were mapped to that template using a global transformation over the

central 50 slices. A rigid transformation followed by an affine transfor-

mation, and then a b-spline transformation was applied using the

insight segmentation and registration toolkit freeware ITK. The same

transformation was used to map the QSM data to the same best case.

Practically, we found that these global deformations did not produce

good enough template structures in that they were often significantly

distorted around the template brain. Therefore, we took that result

and cropped the data to 16 slices around the midbrain territory. These

volumes were then used to perform a second local template mapping

to the best case data. This local deformation transformation

significantly improved the template structures. This process was per-

formed using the first 26 cases. The local template results averaged

over all 26 cases (the best case and the next 25 cases) had clearer and

more consistent boundaries than the global deformation approach.

Finally, the data were interpolated in the slice select direction to cre-

ate a template with 0.167 isotropic resolution (for a total of 192 slices).

This was the final template on which the ROIs were drawn.

Continuing the analysis of the template data, the average value

served as the probability map for finding the boundaries. To begin the

process of defining the structures in the averaged local template, the

boundaries for the NM-rich region, RN, SN, and STN were all drawn

manually. For the NM data, the template was drawn on slices 44–98

from the 192 total interpolated slices while for the QSM data slices

44–126 were used. At this point, we ran the DPA for boundary detec-

tion to finalize the template boundaries. The DPA used a cost function

dependent on the local radius of curvature and signal gradients (Jiang,

Dong, & Haacke, 2004; Jiang, Haacke, & Dong, 2007). The full details

of this algorithm are given in Data S1, Supporting Information.

Determining the original space boundaries from the template

boundaries

The next step was to transform the high resolution template bound-

aries back to the original low resolution space. This required a few

preparatory steps. The first step in this process was to find the region

to crop in the new dataset. This was done by using a global transfor-

mation to the template, and then labeling two central slices of the RN

and transforming them back to the original full brain data. The

resulting location of the red nucleus in the original image was set to

be slice 10 to match the template prior to interpolation in the slice

direction (if the RN appeared in two slices, the lower slice was used

for slice 10, while if it appeared in 3 slices then the middle slice was

used for slice 10). The second step was to take this cropped original

space image and zoom it by a factor of four in-plane and then perform

the local deformation of the new case onto the template. Following

this, an inverse transform was performed to map the template bound-

aries back onto the original midbrain data of the new case.

However, there is no guarantee that the boundaries will perfectly

match a given individual since every person is different and template

mapping is never perfect. Therefore, our goal is to automatically map

the template boundaries back onto the individual's structure of interest.

To accomplish this we did the following. The third step was to threshold

the regions inside the transformed boundary for the QSM data to

remove negative values. The fourth step was to find the centerline

using image thinning (Zhang & Suen, 1984). The fifth step was to

choose an initial starting point for the DPA. Both an Otsu histogram

analysis (Otsu, 1979) and a threshold based approach were used to

determine if the original boundary extended too far outside the struc-

ture of interest. For the NM data, the background intensity was deter-

mined from the transformed background ROIs and a constant equal to

four times the background SD averaged over all the 25 cases was added

to create a threshold below which the signal was set to zero. For the

QSM data, the starting threshold was set to zero. When the Otsu

threshold yielded a value that caused pixels inside the object of interest
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to be removed, the template transformed boundary was shrunk accord-

ingly. For the QSM data, if the Otsu threshold was greater than 30 ppb,

the threshold was set to 30 ppb. Finally, the resulting boundaries were

modified using the same DPA used in the template space. The DPA,

along with the RN boundaries, prevents leakage of the SN into the RN

and with the help of the template boundaries can differentiate the STN

from the SN. It should be noted that all these steps are automatically

performed, there is no human intervention.

Given that the VTA also shows NM contrast and abuts the SNpc,

and that the separating boundary is not clearly shown in either QSM

or NM-MRI, we obtained the anterior SNpc boundary by subtracting

the VTA from the NM to obtain the overlap region (SNpc). This was

also done on the manual drawings to provide a fair comparison. The

VTA shape appears as a Y as shown in Figure S1.

In summary, boundaries were initially drawn manually in the tem-

plate space for each of the SN, RN, and STN and the DPA was run to

fine tune the boundaries in the template space. These boundaries

were then mapped back to the original space where DPA was run

once again to provide the final boundaries, making this a fully auto-

mated process. From these boundaries, the volumes, signal intensities,

and susceptibility values were calculated.

Evaluation of the template performance and the DPA process

A total of 87 healthy controls (HCs) were scanned. The SN, STN, and RN

weremanually traced for all 87 cases. Of these, 30 cases (testing dataset:

age ranges 66 ± 7.2 years old, including 17 males and 13 females) were

used for the initial testing of the template approach described above.

Once all aspects of the algorithm were in place, we then validated the

method with the next 57 cases (validation dataset: age ranges 61.9

± 5.0 years old, including 17 males and 40 females). In order to evaluate

the performance of the template, we used two measures: the DICE simi-

larity coefficient, which shows the spatial overlap between the structures

associated with the manual and template segmentation methods, and

the volume ratio (VR) of the structure determined from the template vol-

ume divided by the volume from themanual segmentation.

All data were combined to produce the quantitative information

regarding structural volumes (Figure S2) and iron content. The total

iron content was calculated by summing the product of the volume

and the mean susceptibility of the structure over all the slices that the

structure was drawn on. Similarly, the total NM content was calcu-

lated from the sum of the product of NM volume and NM contrast

over the corresponding slices (Figure S3).

3 | RESULTS

For the imaging measures discussed in this work, no significant differ-

ences between the left and right hemispheres were observed; there-

fore, all the measurements were averaged between the two

hemispheres.

3.1 | Illustration of the template

A 3D overview of the NM and QSM data after the template bound-

aries were drawn is shown in Figure 1. The boundaries from the six

slices taken from every 12th slice in the 0.167 mm isotropic template

space overlaid onto the original 2 mm thick midbrain slices are shown

in Figure 2 for the NM data and Figure 3 for the QSM data.

3.2 | Neuromelanin background measurements

The integrity of the template automatic MTC background intensity

measures relative to the manual drawings is shown in Figure S4. The

agreement between the manual and template MTC background mea-

sures for the first 30 HCs shows a slope of 0.99 and an R2 of 0.53,

with a p-value <.001. The background values are key to properly

thresholding the NM and iron content signals.

3.3 | Testing and validation results for DICE
similarity coefficients and VR measures

The DICE similarity coefficients and VR measures were found for dif-

ferent thresholds for both MTC and QSM images. The higher the

F IGURE 1 (a–c) Three dimensional perspectives of the NM-SN from the NM-MRI template space and (d–f) SN, RN, and STN from the QSM
template space. The three orientations are transverse (a, d), coronal (b, e), and sagittal (c, f). Red boundaries: SN; green boundaries: RN; and
orange boundaries: STN
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threshold, the tighter the distribution becomes in theory eventually

approaching unity on both axes. However, the higher thresholds also

cause higher loss in volume. Therefore, there is a tradeoff between

satisfactory DICE and volume ratios with volume loss. An average VR

larger than one indicates that most of the structures found by the fully

automated template/DPA approach tended to be larger than those in

the manual/DPA approach. Table 1 summarizes the results associated

with the estimated template volumes, VR measures and DICE similar-

ity coefficients for each structure. The mean and SD values are shown

for the testing and validation datasets as well as for the merged data

including all subjects.

3.3.1 | Neuromelanin data

The NM DICE coefficients plotted against the VR for both testing and

validation data are shown in Figure 4. For the NM contrast in the test-

ing data, with a threshold of 5% (normalized by the background mean

intensity), the average volume loss of the template data for all the

cases was less than 10% yielding average DICE and VR values of 0.88

and 0.90, respectively. Higher thresholds such as 7%, yielded an aver-

age volume loss slightly over 10% (average DICE = 0.90; average

VR = 0.91), and the data showing NM contrast of over 8% yielded an

average volume loss of 22% with relatively higher DICE and VR than

the lower thresholds (0.93 and 0.93, respectively). The threshold of

5% is seen to keep the volume loss below 10% while resulting in

acceptable DICE and VR values. In the validation dataset, with an NM

contrast threshold of 5%, the average volume loss of the template

data for all the cases was less than 5% yielding an average DICE and

VR values of 0.89 and 0.99, respectively.

3.3.2 | SN data

Similarly, for the iron-containing SN in the testing data (Figure 5), a

mean susceptibility threshold of 50 ppb yielded an average volume

loss just under 10% while the average DICE and VR values were 0.88

and 0.94, respectively. In the validation dataset, a threshold of 50 ppb

yielded an average volume loss of almost 5% while the average DICE

and VR values were 0.89 and 0.97, respectively.

F IGURE 2 Mapping the boundaries to the original space for the NM-rich region. Each column represents a different slice. The left most
column represents the first most caudal slice where the NM is visualized. Each subsequent slice continues more cranially. (a) Neuromelanin
template; (b) the transformed neuromelanin template into the original space; (c) the same boundaries superimposed on the original midbrain
images; and (d) the final boundaries after the DPA was applied to get the best fit. Red boundaries: NM
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F IGURE 3 Mapping the boundaries to the original space for the QSM data. Each column represents a different slice. The left most column
represents the first most caudal slice where the NM-rich region is visualized. Each subsequent slice continues more cranially. (a) The QSM template;
(b) the transformed QSM template to the original space; (c) the same boundaries superimposed on the original midbrain images; and (d) final
boundaries after the DPA was processed to get the best local fit. The SN boundary is shown in red, the STN boundary in orange, and the RN
boundary in light green. The blue (dark blue for the right side and light blue for the left side) boundaries show the NM overlaid on the QSM images

TABLE 1 Volume estimates, DICE
similarity coefficients and volume ratio
(VR) mean and SD values of the NM, SN,
RN, and STN in the testing dataset,
validation dataset, and the merged data
before applying any threshold

Volume (mm3) VR DICE

Mean SD Mean SD Mean SD

NM

Testing dataset 254.06 25.99 0.85 0.07 0.82 0.04

Validation dataset 253.39 23.40 0.98 0.07 0.87 0.03

Overall 253.80 24.16 0.93 0.10 0.85 0.04

SN

Testing dataset 477.87 49.79 0.93 0.09 0.86 0.04

Validation dataset 493.12 47.77 0.97 0.09 0.87 0.03

Overall 487.98 48.63 0.95 0.09 0.87 0.03

RN

Testing dataset 191.91 25.90 1.06 0.05 0.93 0.03

Validation dataset 193.72 32.28 1.05 0.07 0.92 0.03

Overall 193.11 30.09 1.05 0.07 0.92 0.03

STN

Testing dataset 87.32 24.27 0.95 0.19 0.76 0.11

Validation dataset 80.14 24.15 0.86 0.22 0.74 0.13

Overall 82.61 24.29 0.89 0.22 0.75 0.12
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3.3.3 | RN data

Figures 6 illustrates the DICE similarity coefficient versus VR for the

RN in both testing and validation datasets. Before applying any

threshold on the QSM data, the average DICE and volume ratio of the

RN were 0.93 and 1.06, respectively. However, applying a threshold

of 50 ppb on the QSM data yielded an average DICE and VR of 0.95

and 1.04, respectively. For the validation dataset, before applying any

threshold on the QSM data, the average DICE and VR values of the

RN were 0.92 and 1.05, respectively. Using a threshold of 50 ppb on

the QSM data yielded an average DICE and VR of 0.95 and 1.03,

respectively, and an average volume loss of around 12%.

3.3.4 | STN data

The plots of DICE similarity coefficient versus VR for the STN

are shown in Figure 7. In the testing dataset, before applying

any threshold on the QSM data, the average DICE and volume

ratio of the STN were 0.76 and 0.95, respectively. However,

applying a threshold of 50 ppb on the QSM data yielded an aver-

age DICE and VR of 0.83 and 0.98, respectively. For the valida-

tion dataset, before applying any threshold on the QSM data, the

average DICE and VR values were 0.74 and 0.86, respectively.

Using a threshold of 50 ppb on the QSM data yielded an average

DICE and VR of 0.81 and 0.90, respectively, and a template aver-

age volume loss of around 12%. There was a much larger spread

in the DICE and VR for the STN compared to the other

structures.

3.3.5 | Overall iron content results

Using a threshold of 50 ppb, the slope and R2 values for all three

structures, the SN, RN, and STN, are shown in Figure 8. In the testing

dataset, the p-values are <.001 for the SN and RN and equal to 0.006

F IGURE 4 DICE similarity coefficients plotted against volume ratio values for the neuromelanin (NM) based on (a) no threshold, (b) data
showing NM contrast larger than 5%, (c) data showing NM contrast larger than 7%, and (d) data showing NM contrast larger than 8% for the 30 test
cases (upper plot) and the 57 validation cases (lower plot). The average DICE, volume ratio, and volume loss associated with the template and
manually drawn data are quoted for each threshold. A contrast threshold of 5% units keeps the volume loss minimal and yields excellent results
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for the STN. In the validation dataset, the p-values are <.001 for the

SN and RN and the p-value was equal to .008 for the STN.

4 | DISCUSSION

In this study, NM and QSM images derived from a single sequence

(in less than 5 min) were used for auto-segmentation of the SN, STN,

and RN in the original space, with no need to manually draw ROIs.

We described and validated a multicontrast atlas in combination with

a DPA for boundary detection in both the template space and in the

original images after transforming them back from the template space.

Both DICE values and volume ratios as well as the iron content mea-

sures, showed excellent agreement between the automatic template

approach versus the manual drawings.

4.1 | Improved morphological mapping and
template definition

Practically, we found that using the whole brain global deformable

registration with 0.67 mm isotropic resolution, using either ANTs or

SpinITK, did not produce morphological transformations matching the

shape of the midbrain structures consistently across the subjects.

Therefore, we added a local registration step to solve this problem

and obtained much improved results. From this local transformation

approach, we created both iron and NM templates from a single multi-

echo sequence. In terms of the validation stage, the second dataset

shows that the DICE similarity coefficient and VR values are very

close to those from the first dataset for each structure; this confirms

the consistency of the results generated by the automated template

processing approach proposed herein. Also, the fact that both the

F IGURE 5 DICE similarity coefficients plotted against volume ratio values for the SN susceptibility based representation: (a) no threshold; (b) data
with susceptibility values larger than 50 ppb; (c) data with susceptibility values larger than 75 ppb; and (d) data with susceptibility values larger than
100 ppb for the 30 test cases (upper plot) and the 57 validation cases (lower plot). The average DICE, volume ratio, and volume loss associated with
the template and manually drawn data are quoted for each threshold. A threshold of 50 ppb yields excellent results with minimal loss in the SN volume
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DICE and VR values are close to unity shows the excellent perfor-

mance of this approach. Most public templates do not include the

NM-rich region, SN, STN, and RN. In this work, we interpolated the

data first to 0.67 mm isotropic data and then, to allow for refined

drawing of the structures (given that they are morphed into new loca-

tions after the deformable transformation), they were further interpo-

lated to 0.167 mm isotropic resolution where the template

boundaries for each structure were defined.

4.2 | Age-related issues in using template mapping

In designing a template for extracting the midbrain structures, age also

plays a key role in affecting the segmentation accuracy. The use of an

atlas based on only younger healthy subjects may not be appropriate

for studying patients with neurodegenerative diseases that affect the

structure of the midbrain. These between-subject and within-subject

age- and disease-related morphometric changes may be important

and affect the success of using a template approach on older individ-

uals when localizing the midbrain nuclei. The most appropriate atlas

for a given study is the one which requires the least amount of global

or regional warping from native subject space to atlas space; there-

fore, we used elderly HC subjects (mean age: 63.4 ± 6.2 years old) to

create the atlas to study patients with neurodegenerative diseases. To

alleviate the bias caused by inter-subject variability, some studies used

a probabilistic atlas. Safai et al. (2020) attempted to construct a proba-

bilistic atlas of SNpc based on the NM-MRI sequence, and then used

this atlas to investigate the micro-structural abnormalities in the SNpc

using diffusion MRI in PD patients. They applied a symmetric dif-

feomorphic registration for registering T1 images and the SNpc masks

of 27 HCs onto the MNI space and the atlas was thresholded at 50%

probability. However, the average DICE coefficient for the atlas ver-

sus human raters was less than 0.61. The thresholding values can lead

to dramatic changes in the delineation of the NM, thus decreasing the

reproducibility of the atlas. As described above, we used a local defor-

mation to improve the midbrain mapping to the template, and then

we mapped the boundary back to the original space and applied the

DPA approach to further improve the NM atlas, potentially making it

less age dependent and less interpersonal variation dependent.

4.3 | Comparison to other templates

To our knowledge, no study has used both NM-MRI and QSM to

auto-segment the SN. Previous research attempted to segment the

SN by using structural MRI atlases based on T1- and/or T2-weighted

F IGURE 6 DICE similarity coefficients plotted against volume ratio values for the RN susceptibility based representation: (a, c) before
applying any threshold; and (b, d) for a threshold of 50 ppb. The average DICE, volume ratio, and the volume loss associated with the template
and manually drawn data for the selected threshold are quoted within the figure. The threshold of 50 ppb limits volume loss to roughly 10%. The
data are based on 30 healthy controls from the test dataset and 57 HCs from the validation dataset
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sequences (Dong et al., 2016; Pauli et al., 2018; Plassard

et al., 2019). However, the SN is a small structure in the midbrain

with low contrast in these images, making it difficult to accurately

define the SN boundaries. To overcome this limitation, other studies

tried to create the SN atlas using either the NM-MRI or QSM data

(Guo et al., 2018; Keuken et al., 2014; Safai et al., 2020; Visser

et al., 2016; Zupan, Suput, Pirtosek, & Vovk, 2019). By using a

dynamic atlas composed of NM-enhanced brain images for the auto-

matic segmentation of the SN, one group showed a DICE value of

less than 0.75 (Ariz et al., 2019). The NM-sensitive T1-weighted fast

spin-echo sequence applied in their study was not optimal to clearly

delineate the SN. The contrast of the NM can be much improved

using the MT-MRI acquisition sequence we describe herein (Y. Liu

et al., 2020). Our previous study suggested that using a semi-

automatic approach, the SN mean susceptibility values were

(132.12 ± 4.01) ppb averaged over the right and left hemispheres for

the healthy controls. In this work, the mean susceptibility of the SN

was found to be (124.67 ± 2.31) ppb after averaging over all cases

(p-value >.05) (He et al., 2021).

4.4 | Defining the SNpc

Since QSM provides a quantitative iron measurement in the entire SN

(SNpc plus SNpr), and the hyperintense signal seen in NM-MRI is spa-

tially associated with the SNpc and VTA (Keren et al., 2015), the over-

lap region of the SN from these two modalities should represent the

SNpc. Thus, previous studies using QSM or NM alone may not accu-

rately or reliably define the SNpc. It is well known that iron content is

expected to increase in the SNpc while NM is expected to decrease in

PD patients. Our auto-segmentation approach using both NM and

QSM in a single sequence is able to reliably separate SNpc and SNpr,

and can be used for future studies of the PD and other neurodegener-

ative disorders.

4.5 | Mapping the STN

As an important modulator of basal ganglia output, the STN is regu-

larly used as a surgical target of DBS for advanced PD (Dimov

F IGURE 7 DICE similarity coefficients plotted against volume ratio for the STN susceptibility based representation: (a, c) before applying any
threshold; and (b, d) for a threshold of 50 ppb. The average DICE, volume ratio, and the volume loss associated with the template and manually
drawn data for the selected threshold are quoted within the figure itself. The 50 ppb threshold keeps the volume loss to about 10%. The data are
based on 30 healthy controls for the test dataset and 57 HCs for the validation dataset
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et al., 2019; Hamani, Saint-Cyr, Fraser, Kaplitt, & Lozano, 2004; Iorio-

Morin, Fomenko, & Kalia, 2020). The dorsolateral part of the STN

involved in the sensorimotor circuits has been identified as an optimal

target of DBS treatment in PD patients (Herzog et al., 2004). How-

ever, the STN is difficult to image because of its small size, oblique ori-

entation in three dimensions, and its close proximity to the SN

(Ashkan et al., 2007). Milchenko et al. (2018) generated the STN atlas

representing normal elder individuals by using T1W and T2W data

collected from high-resolution 7 T MRI. However, the contrast of

T1W and T2W is not optimal to accurately delineate the STN. It has

been shown that QSM images yield a superior contrast in the depic-

tion of the STN when compared with T2w, T2*w, R2*, phase, and

SWI (Chandran, Bynevelt, & Lind, 2016; Dimov et al., 2018; T. Liu

et al., 2013). Keuken et al. (2014) created probabilistic maps of the

STN based on manually segmented multimodality data (including

T1W, T2*-weighted and QSM) of 30 young healthy participants

scanned on a 7 T system. However, their probabilistic maps are based

on data from young healthy participants, which may not be appropri-

ate for older people given potential age-related morphological brain

changes, such as an increase in ventricle size and the displacement of

subcortical nuclei (Fjell & Walhovd, 2010; Keuken et al., 2013). As dis-

cussed earlier, this limitation can be overcome by delineating the STN

in the individual's original space based on the high resolution QSM

data in our study.

4.6 | Limitations

There are, however, some limitations to this study. First, the template

was only tested for a single resolution. This should not be a problem

for higher resolution datasets, since we created a very high-resolution

set of template boundaries for the different structure. The back-

ground signal will vary from site to site perhaps and most assuredly

from manufacturer to manufacturer. However, the automated back-

ground regions should alleviate this problem, although the average SD

will need to be carefully determined. The thresholds for the NM were

defined in terms of a percentage of the contrast with respect to the

background signal, making it less dependent on manufacturer's scaling

methods. Second, only those protocols collecting both QSM and NM

can be used if there is interest in isolating the SNpc from the overlap

of the NM-rich region and the SN iron containing boundaries. In our

case, a single sequence is used to accomplish this. Third, the STN was

difficult to assess because of its overlap with the SN in the anterior

connecting region. Possible solutions to this include collecting the

data with higher resolution and reformatting the data to ensure that

the SN for the most part sits on top of the SN.

In conclusion, our combined global and local transformation

approach to template space, along with the three structure template

mapping, background determination, and refined boundary detection

provide for a robust approach to automating the quantification of NM

F IGURE 8 Correlation between the SN, RN, and STN iron content resulting from the manual and template segmentations for the 30 test
cases (upper plot)and 57 validation cases (lower plot)
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and iron in the midbrain. Furthermore, the overlap between the iron

content of the SN and the NM provides a means to isolate the SNpc.

With this approach, it is possible to quantify the NM in the SN and

the volume and iron content for all of the SN, STN and RN. This

approach should make it possible to study the changes in these imag-

ing biomarkers for a variety of neurodegenerative diseases without

the need for manual tracing of these structures. We plan to apply this

approach next to a cohort of Parkinson patients to see if the resulting

biomarkers of NM volume, SN volume and SN iron content could ulti-

mately distinguish PD patients from healthy controls.
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