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Abstract

T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) has been

described as a transmembrane protein, expressed on the surface of various T cells as

well as different cells of innate immunity. It has since been associated with Th1 mediated

autoimmune diseases and transplantation tolerance studies, thereby indicating a possi-

ble role of this receptor in counter-regulation of Th2 immune responses. In the present

study we therefore directly examined the role of Tim-3 in allergic inflammation and respi-

ratory tolerance. First, Tim-3-/- mice and wild type controls were immunized and chal-

lenged with the model allergen ovalbumin (OVA) to induce an asthma-like phenotype.

Analysis of cell numbers and distribution in the bronchoalveolar lavage (BAL) fluid as

well as lung histology in H&E stained lung sections demonstrated a comparable degree

of eosinophilic inflammation in both mouse strains. Th2 cytokine production in restimu-

lated cell culture supernatants and serum IgE and IgG levels were equally increased in

both genotypes. In addition, cell proliferation and the distribution of different T cell sub-

sets were comparable. Moreover, analysis of both mouse strains in our respiratory toler-

ance model, where mucosal application of the model allergen before immunization,

prevents the development of an asthma-like phenotype, revealed no differences in any

of the parameters mentioned above. The current study demonstrates that Tim-3 is dis-

pensable not only for the development of allergic inflammation but also for induction of

respiratory tolerance in mice in an OVA-based model.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0249605 April 6, 2021 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Boehne C, Behrendt A-K, Meyer-Bahlburg

A, Boettcher M, Drube S, Kamradt T, et al. (2021)

Tim-3 is dispensable for allergic inflammation and

respiratory tolerance in experimental asthma. PLoS

ONE 16(4): e0249605. https://doi.org/10.1371/

journal.pone.0249605

Editor: Svetlana P. Chapoval, University of

Maryland School of Medicine, UNITED STATES

Received: November 30, 2020

Accepted: March 19, 2021

Published: April 6, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0249605

Copyright: © 2021 Boehne et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

https://orcid.org/0000-0003-1879-3347
https://orcid.org/0000-0003-2911-8830
https://doi.org/10.1371/journal.pone.0249605
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249605&domain=pdf&date_stamp=2021-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249605&domain=pdf&date_stamp=2021-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249605&domain=pdf&date_stamp=2021-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249605&domain=pdf&date_stamp=2021-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249605&domain=pdf&date_stamp=2021-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249605&domain=pdf&date_stamp=2021-04-06
https://doi.org/10.1371/journal.pone.0249605
https://doi.org/10.1371/journal.pone.0249605
https://doi.org/10.1371/journal.pone.0249605
http://creativecommons.org/licenses/by/4.0/


Introduction

Within the last decades the prevalence of allergic asthma has risen steadily in western countries

affecting more than 300 million people worldwide by now. It is a very common chronic lung

disease that is characterized by eosinophilic airway inflammation, airway hyperreactivity and

reversible airway obstruction [1]. Type-2 high and low forms of airway inflammation are dis-

criminated, taking into account the multifactorial pathogenesis of asthma. About 50% of

patients are characterized by a type- 2 high immune status involving innate as well as adaptive

immune cells [2]. The latter is defined by a Th2 dominated cell environment insufficiently

counterbalanced by Th1 as well as Treg cells [3, 4]. We and others have highlighted the role of

T cell surface expressed proteins such as costimulatory or coinhibitory molecules in the modu-

lation of allergic immune reaction [5–11].

Tim-3 is a member of the T cell immunoglobulin and mucin domain-containing (Tim)

family of genes (Tim-1-8), of which Tim-1, -3 and -4 are conserved in humans [12]. Based on

the original description of Tim-3 as a transmembrane protein, primarily expressed on CD4+

Th1 effector cells but not on Th2 cells, it is well known for its role as an important inhibitory

molecular checkpoint [13]. (Auto)-inflammatory as well as dysfunctional and exhaustive cell

responses are ascribed to its expression and function on Th17, Treg and CD8+ T cells [14]

though references for an activating role exist as well [15]. Besides its inhibitory function in

adaptive immunity Tim-3 also plays a role in proinflammatory cytokine production [16, 17]

and is frequently expressed on innate immune cells such as macrophages, dendritic cells (DC),

natural killer (NK) cells, monocytes and mast cells [14, 16]. A variety of autoimmune disorders

[13, 18–21], chronic viral infections [22, 23] and different cancers [14] have since been linked

to Tim-3.

The variable influence of Tim-3 on adaptive Th1 as well as innate immunity and its location

within the T cell and airway phenotype regulator (Tapr) locus in mice have raised the question

whether Tim-3 gene polymorphisms are linked with allergy [24–27]. To date, some murine

studies investigated a putative role of Tim-3 in allergic airway disease with partly controversial

results: use of anti-Tim-3 antibodies [28] or small interfering RNA [29], respectively, lead to a

significant reduction of airway hyperreactivity in murine OVA-based models, whereas further

studies stated that Tim-3 is not essential for a type-2 driven allergic response [30, 31]. How-

ever, recent human studies revealed an upregulation of Tim-3 on CD4+ T cells in patients with

allergic asthma thereby suggesting a possible association with Th1/Th2 imbalance [32, 33].

Given the diverse picture of Tim-3 phenotype in innate and adaptive immunity, in both the

human system and murine models so far, we investigated Tim-3-/- mice in our well-established

murine model of allergic lung disease and respiratory tolerance [34, 35]. Systemic sensitization

and local challenge of Tim-3-/- mice with the model allergen OVA resulted in the development

of an allergic phenotype. Moreover, we characterized the development of respiratory tolerance

by mucosal OVA pre-treatment prior to sensitization (tolerization) in both Tim-3-/- and WT

mice and described the functional T cell environment in Tim-3 deficient mice.

Materials and methods

Mice

12-16 week old BALB/cByJ female mice were purchased from Elevage Janvier (France). Tim-

3-/- BALB/c mice were bred in our animal facility. In brief, the gene encoding for Tim-3

(Havcr2) was replaced via gene targeting in embryonic stem cells. Homologue recombination

led to deletion of exons 1 and 2 of the Tim-3 gene which was identified via PCR and flow

cytometry of peripheral blood cells. Chimeric mice from Tim-3 deficient embryonic stem cell
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clones were then crossed to a BALB/c background for six to eight generations [19]. All mice

were maintained under specific pathogen-free conditions with free access to food and water.

Animal experiments were strictly performed according to institutional and state guidelines. To

alleviate suffering during intraperitoneal (i.p.) and intranasal (i.n.) application of compounds,

the mice received brief inhalation anaesthesia with isoflurane (100% v/v, Baxter, Germany).

Mice were sacrificed by an overdose of isoflurane followed by blood loss during dissection.

The local animal welfare committee of Lower Saxony State Office for Consumer Protection

and Food Safety approved protocols (TSA 11/0950).

Immunization protocols

To provoke an allergic inflammatory phenotype (OVA), WT and Tim-3-/- mice were immu-

nized with OVA (Sigma-Aldrich, Germany) [7, 9, 34, 36]. Lipopolysaccharide (LPS) contami-

nations of OVA preparations (Sigma, grade V, LPS content�1500 EU/mg protein) were

removed as previously described [36, 37]. Sensitization was accomplished by i.p. application of

OVA twice– on days 0 and 14 – with OVA (20 μg in 200 μl 0.9% saline) adsorbed to 2 mg of an

aqueous solution of aluminium hydroxide and magnesium hydroxide (Imject Alum; Perbio

Science, Germany). Subsequently, i.n. challenges with 20 μg OVA in 40 μl 0.9% saline were

performed on three consecutive days, day 14 to 16 and day 20 to 22 (Fig 1A). WT and Tim-3-/-

control mice (Alum) received 200 μl 0.9% saline / 2 mg Imject Alum i.p. and were challenged i.

n. with 0.9% saline. Mice were sacrificed on day 23.

I.n. mucosal application of high-dosed OVA prior to i.p. sensitization prevents the manifes-

tation of an allergic phenotype in our model resulting in respiratory tolerance to the allergen

(TOL). Therefore, WT and Tim-3-/- mice were pre-treated with OVA i.n. (500 μg OVA, 40 μl

0.9% saline) on days -6 and -3. Afterwards they were referred to the allergy protocol described

above (Fig 1B).

Collection and analysis of bronchoalveolar lavage fluid (BALF)

During dissection of mice the trachea was cannulated and whole lung was inflated once with

0.8 ml of ice-cold PBS supplemented with 2 mM EDTA. Subsequently, right lung volume was

Fig 1. Immunization protocols. (A) Induction of allergic phenotype. WT and Tim-3-/- mice were sensitized at days 0

and 14 by -i.p. application of OVA in Alum, resulting in an allergic phenotype; whereas negative control mice were i.p.

immunized with NaCl 0.9% in Alum. Sensitization was followed by i.n. challenges at consecutive days 14-16 and 20-22

with either OVA or saline, respectively. Section of all mice at day 23. (B) Induction of tolerant phenotype. In order to

induce a tolerant phenotype, mice received i.n. tolerization with OVA in saline at days -6 and -3 (square), followed by

i.p. immunization with OVA in Alum at days 0 and 14 and i.n. challenges with OVA at consecutive days 14-16 and 20-

22. Section of all mice at day 23.

https://doi.org/10.1371/journal.pone.0249605.g001
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aspirated, followed by three consecutive lavages (instillation and subsequent aspiration of 0.4

ml of ice-cold PBS/EDTA) until a total BALF volume of 1.6 ml per mouse was reached. Total

BALF volume was centrifuged at 300 x g (4˚C, 10 minutes) and BALF cellular constituents

were resuspended in 0.5 ml PBS/EDTA. Total number of BALF cells was afterwards deter-

mined using an automated cell counting system based on Trypan Blue dye exclusion method

(Cedex HiRes, Innovatis, Germany). In addition, BALF differentials were determined on

cytospins (1x105 BALF cells per cytospin) subjected to May-Grünwald-Giemsa staining. At

least 100 cells were differentiated by light microscopy based on overall morphologic criteria,

including cell size and shape of nuclei by a blinded examiner. Total BALF leukocyte subsets

were quantified by multiplication of percent values with the respective total BALF cell counts.

Analysis and score-based quantification of lung histology

Left lungs were inflated with 0.4 ml PBS/EDTA and fixed in 4% formalin at room temperature

for at least 24 hours. Fixed lungs were then embedded in paraffin, deparaffinized, cut into

4 μm-thick sections and stained with haematoxylin and eosin (H&E, Merck, Germany) or

with periodic acid–schiff reagent (PAS, Sigma, Germany). Evaluation and quantification of the

degree of pulmonary inflammation (H&E) as well as mucus production (PAS) was done under

masked conditions on lung histology slides, scanned with a digital camera (40×; 10 shots per

lung) and analyzed with HistoClick Software (provided by I. Hohmann and W. Scherf, Ger-

many), based on morphometric image analysis developed in our laboratory. Positive pixel

counts were first totalled for each individual lung and then averaged per group of mice. The

pixel data were finally presented as mean ± SEM per group. Exemplary lung sections of indi-

vidual mice were scanned with a digital camera (x200) for illustration of pulmonary inflamma-

tion or mucus production.

Measurement of OVA-specific immunoglobulins IgE, IgG1 and IgG2a

Serum was obtained from each individual mouse 24 hours after the last i.n. OVA challenge.

OVA-specific IgE, IgG1 and IgG2a serum levels were measured by ELISA. Using a standard

curve for mouse anti-OVA IgE (AbD Serotec, UK), we calculated OVA-specific IgE concentra-

tions (pg/ml). Data for OVA-specific serum IgG1 and IgG2a are presented as titre values

derived from analysis of optical density values versus factors of serum dilution series with a

logarithmic curve fitting model.

Measurement of in vitro cytokine production and proliferation

Single cell suspensions from spleens were prepared and 5x106 cells were cultured in vitro with

OVA (0.2 mg/ml) in culture medium (RPMI medium supplemented with 10% FCS, 100 U/ml

penicillin and 100 μg/ml streptomycin). Cytokines (IL-5, IL-10, IL-13, IFN-γ) were measured

in supernatants of spleen cells at day 3 of restimulation with OVA by commercially available

ELISA (R&D Systems, USA), according to the manufacturer’s instructions. To determine pro-

liferation, OVA-restimulated splenocytes were analyzed using a cell titre glow assay (Promega,

Germany) according to the manufacturer’s instructions. In detail, 0.1 ml cell suspension and

0.1 ml freshly prepared glow reagent were mixed and measured using a GloMax Multi-Detec-

tion System (Promega, Germany).

Flow cytometry and antibodies (Abs)—Antigen-specific Th cells

Unless otherwise indicated, mAbs were grown, purified and conjugated from hybridoma

supernatants in our laboratory. Splenocytes were isolated and counted. 1x106 cells were
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cultured in 1 ml culture medium in the presence of 3 μg/ml anti-CD28 (clone 37.51) and

50 μg/ml OVA (Sigma-Aldrich, Germany) for 6 hours at 37˚C and 5% CO2. For the last 4

hours 5 μg/ml Brefeldin-A (Sigma Aldrich, Germany) was added. A pooled sample restimu-

lated with 3 μg/ ml anti-CD28 and 3 μg /ml anti-CD3 (clone 145-2C11) served as a positive

control. For a negative control pooled cells were restimulated with anti-CD28 alone.

After the restimulation cells were harvested and washed twice by centrifugation in cold PBS.

Cells were labeled with LIVE/DEAD1 Fixable Aqua Dead Cell Stain Kit (life Technologies, Ger-

many) for later discrimination of live and dead cells according to the manufacturer’s instruc-

tions. After an additional washing step in cold PBS, cells were fixed in 2% para-formaldehyde for

20 min at 4˚C. Next, cells were washed with PBA (PBS with 0,25% BSA and 0.02% sodium ace-

tate), permeabilized with PBA-S (PBA with 0.5% saponine) and stained with the following anti-

bodies for 30 min at 4˚C. For blocking of unspecific binding anti-CD16/CD32 (clone 2.4G2) and

rat IgG (Jackson Immuno Research, USA) as well as fluorescently labeled antibodies anti-CD4

APC/Cy7 (ebioscience, Germany), anti-CD154 APC (miltenyi biotech, Germany), anti-IL-4

Alexa Fluor1 488 (ebioscience, Germany) and anti-IL-5 PE (clone TRFK4) were used. 1 000

000 events were acquired for each sample using a LSRII cell cytometer (BD Biosciences, Moun-

tain View, USA). Data were analyzed using FlowJo Software (TreeStar, Ashland, USA).

Flow cytometry and antibodies (Abs)–staining of CD8+, CD4+and Foxp3+

T cells

Splenic single-cell suspensions were incubated with fluorescently labeled Abs for 20 min at

4˚C in staining buffer (PBS with 0.5% BSA). Abs used included reagents specific for CD4

(RM4-5) and CD8 (53-6.7) from BD Pharmingen (San Diego, USA) and Foxp3 (FJK-16s)

from eBioscience (San Diego, USA). Intracellular staining of Foxp3 was performed using the

eBioscience reagents according to manufacturer’s instructions as previously described [7]:

after surface staining, cells were fixed for 45 min in fixation buffer. Subsequently, cells were

washed twice with perm buffer and incubated with Ab to Foxp3 for 30 min at 4˚C. Data was

collected on a FACSCanto flow cytometer (BD Biosciences, Mountain View, USA), analyzed

using FlowJo software (Tree Star, Ashland, USA) and further statistically evaluated applying

GraphPad Prism V software (La Jolla, USA).

Statistical analysis

Statistical analyses were performed using GraphPad Prism V software (La Jolla, USA). Inter-

group differences of cytokine levels in supernatants of spleen cells and proliferation were cal-

culated using Student‘s unpaired t-test. For all other parameters a non-Gaussian distribution

was assumed and significance levels among the groups were calculated using Mann-Whitney-

U-test. p values of less than 0.05 were considered significant (�); values of less than 0.01 were

considered highly significant (��). Data are presented as mean ± SEM.

Results

Tim-3 is dispensable for the development of allergic airway inflammation

in mice

Mice, immunized and challenged with the model allergen OVA according to the protocol

described above, develop an allergic phenotype characterized by an eosinophilic airway inflam-

mation, high allergen-specific serum IgE levels as well as increased Th2 cytokine production

(OVA) compared to control animals (Alum) [7, 9, 34] (Figs 2 and 3). To evaluate the role of Tim-

3 for the development of this allergic phenotype, Tim-3-/- mice and WT mice were systemically
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immunized with the model allergen OVA in Alum and afterwards challenged intrapulmonary

with OVA in NaCl 0,9%. Control mice received Alum and NaCl 0.9% instead. First, we com-

pared the degree of lung inflammation in both mouse strains. Total cell numbers and differential

counts in the BALF were comparable between Tim-3-/- and WT mice (Figs 2 and S1). Moreover,

H&E stained lung sections revealed an equal degree of peribronchiolar and perivascular cell infil-

trates. In parallel, PAS stained lung sections showed a comparable degree of mucus production

and goblet cell hyperplasia. The comparability of lung inflammation and mucus hypersecretion

in Tim-3-/- and WT mice could be confirmed by objective, investigator independent computer-

based morphometric image analysis of H&E and PAS stained lung tissues (Fig 4).

Next, we examined the production of allergen-specific serum immunoglobulins in Tim-3-/-

and WT mice after immunization to OVA (Figs 2C and S2). All three analyzed immunoglobu-

lins, IgE, IgG1 and IgG2a, were equally modified by sensitization to OVA in the two different

mouse strains, meaning a significant increase of IgE, IgG1 and IgG2a compared to control

mice. Our findings demonstrate that Tim-3 is not essential for the modification of the immu-

noglobulin response for the allergic phenotype in our murine model.

To analyze the effect of Tim-3 on cytokine production in response to OVA immunization,

we next measured different cytokine levels in supernatants of spleen cell cultures in WT and

Tim-3-/- mice after restimulation with OVA. As expected, we detected significantly elevated

levels of IL-5, IL-10 and IL-13 in OVA-immunized WT mice compared to WT controls. In

Fig 2. BALF analysis and OVA-specific immunoglobulin E. (A, B) Bronchoalveolar lavage fluid was obtained from

each individual mouse (WT, Tim-3-/-) at section day to determine total cell count (A) and number of eosinophils (B).

No significant differences were detected between WT and Tim-3-/- OVA and TOL mice, resulting in comparable

allergic and tolerant phenotypes. (Data of three independent experiments, n = 12-15 animals per group.) (C)

Significant and comparable decrease in IgE production for WT and Tim-3-/- TOL mice compared to OVA controls.

(One representative out of three independent experiments, n = 5-6 animals for each group.) Mann-Whitney-U-test. �

p� 0.05; �� p� 0.01. All data are presented as mean ± SEM.

https://doi.org/10.1371/journal.pone.0249605.g002
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accordance to our findings for lung inflammation and immunoglobulin production, we found

no differences for cytokine levels between OVA-immunized Tim-3-/- and WT mice (Fig 3A–

Fig 3. OVA-specific cytokine production and proliferation of splenic lymphocytes. (A-C) Production of IL-5 (A),

IL-10 (B) and IL-13 (C) in cell culture supernatants of spleens showed a significant decrease after tolerization

compared to allergic (OVA) animals in both, WT and Tim-3-/- mice. (D) Tolerant mice showed a significant increase

of IFN-γ in Tim-3-/- mice. (E) Proliferation of splenic lymphocytes by cell titer glow assay after OVA restimulation

showed decreased proliferation in TOL animals of WT and Tim-3-/- mice. Increased levels of luminescence were

detected in allergic mice, both WT and Tim-3-/- animals, no significant differences between WT and Tim-3-/- mice.

(One representative out of three independent experiments; n = 5-6 animals per group.) Student‘s unpaired t-test.�

p� 0.05, �� p�0.01, n.s. p> 0.05. All data are presented as mean ± SEM.

https://doi.org/10.1371/journal.pone.0249605.g003

PLOS ONE Allergic inflammation and respiratory tolerance in Tim-3-deficiency

PLOS ONE | https://doi.org/10.1371/journal.pone.0249605 April 6, 2021 7 / 14

https://doi.org/10.1371/journal.pone.0249605.g003
https://doi.org/10.1371/journal.pone.0249605


3C). Only the IFN-γ concentration was slightly lower in OVA immunized Tim-3-/- compared

to WT mice, however, this difference did not reach the level of significance (Fig 3D). Ex vivo
proliferation of splenocytes in response to restimulation with OVA assessed by cell titre glow

assay showed a dose-dependent increase of proliferation in OVA mice compared to Alum con-

trols in WT and Tim-3-/- mice. However, we found an overall increased basal proliferation in

Tim-3-/- mice compared to WT mice (Fig 3E).

FACS analysis of antigen (Ag)-specific Th cells isolated from Tim-3-/- and WT mice after

immunization to OVA showed that Ag-specific Th cells –defined by simultaneous staining of

CD4 and CD154 (CD40L) - were similarly enhanced in frequency and number in both mouse

strains (Fig 5). CD154 (CD40L) is a marker that is upregulated within a few hours after T cell

receptor triggering and has been previously shown to be induced only in those T cells that

have recognized their cognate Ag [38–41]. Moreover, the number of OVA-specific

CD154+CD4+ IL-4 and IL-5 producing cells were similar in WT and Tim-3-/- mice (S3 Fig). In

OVA-immunized mice the frequency of CD4+CD154+ OVA-specific cells was approximately

7% of the CD154+ cells and of those about 75% produce IL-4 or IL-5 (S4 Fig).

Tim-3 is dispensable for respiratory tolerance in a murine model

Next, we aimed at analyzing the role of Tim-3 for the development of respiratory tolerance

and compared Tim-3-/- and WT mice in the corresponding murine model.

Fig 4. Lung histology analysis. (A-D) Lungs were stained for eosinophilic lung inflammation (H&E, A) or mucus

secretion (PAS, C), followed by computer-based quantification using an image analyzing program (B and D).

Significantly decreased inflammation and mucus production was found in TOL mice compared to allergic controls

(OVA). In contrast, WT and Tim-3-/- mice were not significantly altered. (Three independent experiments; n = 5-6

animals per group.) Mann-Whitney-U-test. � p� 0.05, �� p�0.01, n.s. p> 0.05. All data are presented as

mean ± SEM.

https://doi.org/10.1371/journal.pone.0249605.g004

Fig 5. Antigen-specific Th cells. (A, B) WT or Tim-3-/- mice were immunized with OVA/Alum i.p. (OVA), PBS/Alum

i.p. (Alum), or received OVA i.n. (TOL) before challenge with OVA i.n. as described in methods. 23 days later mice

were sacrificed and single cell suspensions prepared from spleens were analyzed flow cytometrically. The frequency

(A) and absolute numbers (B) of CD4+ Th cells (black bars) and CD4+CD154+ cells (grey bars) were determined as

described in methods. Number of animals per group was two. Error bars represent the standard deviation.

https://doi.org/10.1371/journal.pone.0249605.g005
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To induce respiratory tolerance, we applied a high dose of OVA i.n. prior to sensitization

and i.n. challenges as described above. As shown in previous studies, mucosal application of

the antigen prior to referral of mice to the asthma protocol inhibits the development of eosino-

philic airway inflammation (Figs 2A and 2B and 4A and 4B), mucus hypersecretion (Fig 4C

and 4D), Th2 cytokine production (Fig 3A–3D), Ag-specific cell proliferation (Fig 3E) and IgE

levels in serum (Fig 2C) in WT mice. The inhibition of all these parameters was comparable in

the Tim-3-/- mice.

Furthermore, the number of CD4+ and CD4+Foxp3+ Treg cells was comparable between

WT and Tim-3-/- mice (S5 Fig). In our setting, respiratory tolerance is mediated via Foxp3

+ Treg cells, as demonstrated in a previous paper of our group [7]. Busse et al. could show that

CD4+CD25+Foxp3+ Treg numbers were increased in both spleen and lung after i.n. OVA tol-

erization. Furthermore Foxp3+ Treg cells isolated from tolerized WT mice and cultured in the

presence of Dynabeads Mouse CD3/CD28 T Cell Expander1 can secrete IL-10. They demon-

strated by adoptive cell transfer experiment that these isolated Tregs conferred allergic asthma

protection in our model. Though not statistically significant, the frequency of CD8+ T cells

was slightly increased in all Tim-3-/- mice compared to WT animals. Furthermore, the fre-

quency of CD4+CD154+ OVA-specific splenocytes in both WT as well as Tim-3-/- mice was

reduced to approximately 3% of CD154+ cells compared to 7% in OVA-immunized mice.

These OVA-specific cells of TOL mice produced more cytokines than Alum mice but less than

OVA-challenged animals. In TOL mice the amount of Th2 cytokine producers was approxi-

mately two thirds compared to 75% in OVA mice and about 50% in Alum mice.

Taken together, we found similar allergic and tolerant phenotypes in WT and Tim-3-/-

mice demonstrating that Tim-3 is not crucial in these settings.

Discussion

To date several studies have demonstrated involvement of Tim-3 in a Th2 mediated immune

response: an increased Tim-3 expression was found among CD4+ and CD4+CD25+ T cells dur-

ing allergic inflammation in mice [30, 42]. These results have also been confirmed in humans

among patients with asthma [32, 33]. Additionally, the number of lymphocytes was increased in

Tim-3-/- mice after chronic exposure to house dust mite antigen [31]. Tim-3 was also involved

in innate immune responses by upregulation of CD11c+ myeloid cells (dendritic cells, alveolar

macrophages) in a murine model of allergic asthma [30]. Moreover, application of anti-Tim-3

antibody lead to a significant reduction of all parameters of airway hyperreactivity in an OVA-

based model with a significant reduction in IL-5 producing cells in the lungs [28]. However, the

latter murine model used by Kearley et al. was based on cell transfer of OVA-reactive Th2 cells

to induce pulmonary inflammation, rather than induction by local (i.n.) or systemic (i.p.)

immunization of mice with an unperturbed T cell receptor repertoire. Additionally, instead of

Tim-3 deficient mice anti-Tim-3 antibody functioned as blockage of Th2 response.

In contrast, we demonstrate that Tim-3 is dispensable for the induction and maintenance

of allergic airway inflammation and respiratory tolerance in a murine model. In our study,

OVA-induced allergic inflammation can be equally evoked in both, WT and Tim-3 knock-out

mice. We found comparably increased BALF total and differential cell counts as well as serum

IgE and Th2 cytokines in both OVA-treated groups. Additionally, histological examination

did not show any differences between WT and Tim-3-/- mice. These observations are in line

with studies by Barlow et al. and Hiraishi et al. [30, 31]: both stated that Tim-3 is not essential

for a type-2 driven allergic response in different murine models applying either OVA or house

dust mite antigens in Balb/c and C57BL/6J mice, respectively ]30,31]. Our data confirm and

extend these findings since we show similar frequencies and numbers of antigen-specific T
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cells, similar frequencies of CD4+Foxp3+ Treg cells, as well as similar cytokine profiles between

WT and Tim-3-/- mice regardless of challenge or tolerization with the model allergen OVA.

In addition to that, our study extensively investigates the induction and maintenance of

respiratory tolerance in the absence of Tim-3. Previously, the putative role of Tim-3 in immu-

nological tolerance and autoimmune diseases has been characterized in several Th1 mediated

animal models: In EAE, anti-Tim-3 treatment resulted in a peracute onset of disease poten-

tially mediated via cross-linking differentiated Th1 cells and increasing their migration which

in turn led to enhanced cytokine production and macrophage activation [13]. Lee et al.

extended these findings by demonstrating that blockage of Tim-3 signalling resulted in a vari-

able disease outcome depending on different T effector cells involvement [18]. Furthermore,

transplantation and peripheral tolerance was shown to be critically dependent on an undis-

turbed Tim-3 function [43]. Whether galectin-9 or CEACAM1 as Tim-3 ligands play essential

interactive roles is still discussed controversially [44–47]. The putative role of Tim-3 for Treg

cell function has been characterized by Wang et al. who described the influence of the Tim-

3-Galectin-9 pathway on Treg cells in vitro and demonstrated that Tim-3 blockade inhibits

Treg mediated allograft survival in vivo [48]. Additionally, it has been proposed by Moorman

and co-workers that Tim-3 up-regulation on CD4+CD25+Foxp3+ Treg cells correlates with

Treg proliferation and suppressive function thereby modulates the Treg and T effector cell bal-

ance [49]. Recently, Gautron further characterized Tim-3+ Treg cells as Th17 suppressive cells

via STAT-3 expression [50].

We were therefore interested whether lack of Tim-3 has a negative impact on the induction

of respiratory tolerance in our murine asthma model. Based on the previous literature about a

critical role of Tim-3 on Treg function we expected that induction of respiratory tolerance in

Tim-3-/- mice might be disabled. However, we observed decreased IL-10 levels in cell culture of

spleenocytes of tolerized mice (Fig 3B) for both Tim-3-/- and WT mice. For Tim-4, Ahlbacker

et al. were able to show that blockade of Tim-4 via inhibition of Tim-4 expressing lymph node

medullary macrophages, resulted in an increased number of antigen-specific T cells and subse-

quent loss of respiratory tolerance [51]. For the first time, we characterized the role of Tim-3 in

the context of a respiratory tolerance model in mice: We found comparably decreased BALF

total cell numbers and eosinophils in TOL mice, both WT and Tim-3-/-, compared to OVA
mice. Moreover, Th2 cytokines (IL-4, IL-5, IL-10, IL-13), serum IgE levels and ex vivo prolifera-

tion of OVA-specific restimulated splenocytes were significantly diminished in both tolerized

groups compared to OVA groups. Accordingly, IFN-γ levels were comparably increased in WT

and Tim-3-/- TOL mice. Also the frequency of CD4+Foxp3+ Treg cells was comparable in both,

WT and Tim-3-/- tolerized mice. OVA-specific CD4+CD154+ cells of TOL mice produced less

cytokines than allergen-challenged animals and Th2 cytokine producers were reduced to two

thirds compared to OVA and Alum mice. All these findings indicate that even Tim-3 deficient

mice can be efficiently tolerized by OVA pre-treatment prior to sensitization.

Given the diverse picture of Tim-3 in innate and adaptive immunity, we cannot rule out

that different mechanistic settings will lead to different findings. However, we conclude that

Tim-3 is not only dispensable for the induction and maintenance of allergic airway inflamma-

tion but also for induction of respiratory tolerance in mice applying an OVA-based model.

Further studies might therefore be necessary to obtain a comprehensive characterization of the

role of Tim-3 in immunological tolerance.

Supporting information

S1 Fig. BALF differential cell count. (A-C) BALF differential cell count was determined as

number of macrophages (A), lymphocytes (B) and neutrophils (C) on cytospins. No significant
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differences were detected between WT and Tim-3-/- OVA and TOL mice, resulting in compa-

rable allergic and tolerant phenotypes. (Data of three independent experiments; n = 12-15 ani-

mals per group.) Mann-Whitney-U-test. � p� 0.05; �� p� 0.01. Data are presented as

mean ± SEM.

(TIF)

S2 Fig. OVA-specific serum immunoglobulins IgG1 and IgG2a. (A, B) OVA-specific IgG1

(A) and IgG2a (B) serum levels in WT and Tim-3-/- mice were not significantly altered in aller-

gic vs. tolerant animals. No difference in WT vs. Tim-3-/- mice. (One representative out of

three independent experiments; n = 5-6 animals for each group.) Mann-Whitney-U-test. � p�
0.05; �� p� 0.01. Data are presented as mean ± SEM.

(TIF)

S3 Fig. Functional T cell subsets. (A, B) Progressive gating strategy for identification of func-

tional T cell subsets. After in vitro restimulation, splenocytes from WT (A) and Tim-3-/- (B)

mice were incubated with amine-reactive viability dye to identify dead cells, followed by stain-

ing for CD4, fixation and intracellular staining for CD154, IFNγ, IL-17A, IL-4 and IL-5. Cells

were gated through a singlet cell gate, followed by a lymphocyte gate and dead cell exclusion. T

helper cells were identified using CD4 and OVA-specific T-cells were then gated using CD154

expression. The latter were then analyzed for cytokine production showing IL-4 and IL-5 here.

(TIF)

S4 Fig. Functional composition of the CD4+ T cell response. CD4+ cells were examined flow

cytometrically for their production of IFNg, IL-4, IL-5, and IL-17A. The larger pie charts (light

blue) show the percentage of CD4+ cells that produce any of the cytokines investigated. The

smaller pie charts summarize the fractions of the total response that are single-producers of

any of the individual cytokines or double producers that produce two cytokines simulta-

neously (e.g. IL-4/IL-5 or IFNg/IL-17). For example 7,21% of the CD4+ cells from WT OVA
mice produced at least one of the investigated cytokines upon recognizing OVA. Of those, the

majority was single producers of either IL-4 or IL-5 and only a small fraction produced IL-17.

Responses are grouped and color-coded according to the number of functions.

(TIF)

S5 Fig. Frequency of CD8+, CD4+, Foxp3+ T cells. (A, B) Splenic single-cell suspensions were

first flow cytometrically examined for their percentage of CD4+ (A) and CD8+ T cells (B). (C)

After, intracellular staining of Foxp3 was performed. No statistically significant difference was

detected between the percentage of different T cell subsets in OVA immunized and challenged

mice compared to their non-allergic controls. In addition, Tim-3-/- mice did not differ in their

composition of CD8+, CD4+ or CD4+Foxp3+ T cells. Mann-Whitney-U-test. ns p> 0.05.

(TIF)
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