
Tissue Doppler Imaging of the Diaphragm: A New Kid on the Block?

The diaphragm is the primary constituent of the respiratory
pump. Like the cardiac pump, diaphragm performance can be
best characterized in terms of the force and velocity generated at a
given muscle length. In the respiratory system, these parameters
can be assessed by measuring the pressure and flow achieved
at a given lung volume (1). The maximal inspiratory pressures
and flows developed with either inspiratory efforts or phrenic
nerve stimulation have provided the framework upon which
diaphragmatic performance has been assessed in both ICU and
non-ICU settings. However, methods used to assess maximal
transdiaphragmatic pressure are relatively invasive and not
practical for widespread clinical use (2).

To make diaphragm evaluation more assessable to the clinician,
there is a growing interest in applying cardiac ultrasound methods to
the diaphragm. Over the past four decades, M-mode (time based)
and B-mode (2 dimensional) ultrasound have been used to image
the diaphragm dome and the diaphragm muscle in the zone of
apposition (ZOA) of the diaphragm to the rib cage. Ultrasound
measures of the diaphragm dome evaluate its caudal motion,
whereas ultrasound measures of the diaphragm in the ZOA
allow the clinician to directly assess diaphragm musculature. The
following two factors should be considered when assessing motion
of the diaphragm dome: first, the visualized image is the intensely
echogenic lung–diaphragm interface and not the diaphragm muscle
itself, and second, as much as 35% of the diaphragm dome may
be central tendon (3). Despite these considerations, several studies
have documented that caudal dome motion of more than 1–1.7 cm
reasonably predicts extubation success in mechanically ventilated
patients (4–6). The velocity of the dome has also been measured
using traditional M-mode ultrasonography but did not discriminate
between those who could and could not be weaned (6).

Additional information regarding diaphragm function can be
derived from visualizing the diaphragm muscle itself in the ZOA.
When the diaphragm contracts, it shortens and thickens.
Precontraction diaphragm thickness reflects its strength (7). The
degree of diaphragm thickening (thickening fraction) is related to
the volume inhaled (8). It has been used to identify diaphragm
dysfunction in ICU settings (9) and to predict extubation success
or failure (10, 11). A thickening fraction .20–30% suggests
extubation success, and its measurement has been useful in
shortening the time to extubation (12). However, one series found
that the diaphragm thickening fraction was not helpful in
predicting extubation outcomes (13).

Tissue Doppler Imaging (TDI) is a newer ultrasound technique
introduced more than two decades ago to evaluate cardiac function.
Unlike the traditional Doppler technique, which assesses high-
frequency low-amplitude blood velocities, TDI uses a low-pass filter

to characterize low-velocity high-amplitude signals arising from
myocardial tissue. For the heart, TDI mainly interrogates tissue
velocities in the longitudinal direction, where the apex of the heart is
considered immobile and the base of the heart moves toward the
apex (transducer) in systole and away from the apex in diastole (14).
Two factors that may lead to erroneous results with cardiac TDI
are an insonation angle that is not parallel or within 158 of the
structure being interrogated and translational motion errors related
to movement of the interrogated region of interest (ROI) into and
out of the Doppler beam (15). Despite these limitations, cardiac
TDI can provide a wealth of information about regional and global
myocardial systolic and diastolic function.

In this issue of the Journal, Soilemezi and colleagues (pp.
1005–1012) applied cardiac TDI methods to study the diaphragm
(16). They identified a ROI of the posterior third of the diaphragm
dome and measured how quickly this ROI moved toward
(inspiration) and away from (expiration) the ultrasound transducer.
Despite an overlap in values for inspiratory velocity, patients who
failed weaning trials had significantly higher peak dome velocities
and higher dome maximal relaxation rates than patients who weaned
from the ventilator. In the small group of patients in whom
transdiaphragmatic pressure (Pdi) was measured, the peak Pdi, the
diaphragmatic pressure–time index, and the maximal relaxation
rates of Pdi were also higher in the patients who failed weaning (16).

Unlike cardiac TDI, in which contraction of the heart is usually
not influenced by surrounding structures, motion of the diaphragm
dome can be influenced by factors such as compliance of the rib cage
and abdomen as well as by the impedance of neighboring structures
such as the liver or by the presence of pleural adhesions. Other
methodologic factors that can affect diaphragm TDI are the same as
those that can lead to erroneous cardiac TDI measurements. These
include translation of the ROI into and out of the Doppler beam and
assuring that the Doppler beam is parallel to the structure being
evaluated. Cardiac TDI implements algorithms and other means to
mitigate these errors. Similar processes need to be considered when
applying TDI to the diaphragm.

The study by Soilemezi and colleagues reemphasizes the
relationship between velocity of muscle contraction and muscle
endurance (16). Diaphragm performance can be interpreted in the
construct of its Pdi–inspiratory flow (VI) relationship, analogous to
the force–velocity relationship of a contracting muscle (1). At a
given lung volume (diaphragm length), Pdi and VI are negatively
related. There is a similar trade-off between Pdi and VI for a given
level of V̇O2 (17). Because high contraction velocities can lead
to fatigue, it is not surprising that Soilemezi and colleagues found
that subjects who failed weaning had higher velocities of dome
motion (16).

Soilemezi and colleagues have provided an important first step
for implementing TDI to assess diaphragm function (16). However,
more questions need to be addressed before TDI can be established
as a valuable tool for the intensivist. Does the interrogated ROI of
the dome truly capture diaphragmatic muscle contraction velocity?
To what extent is motion of a small ROI influenced by other factors
such as translational motion of the diaphragm or tethering to the rib
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cage or by pleural adhesions? Does contraction of the inspiratory rib
cage muscles (load sharing) or contraction of abdominal muscles
(i.e., respiratory alternans) influence caudal diaphragm dome
velocity? Other questions are sure to arise as this new method
for evaluating diaphragm function evolves over the next
decade. n
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The ABCs of Granulomatous Lung Diseases: Age-associated B Cells

At the mention of B cells, your likely first thought is the production
of antibodies, mostly beneficially directed against microbial threats
but also potentially pathogenic, as when allergy is triggered
in a susceptible host by excessive antigenic exposure or when

inappropriate self-sensitization leads to autoimmunity (1).
Immunoexclusion by secretory IgA is essential to prevent bacterial
damage to the lower airways (2, 3), and IgG indispensably protects
against respiratory viruses (4), a current worldwide concern.
However, independently from immunoglobulin production, B cells
also play important roles as antigen-presenting cells (5) and as
regulatory cells akin to regulatory T cells (6). Hence, defining
mechanistically what B cells are doing in specific lung diseases is a
crucial investigative area.

Lying beneath the broad umbrella of possible B-cell functions in
lung diseases are a lot of things, not all good. In asthma, their roles
range from propagating T-helper cell–mediated responses to
antigens such as house dust mites to IgE elaboration by specific
memory B cells (7). As chronic obstructive pulmonary disease severity
mounts, there are progressive increases in the numbers and size of
B-cell–rich lung lymphoid follicles (8–10) and in concentrations
of autoantibodies in blood and lung samples, especially in the
emphysematous phenotype (11). Less is known about B-cell immune
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