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Hepatocellular carcinoma (HCC) represents a leading cause of cancer-related deaths
globally. The rising incidence of metabolic syndrome and its hepatic manifestation,
nonalcoholic fatty liver disease (NAFLD), have emerged as the fastest-growing cause
of HCC in recent years. Cholesterol, a major lipid component of the cell membrane and
lipoprotein particles, is primarily produced and metabolized by the liver. Numerous studies
have revealed an increased cholesterol biosynthesis and uptake, reduced cholesterol
exportation and excretion in HCC, which all contribute to lipotoxicity, inflammation, and
fibrosis, known HCC risk factors. In contrast, some clinical studies have shown that higher
cholesterol is associated with a reduced risk of HCC. These contradictory observations
imply that the relationship between cholesterol and HCC is far more complex than initially
anticipated. Understanding the role of cholesterol and deciphering the underlying
molecular events in HCC development is highly relevant to developing new therapies.
Here, we discuss the current understanding of cholesterol metabolism in the pathogenesis
of NAFLD-associated HCC, and the underlying mechanisms, including the roles of
cholesterol in the disruption of normal function of specific cell types and signaling
transduction. We also review the clinical progression in evaluating the association of
cholesterol with HCC. The therapeutic effects of lowering cholesterol will also be
summarized. We also interpret reasons for the contradictory observations from
different preclinical and human studies of the roles of cholesterol in HCC, aiming to
provide a critical assessment of the potential of cholesterol as a therapeutic target.
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INTRODUCTION

Primary liver cancer ranks the fifth and ninth most commonly diagnosed cancer in men and women,
respectively, and the third most fatal cancer globally (Ferlay et al., 2015; Sung et al., 2021).
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Although
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are still the top risk factors for HCC, a large
percentage of HCC arises due to nonalcoholic fatty liver disease (NAFLD) (El-Serag and Kanwal,
2014; Chaitanya Thandra et al., 2020). The prevalence of NAFLD is increasing because of the global
epidemics of metabolic syndrome, a cluster of conditions including hypercholesterolemia,
hypertension, hyperglycemia, obesity, and hypertriglyceridemia (McGlynn et al., 2021). Due to
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its much wider spread and prevalence in both adults and children
globally, metabolic syndrome makes a larger contribution to the
overall HCC burden than HBV or HCV infections (Sun and
Karin, 2012). Patients with NAFLD-associated HCC are
frequently asymptomatic. As a result, NAFLD-associated HCC
tends to be more detrimental than HCC with other etiologies in
many ways: elevated morbidity, more advanced stage at
diagnosis, and poorer survival (Petrick et al., 2020; McGlynn
et al., 2021). A 2014 meta-analysis showed that NAFLD increases
the risk of HCC by 81% (Jinjuvadia et al., 2014). NAFLD
encompasses a broad spectrum of liver conditions, ranging
from simple hepatic steatosis, also called nonalcoholic fatty
liver (NAFL), to the progressive form-nonalcoholic
steatohepatitis (NASH). NASH is characterized by steatosis,
inflammation, tissue damage, and reparative fibrosis. Fibrosis
and cirrhosis are both known risk factors for HCC. Although
extensive evidence has revealed that multiple insults, including
lipotoxicity, oxidative stress, inflammation, cell death, and
endoplasmic reticulum (ER) stress, all contribute to the
progression from NAFLD to HCC, which is typically
accompanied by cirrhosis or severe fibrosis, a growing number
of NAFLD patients without advanced fibrosis or cirrhosis were
found to end up developing HCC (Friedman et al., 2018;
Grohmann et al., 2018). These observations suggest that there
are tumor-promoting factors that act from the outset of the
NAFLD. Many lines of evidence from preclinical and human
studies suggest that cholesterol is independently associated with
the development of cirrhosis and HCC (Matsuzawa et al., 2007;
Ioannou et al., 2009; Subramanian et al., 2011; Van Rooyen et al.,
2011). It is well documented that hepatic free cholesterol is a
critical pathogenic factor promoting HCC through the action in
multiple hepatic cell types, subcellular organelles, and molecular
targets. However, a substantial body of human clinical trials
found that a higher level of serum cholesterol was associated
with a reduced risk of HCC. Likewise, cholesterol is closely related
to the outcomes of HCC patients. Low cholesterol levels might
indicate a worse disease-free and overall survival for HCC
patients (Jiang et al., 2016), whereas hypercholesterolemia
relates to lower future HCC mortality (Chiang et al., 2014).
The contradictory observations between preclinical and
population-based prospective studies implies that the
relationship between cholesterol metabolism and HCC is
complex and needs more careful interpretation. The exact
mechanism underlying this phenomenon is still unclear.
Deciphering the causal relationship between the dysregulation
of cholesterol homeostasis and HCC, and elaborate on the impact
of dysregulated cholesterol on specific cell types in the liver is of
utmost importance to our understanding of the precise role of
cholesterol in HCC development.

In view of the strong association of cholesterol metabolism
with HCC and the vague understanding of the role of cholesterol
in HCC pathogenesis, this review discusses the current
understanding of cholesterol metabolism in HCC, providing a
critical assessment of the preclinical studies, clinical trials, and the
cellular and molecular regulation by cholesterol in HCC. Insights
into these key elements should ultimately help understand the

precise role of cholesterol and evaluate the clinical values of
cholesterol in the pathogenesis of HCC.

CHOLESTEROL METABOLISM IN
PHYSIOLOGY AND PATHOLOGY

Cholesterol homeostasis is essential for health. Cholesterol serves
as a precursor of various steroid hormones, bile acids, and
vitamin D. Besides, cholesterol is an essential component of
cell membrane and provides lipid for cell proliferation.
Moreover, cholesterol controls the stability and fluidity of the
cell membrane, thereby plays critical roles ranging from
membrane trafficking to signal transduction (Maxfield and
Tabas, 2005). Therefore, the stringent regulation of cholesterol
homeostasis is vital to maintain normal physiology, and
organisms have various mechanisms for accomplishing this.

Maintaining cholesterol homeostasis is achieved through
balancing between input and output pathways, including
cholesterol synthesis, dietary absorption, and excretion. The
liver is the central organ in charge of cholesterol homeostasis.
The primary sources of cholesterol in humans are de novo
synthesis (∼70%) and dietary intake (∼30%) (Kapourchali
et al., 2016). The liver represents the primary organ of
cholesterol synthesis as it produces the majority of the de novo
synthesized cholesterol, although the intestine also forms a
significant amount (Berg JM and Stryer, 2002). Cholesterol
synthesis involves complex biochemical reactions and many
different enzymes, and is subjected to both transcriptional and
posttranslational regulations-mediated negative feedback in
response to the level of cellular cholesterol (Trapani et al.,
2012). 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR)
and squalene monooxygenase (SQLE) are both rate-limiting
enzymes in cholesterol biosynthesis (Figure 1). A decrease of
cellular cholesterol activates the master transcription factor Sterol
regulatory element-binding protein isoform 2 (SREBP-2) to
induce the transcription of both HMGCR and SQLE (Pai
et al., 1998; Trapani et al., 2012; Brown et al., 2018).
Conversely, elevated cholesterol levels have been demonstrated
to promote the ubiquitination of HMGCR and SQLE and their
subsequent degradation (Gill et al., 2011; Foresti et al., 2013;
Zelcer et al., 2014). AMP-activated protein kinase (AMPK) is
known to phosphorylate and inactivate HMGCR, and inhibit the
transcription of SQLE, thereby reducing cholesterol synthesis. In
NASH state, the overloaded energy, insulin resistance, and
inflammation synergistically inhibit AMPK, which can cause
the derepression of the activity of HMGCR and the
transcription of SQLE to enhance cholesterol synthesis (Clarke
and Hardie, 1990; Sato et al., 1993; Zhang et al., 2019; Zhao et al.,
2020). Insulin and thyroxine upregulate HMGCR in normal
conditions. On the contrary, cortisol, and insulin
counterregulatory hormones, such as glucagon, have an
inhibitory effect on HMGCR (Craig and Dimri, 2020). Statins,
the inhibitors of HMGCR, are widely used first-line drugs to
lower plasma cholesterol and significantly decreased the risk of
cardiovascular disease (CVD) and HCC in some patients.
Interestingly, the CVD benefit of statins is significantly greater
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in patients with NASH-associated liver damage than that in
patients with normal liver function. This finding is in line
with the fact that CVD is the major cause of death for
patients with NAFLD (Athyros et al., 2010).

Intestinal cholesterol absorption represents another important
cholesterol input source to maintain cholesterol homeostasis.
Cholesterol uptake by small-intestinal enterocytes is mainly
mediated by the specific transporter protein Niemann-Pick C1
Like 1 (NPC1L1), which mainly locates on the brush-border
membrane of enterocytes. Cholesterol is esterified by acetyl-CoA
cholesterol acyltransferase 2 (ACAT-2) and assembled into
chylomicrons together with triglycerides and apolipoprotein B-
48. Triglycerides carried by chylomicrons are then absorbed by
peripheral tissues. The chylomicron remnants are taken up by the
liver. Ezetimibe, which inhibits intestinal cholesterol absorption,
was found to improve NASH in human trials (Yoneda et al., 2010;
Park et al., 2011).

Besides de novo synthesis of cholesterol, the liver also uptakes
excess circulating cholesterol carried by lipoprotein particles,
including low-density lipoprotein (LDL), intermediate-density
lipoprotein (IDL), and chylomicron remnants via the LDL
receptor (LDLR); and high-density lipoprotein (HDL) via the
scavenger receptor class B type 1 (SR-B1) for further clearance
(Maxfield and Tabas, 2005) (Figure 1). LDLR-mediated
lipoprotein uptake is a major route through which the human
body clears excessive blood cholesterol, whereas it is also a major
cholesterol input pathway for the liver. The uptake of LDL is
tightly regulated by feedback inhibition, in which increased
cellular cholesterol inhibits SREBP2 to reduce the transcription
of LDLR, thereby preventing cholesterol overload in the cells.
However, in pathogenic conditions, the oxidized LDL (OxLDL)
formed under oxidative stress can be taken up by scavenger
receptors in an unregulated fashion (Levitan et al., 2010). As a
result, the accumulation of OxLDL in the liver causes lipotoxicity.
Moreover, the uptake of OxLDL by Kupffer cells causes increased

hepatic inflammation to promote NASH and HCC (Walenbergh
et al., 2013).

Free cholesterol transports between compartments of the cell,
such as the plasma membrane and endoplasmic reticulum (ER).
Free cholesterol can be reesterified in the ER and stored in the
cytoplasm as lipid droplets. To prevent the accumulation of
cholesterol in the liver, hepatocytes must clear excess
cholesterol (Figure 1). One of the main pathways is through
being packaged along with triglycerides and apolipoprotein B-100
into the very low-density lipoproteins (VLDL) and secreted into
the circulation. VLDL delivers triglycerides and cholesterol (later
forms LDL after losing triglycerides) into the peripheral tissue
(Ikonen, 2008). Defect or inhibition of the microsomal
triglyceride transfer protein (MTTP), the key protein for
VLDL assembly, will cause lipid accumulation in the liver and
promote NASH and HCC development (Ipsen et al., 2018).
Another main process to export liver cholesterol is the
conversion of cholesterol into bile acids by a complex
enzymatic process and consequently eliminating some
cholesterol. Cytochrome P4507A1 (CYP7A1) is the rate-
limiting enzyme (Figure 1). Ileum enterocytes generate
fibroblast growth factor 19 in humans and 15 in mice to
inhibit the expression of CYP7A1 upon uptaking of bile acids.

While the liver plays a central role in whole-body cholesterol
homeostasis, it is important to keep in mind that maintaining
cholesterol balance in the local liver environment is equally
critical to prevent liver diseases. Unfortunately, cholesterol
does not always reach its most appropriate balance at both
whole-body and hepatic levels. One example is the regulation
of MTTP, a key protein regulating VLDL assembly and thereby
transporting cholesterol from the liver into the circulation. MTTP
was once the favorite target to lower plasma cholesterol, and
several antagonists (Bay-13-9952, CP-346086, BMS-201308,
AEGR-733) have been identified to treat atherosclerosis.
However, although these early studies showed that, while

FIGURE 1 | Overview of cholesterol metabolism in the liver. The primary sources of hepatic cholesterol are de novo synthesized and circulating cholesterol carried
by apoB-containing lipoprotein particles. Output pathways of hepatic cholesterol mainly comprise VLDL secretion and bile acid synthesis.
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MTTP inhibition effectively lowered plasma cholesterol, it
significantly increased hepatic lipid and liver damage, which
elevated the risk of NAFLD and HCC (Chang et al., 2002;
Cuchel et al., 2007; Samaha et al., 2008).

CHOLESTEROL AND THE PATHOGENESIS
OF HCC
Hypercholesterolemia Promote
Tumorigenesis in HCC
Obesity and insulin resistance have been established as risk
factors for benign NAFL; however, the cause of progressive
NASH remains unclear. A recent report showed that
cholesterol supplement is critical to the development of
inflammation and fibrosis in mice fed with a high-fat diet
(Ioannou et al., 2009). Cholesterol is an essential component
of both the Amylin liver NASH (AMLN) diet and its later
replacement Gubra Amylin NASH (GAN) diet to elicit NASH
and fibrosis (Boland et al., 2019). Both diets have been extensively
used inmouse studies to mimic humanNASH. The role of dietary
cholesterol in NASH was also observed in other species, such as
Ossabaw pigs. The supplement of hypercholesterolemia
resembled human NASH hallmarks, including steatosis,
inflammation, hepatocyte damage, and fibrosis (Lee et al., 2009).

In line with the pathogenic role of dietary cholesterol, de novo
cholesterol synthesis also exhibits pathogenic and prognostic
significance for HCC. SQLE was the top metabolic gene
enriched in the liver of NAFLD associated-HCC patients (Liu
et al., 2018). Overexpression of SQLE promoted the proliferation
and migration of HCC cells (Sui et al., 2015). Terbinafine, an
antifungal drug targeting SQLE, reduced cholesteryl ester levels
and suppressed tumor growth (Liu et al., 2018). Interestingly, the

downregulation of LDLR that mediates the endocytosis of LDL
cholesterol, increases the risk of human HCC. The mechanistic
study demonstrated that the reduced LDLR expression promoted
intracellular de novo cholesterol biosynthesis to compensate the
decreased LDL uptake (Chen et al., 2021). Altogether, these
preclinical studies provide compelling evidence that cholesterol
is an independent risk factor for NASH and fibrosis, and
substantially increase the risk of HCC (Figure 2).

Cholesterol Induces Ectopic Fatty Acids
Accumulation, Forming a Vicious Cycle
Causing Lipotoxicity, Inflammation, andCell
Injury in Hepatocytes
Hepatic lipotoxicity refers to the ectopic accumulation of
triglycerides and their intermediates in the liver, which causes
lipotoxic hepatocellular injury (Neuschwander-Tetri, 2010). In
patients with metabolic syndrome, insulin resistance causes
dysregulated lipolysis of adipose tissue and increased delivery
of free fatty acids to the liver. In hepatocytes, excessive fatty acids
lead to energy overload, together with insulin resistance and
inflammation, which are frequently seen in metabolic syndrome,
causes repression of the energy sensor, AMPK (Zhao et al., 2018).
A recent study showed that repressed AMPK lost its inhibitory
capability on caspase 6 in normal livers. Consequently, the
sustained activation of caspase 6 induced cell death and
eventually liver fibrosis (Zhao et al., 2020). Suppressed AMPK
also releases its inhibition on HMGCR and enhances cholesterol
synthesis in the hepatocytes. It has been shown that cholesterol
crystals are formed due to the hydrolysis of excess cholesterol
easter into free cholesterol by lysosomal acid lipase (Ioannou,
2016). These cholesterol crystals can activate the NLRP3
inflammasome and subsequent inflammation in hepatocytes.

FIGURE 2 | The complex roles of cholesterol in the development of HCC. Proposed mechanisms for the pathogenic roles of cholesterol in HCC are revealed (blue
characters): (1) promoting tumorigenesis; (2) inducing ectopic fatty acids accumulation; (3) remodeling the hepatic immune repertoire and establishing a tumorigenic
microenvironment; (4) activating hepatic stellate cells; (5) affecting membrane fluidity and protein function. Mechanisms by which cholesterol inhibits HCC development
(red characters): (1) activating NK cells to fight against hepatoma cells; (2) promoting the translocation of CD44 into lipid rafts and attenuating CD44-mediated
migration and metastasis of HCC.
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The activated NLRP3 inflammasome further results in pyroptosis
by inducing caspase 1 activation and Gasdermin-mediated pore
formation in the cell membrane. At the tissue level, subsequent
tissue repair and remodeling occur and lead to fibrosis and HCC
(Bergsbaken et al., 2009; Miao et al., 2011; Dixon et al., 2012;
Wree et al., 2014; Szabo and Iracheta-Vellve, 2015). Dietary
cholesterol has been shown to downregulate hepatic
cholesterol ester and lipoprotein synthesis, therefore, in turn,
suppresses hepatic triglyceride secretion to promote NASH and
HCC (Ma et al., 2014; Henkel et al., 2017). Hypercholesterolemia
is often accompanied by the elevation of OxLDL. The increased
uptake of OxLDL by hepatocytes can lead to the accumulation of
oxidized phospholipids (OxPLs), key pathogenic component of
OxLDL. Recently, OxPLs have been proved to cause NASH and
HCC through decreased mitochondrial fatty acid oxidation,
thereby lead to fatty acid accumulation and lipotoxicity (Sun
et al., 2020). Conclusively, cholesterol forms a feed-forward
vicious cycle with ectopic fatty acid accumulation to cause
tumorigenic detrimental effects, including cell damage,
inflammation, and fibrosis (Figure 2).

Cholesterol Remodels the Immune
Repertoire in the Liver and Establishes a
Tumorigenic Microenvironment
Inflammation is a crucial component of tumor progression
(Coussens and Werb, 2002). Similar to that in hepatocytes,
cholesterol crystal induces a more robust NLRP3
inflammasome activation in Kupffer cells. Moreover, the
resident Kupffer cells became foam cells upon taking up
OxLDL and OxLDL-containing dead hepatocytes. Together
with activated hepatocytes, these Kupffer cells produce a panel
of inflammatory cytokines/chemokines to recruit a variety of
inflammatory immune cells. In particular, recruited macrophages
facilitate a tumorigenic cascade in the liver microenvironment by
producing a large amount of cytokines, chemokines, growth
factors, and triggering the release of inhibitory immune
checkpoint proteins by T cells, which are all critical features of
tumor-associated macrophages (Lin et al., 2019). As a result, the
recruited immune cells replenished the niche of the dead foam
cells and hepatocytes and established an inflammatory
tumorigenic microenvironment (Seidman et al., 2020) (Figure 2).

Cholesterol Induces the Activation of
Hepatic Stellate Cells
Hepatic stellate cells (HSCs) are the key cell type responsible for
liver fibrogenesis. Upon activation, HSCs differentiate into
myofibroblasts and produce fibrogenic growth factors and
secrete extracellular matrix to promote liver fibrosis (Trivedi
et al., 2021). Cholesterol activates HSCs through multiple
mechanisms. Cholesterol crystal-activated Kupffer cells and
OxLDL-loaded foam cells could elicit HSC activation through
inflammatory cytokines (Kolios et al., 2006). Recent evidence
suggests that free cholesterol can directly activates HSCs (Tomita
et al., 2014). Moreover, OxLDL can activate HSCs through TLR4
-dependent pathway. Most recently, it is shown that OxPLs can

directly activate the fibrogenic gene expression in HSCs (Sun
et al., 2020). The activated HSCs are then differentiated into
myofibroblasts and accelerate fibrosis (Figure 2).

Cholesterol Content Affects Membrane
Fluidity and Protein Function
Cholesterol plays a critical role in maintainingmembrane fluidity.
An increase of membrane cholesterol concentration in metabolic
syndromemay, in turn, disrupt the normal function of the plasma
membrane, and membrane of different organelles. Lipid raft
proteins, such as Toll-like receptor 4 (TLR4), have been
shown to be activated to enhance the inflammatory response
in cholesterol-rich membranes (Zhu et al., 2010). Increased
mitochondrial cholesterol reduces mitochondrial membrane
fluidity and impairs the electron transport chain (ETC), and
lead to increased ROS generation, lipid peroxidation, hepatocyte
necrosis, and apoptosis, which are all known HCC risk factors
(Martin et al., 2016; Solsona-Vilarrasa et al., 2019). An increase of
ER membrane cholesterol is known to result in ER stress (Tabas,
2010). Cholesterol overload on lipid droplet membrane can
induce cholesterol crystallization, thereby induce the activation
of NLRP3 inflammasome (Ioannou et al., 2017; Ioannou et al.,
2019). Collectively, cholesterol loading on the membrane system
can increase the risk of HCC through a multi-level mechanism
(Figure 2).

Cholesterol-Lowering Drugs and HCC
Table 1 shows the new approaches that target cholesterol
metabolism in HCC. The cholesterol-lowering drug
Ezetimibe was shown to reduce the serum aminotransferases
levels, hepatic steatosis, and hepatocyte ballooning in NASH
(Nakade et al., 2017). Many studies demonstrated that statins,
the HMGCR inhibitors, might protect against the development
and recurrence of HCC (Friedman et al., 2016; Kim et al., 2018;
German et al., 2020; Tran et al., 2020). In addition to their
cholesterol-lowering effects, statins exhibit multiple pleiotropic
effects on the development of HCC, including anti-
inflammatory, antifibrotic, antiproliferative, and endothelial
protection effects (Kim and Kang, 2019). However, not all
studies came to the same conclusion. In a mean prospective
follow-up of 8.4 years study, statin users had a 40% lower risk of
HCC in a total cholesterol-unadjusted analysis. The association
disappeared after adjusting the influence of cholesterol level
measured within 6 months before statin initiation (Yi et al.,
2020). This study showed that high cholesterol levels at statin
initiation were associated with the high risk of HCC. A recent
meta-analysis, which includes twenty-five studies with
1,925,964 patients, showed that statin reduces the risk of
HCC by 26%. This effect is dose-dependent and more
pronounced with lipophilic statins (atorvastatin, lovastatin,
and simvastatin) (Facciorusso et al., 2020).

The inconclusive results suggest that cholesterol lowering
drugs might have distinct roles for HCC with different
etiology. Recent studies revealed that in viral hepatitis-
associated HCC, statins increase the response rate to antiviral
therapy, reduce the incidence of liver fibrosis, and prevent the
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occurrence of HCC in HBV and HCV patients (Butt et al., 2015;
Hsiang et al., 2015). However, in patients with NAFLD-associated
HCC, it was found that statins did not reduce the overall
incidence of HCC (Yi et al., 2020). In a preclinical study,
atorvastatin failed to reduce the incidence of HCC in mice
exposed to N-nitrosodiethylamine (Braeuning et al., 2014).
Ezetimibe was proven to suppress the development of liver
tumors by inhibiting angiogenesis in PtenΔhep mice with
hypercholesterolemia (Miura et al., 2019). SQLE is the top
gene correlated with NAFLD-associated HCC in patients.
Terbinafine, an inhibitor of SQLE, markedly inhibited HCC
cell growth in xenograft models in Sqle transgenic mice (Liu
et al., 2018). Collectively, these data indicate that lowering
cholesterol has the potential to ameliorate HCC in patients
with certain etiology. The contradictory results from statin
treated patients and terbinafine treated mice are likely affected
by multiple factors, including the timing of intervention and the
target of different drug. For instance, statins mainly work through
inhibition of cholesterol synthesis to upregulate SREBP2 activity
to ultimately increase LDLR to promote LDL cholesterol
clearance by the liver. In this case, statins, in fact, increase
cholesterol load into the liver, which could partially explain its
lack of anti-HCC effect.

Roles of Different Types of Cholesterol
in HCC
As cholesterol-lowering plays a central role in atherosclerotic
cardiovascular disease therapy, it could be of tremendous value to
understanding the role of cholesterol in HCC of certain patients
with high cardiovascular risk. Both HCC and cardiovascular
diseases are life-threatening co-morbidities of NAFLD (Brunt
et al., 2015), and closely related to cholesterol metabolism.
However, the relationship between cholesterol and
cardiovascular disease as well as HCC is in fact more
complicated due to the dominant roles of distinct subtypes of
cholesterol in different conditions. The consensus among the
world is that LDL cholesterol is a critical pathogenic factor and
therapeutic target of cardiovascular diseases (Ference et al., 2017).
Meanwhile, cardiovascular disease is twice as likely the cause of
death of patients with NAFLD than other liver diseases. This
seems likely related to commonly shared risk factors including
high LDL cholesterol. However, a recent clinical study found that
HDL cholesterol but not LDL cholesterol was significantly
associated with the HCC Tumor Aggressiveness Index. HDL
cholesterol had a statistically higher hazard ratio for death
than LDL cholesterol in HCC patients (Carr et al., 2018). On
the contrary, an earlier study found that an increased HDL
cholesterol level was related to improved overall survival (HR,

0.679, p < 0.01) and disease-free survival (HR, 2.085, p � 0.002)
rate (Jiang et al., 2016). One possible explanation is that LDL and
HDL play different roles during cholesterol transportation. In the
context of cardiovascular disease, elevated LDL cholesterol in the
circulation penetrates the vascular wall and being taken up by
macrophages to form foam cells, which is the hallmark of
atherosclerotic plaques. On the contrary, HDL-C removes
redundant cholesterol from the vascular cells to maintain
normal cell cholesterol homeostasis and prevent
atherosclerosis (Glass and Witztum, 2001). In HCC
conditions, since HDL serves as the reverse cholesterol
transporter that carries peripheral cholesterol back to the liver
through HDL receptor-scavenger receptor B type I (SR-BI), it
could thus promote tumorigenesis. With this regard, another role
of HDL is carrying the inflammatory oxidized phospholipids to
the liver through SR-BI, which could also promote HCC. The lack
of association between LDL cholesterol with HCC might also be
affected by the patient’s other condition, such as their LDLR level.
LDL particles carry cholesterol to all cells with LDLR. Although
the liver is the primary source of cholesterol clearance, the LDLR
is frequently downregulated in hepatocytes in some NAFLD
patients. The observation from the earlier study that HDL
related to improved survival rate can also be due to patients’
cardiovascular condition. Given that cardiovascular diseases
exhibit a leading cause of death in NAFLD patients compared
to HCC, higher HDL levels could improve overall survival rate by
improving cardiovascular conditions. Therefore, to conclude an
explicit role of cholesterol with HCC, the kind of cholesterol as
well as other conditions, such as cardiovascular diseases, need to
be characterized in the patients.

CLINICAL OBSERVATION

The relationship between total cholesterol and the risk of liver
cancer in human trials is controversial. A substantial body of
work found that a higher level of serum cholesterol is associated
with a lower risk of HCC (Ahn et al., 2009; Iso et al., 2009;
Kitahara et al., 2011; Yi et al., 2020; Cho et al., 2021). A large
prospective study, including 1,189,719 adults, showed that
elevated total cholesterol was associated with a lower incidence
of liver cancer (Kitahara et al., 2011). The results of liver cancer is
consist of two other prospective cohort studies performed in
Japan and Korea. The Japanese study included 33,368 men and
women aged 40–69 years, and the average follow-up period was
12.4 years (Iso et al., 2009). Serum total cholesterol levels were
inversely related to the risk of liver cancer in both sexes, and the
inverse association remained after exclusion for the first 3-years
incident cases and advanced cases with metastasis (Iso et al.,

TABLE 1 | New approaches that target cholesterol metabolism in HCC.

Drugs Target Clinical development Effects References

Statins HMGCR In phase II clinical trials Controversial 70–79
Ezetimibe NPC1L1 In preclinical development Suppressed development of liver tumor 69, 80
Terbinafine SQLE In preclinical development Attenuated HCC in cell and mice model 43, 46
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2009). The other study followed 400,318 Koreans for an average
of 8.4 years, and there were 1,686 individuals diagnosed with
HCC. The result demonstrated that high cholesterol levels were
associated with a lower risk of HCC (Yi et al., 2020). In contrast,
the inverse association between total serum cholesterol was no
longer significant in a cohort of Finnish male smokers after
excluding the cases diagnosed during the first 9 years of
follow-up (Ahn et al., 2009). Cholesterol is also related to the
outcomes of HCC patients. Low cholesterol levels might predict
worse disease-free survival and overall survival for HCC patients
(Jiang et al., 2016). Hypercholesterolemia was inversely related to
HCC mortality (Chiang et al., 2014).

The results of these prospective studies imply that the
relationship between cholesterol metabolism and HCC is far
more complex in humans. The exact mechanism is still
unclear, and we made several hypotheses to explain the
adverse association between cholesterol level and HCC that is
opposite to preclinical studies. First, similar to albumin,
aminotransferases, and other protein that hepatocytes produce,
low cholesterol levels may reflect impaired hepatic function as
impaired hepatocytes could no longer maintain their cholesterol-
generating capability. This is supported by the fact that
cholesterol is negatively associated with the severity of liver
cirrhosis, in which normal hepatocyte functions are severely
impaired (Krautbauer et al., 2017). These chronic hepatic
diseases may exaggerate the reverse relationship between
hypercholesteremia and HCC incidence. Second, the serum
cholesterol was uptaken by hepatoma cells to meet the high
cholesterol demand of cancer cells. In microsomes isolated
from hepatomas, the level of cholesterol was about 30% higher
than the value of normal hepatic cells surrounding the tumors
(Eggens et al., 1990; Su et al., 2004). Therefore, lower blood
cholesterol is observed in patients with more active HCC. Third,
hypercholesterolemia per se suppresses the incidence and
development of HCC. Though most preclinical studies support
the pathogenic role of cholesterol in HCC development, some
studies imply that high levels of cholesterol protect against HCC.
There is a growing body of evidence supporting that cholesterol
plays a vital role in regulating immune cell function (Kopecka
et al., 2020). Recently studies showed that cholesterol
accumulation in NK cells could activate the effector functions
of NK cells against hepatoma cells (Qin et al., 2020). Lipid rafts,
cholesterol-enriched membrane domains, play a critical role in
the regulation of signaling transduction in cancers (Pike, 2009;
Greenlee et al., 2021). High levels of cholesterol promoted CD44
translocation into lipid rafts and attenuated CD44-mediated
migration and metastasis of HCC (Yang et al., 2018) (Figure 2).

DISCUSSION

Cholesterol homeostasis plays a vital role in the normal
functions of organs, cells, and proteins. The precise role of
cholesterol in the development of HCC is complex and needs to
be addressed according to disease stage, cell type, HCC etiology,
types of cholesterol, concurrent diseases, and many other
factors. Extensive preclinical studies have proved a

tumorigenic role of hepatic cholesterol in promoting the
transition from NASH to HCC. Cholesterol acts as a risk
factor through a multi-level mechanism, ranging from tissue
microenvironment, cellular, and molecular regulations.
However, in the advanced stage of HCC, when extensive liver
damage is established, a higher cholesterol might indicate a
better-preserved liver function. In this scenario, studies might
conclude an opposite association between cholesterol and HCC.
Moreover, in established HCC, increased intracellular
cholesterol might play a detrimental role in one cell type,
tumor cell, for instance, but may promote the immune
surveillance function of immune cells, thereby exhibit overall
beneficial effects. The etiology of HCC might also affect the
association between cholesterol and HCC outcome. Whether
HCC was caused by hepatitis virus infection, NAFLD, alcoholic
liver diseases, or other conditions needs to be considered. Given
the controversial observation of the roles of subtypes of
cholesterol in HCC outcome, a careful evaluation on patients’
cholesterol profile could offer more accurate evidence on the
roles of cholesterol in HCC. Another factor that needs to be
considered is the cholesterol levels in circulation versus that in
the liver. The inconsistency between blood and liver cholesterol
might affect the conclusion. This was supported by the
contradictory effect of statins in HCC progression. Owing to
the central role of liver in cholesterol homeostasis, cholesterol
lowing drugs that increase cholesterol loading into the liver
might need more careful evaluation when applied to HCC
therapy. HCC patients often have concurrent other disease
conditions, such as cardiovascular diseases, which are ranked
top cause of death for patients with NAFLD compared to HCC.
Therefore, for patients with cardiovascular diseases, subtypes of
cholesterol might predict a different outcome depending on
their roles in cardiovascular conditions. Altogether, a rigorous
assessment of all these factors might help future clinical trial
designs. When assessing the roles of cholesterol in HCC
development or HCC therapy, the cholesterol lowering drugs
need to be carefully compared owing to their action target.

CONCLUSION

Cholesterol homeostasis is essential to health.
Hypercholesterolemia is getting more and more attention from
researchers as it exhibits associations with HCC. To draw a
definitive conclusion of the relationship between cholesterol
and HCC, many associated factors need to be taken into
consideration for future clinical trial design, including etiology
of HCC, detailed cholesterol profile including HDL and LDL,
HCC stage, cholesterol-lowering drugs that are being used and
their mechanisms of action, and their other conditions such as
cardiovascular disease. Given the central role of cholesterol in
atherosclerotic cardiovascular disease, the increasing health
threat that HCC has brought to global populations, clinical
studies that determine the role of cholesterol in HCC have
great potential to shed some lights on our current
understanding of HCC pathogenesis and therapy.
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