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Abstract

Due to the fast speed of data generation and collection from advanced equipment, the

amount of data obviously overflows the limit of available memory space and causes difficul-

ties achieving high learning accuracy. Several methods based on discard-after-learn con-

cept have been proposed. Some methods were designed to cope with a single incoming

datum but some were designed for a chunk of incoming data. Although the results of these

approaches are rather impressive, most of them are based on temporally adding more neu-

rons to learn new incoming data without any neuron merging process which can obviously

increase the computational time and space complexities. Only online versatile elliptic basis

function (VEBF) introduced neuron merging to reduce the space-time complexity of learning

only a single incoming datum. This paper proposed a method for further enhancing the

capability of discard-after-learn concept for streaming data-chunk environment in terms of

low computational time and neural space complexities. A set of recursive functions for com-

puting the relevant parameters of a new neuron, based on statistical confidence interval,

was introduced. The newly proposed method, named streaming chunk incremental learning

(SCIL), increases the plasticity and the adaptabilty of the network structure according to the

distribution of incoming data and their classes. When being compared to the others in incre-

mental-like manner, based on 11 benchmarked data sets of 150 to 581,012 samples with

attributes ranging from 4 to 1,558 formed as streaming data, the proposed SCIL gave better

accuracy and time in most data sets.

1 Introduction

Fast analysis and management of huge amounts of data by the neural computing approach is a

challenging problem for current competitiveness in many research fields such as science [1–

18], engineering [19, 20], medicine [21–23], social science [24–26], and business [27–30]. In

contrast, the speed of data generated on the internet per unit time is tremendously faster than

the possible number of bits fabricated in a very-large-scale integration (VLSI) memory chip.

This contradiction creates another problem where the incoming data can overflow the
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memory size, which makes computation impossible. However, most of the classical learning

methods require the storage of the entire training data in the memory. In this study, we con-

sider the constraint on the data overflow and propose a new learning method based on the

concept of discard-after-learn for temporal class-wise data chunks.

Streaming data pose challenges for machine learning, pattern recognition, and data mining.

Traditional preprocess or learning approaches are not able of efficient dealing with amounts of

data growing rapidly and taking into consideration characteristics, such as the distribution of

the streaming data changed over time, limited computational time and memory [1]. In most

machine learning applications, the streaming data are burst into a series of chunks. Each

chunk may contain different data classes of various sizes. Since the data distribution is

unknown and changed over time, the size of each chunk and the target of each datum are pre-

sumed to be stochastic and it could dramatically affect performance of the used model. The

data stream classification has attracted extensive attention. For example, in data mining and

pattern recognition, the evolving nature of data stream provides the classification difficulties

in learning process and accuracy. Traditional classification techniques are usually created

under complete static data given. Many learning algorithms were proposed to solve data

stream classification problem, directly, such as [7–15, 17, 18]. Some stream pattern classifica-

tion techniques were applied to tackle problems in real world situation. In [16], a classification

method in data stream was proposed to classify patterns in the internet of things application.

Jurgovsky et al. [30] applied long short-term memory (LSTM) neural network to classify trans-

action sequences in credit-card fraud detection problem. In addition, there are many applica-

tions that apply streaming data classifier in time series prediction, Tealab et al. [31] formulated

new models of neural networks such as deep learning to predict to nonlinear times series with

inherited moving average terms. Guo et al. [32] applied the adaptive learning method of LSTM

network to forecast streaming time series in the presence of anomalies and change points.

Mori et al. [33] employed probabilistic classifiers to early classify time series data. However,

the most important challenge in this field is how to temporally and accurately classify the con-

tinuous stream of data chunks with fast computational time and limited storage units [8].

One promising solution for continuous streaming data classification is of incremental

learning methods. Incremental learning algorithms can be categorized into two types based on

the number of samples presented in the learning system [6], i.e. (i) online incremental learn-

ing, of which only one sample is presented for each epoch, and (ii) batch incremental learning,

of which a suitable subset of samples is presented for each epoch. Polikar et al. [2] proposed an

ensemble classifier for incremental learning called Learn++, in which weak hypotheses were

generated and combined by weighted majority voting for class prediction. In their work, a rel-

atively small multi-layered perceptron (MLP) acted as a based classifier or a weak classifier.

Their experimental results showed that the Learn++ classifier outperformed fuzzy ARTMAP

on four benchmarked and real-world data sets, but the classifier is sensitive to parameters of

the network used. Wilson and Martinez [3] proposed a general inefficiency of batch learning

for gradient descent learning. Based on gradient descent, their results from recognition tasks

demonstrated that the incremental learning spent time less than the batch learning with no sig-

nificant difference in accuracy. An incremental learning method, based the probabilistic radial

basis function (PRBF) network, for classification problem in a stationary scenario was pro-

posed [4]. The procedure of sequential component addition started with one component and

repeated until any data belonged to only one class. The results of the incremental PRBF

method outperformed the standard hierarchical PRBF and SVM methods in both of accuracy

and computational time. Shen and Hasegawa [5] proposed a fast prototype-based nearest

neighbor classifier called advanced SOINN classifier (ASC). To acquire new knowledge with-

out losing the old one, ASC method automatically learned the suitable number of prototypes
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to define the decision boundary. ASC was empirically compared with other prototype-based

classifiers, and the results showed that ASC provided the best performance. The limit of ASC

was the difficulty of used parameters determination, and this limit cannot be applied to real-

time data. All learning data must be stored for deleting a prototype with no classification

usage. Duan et al. [6] presented Lagrangian support vector machines (LSVM) in both online

and batch incremental algorithms. They introduced the matrix inverse computation based on

previous information. The proposed LSVM was a fast and efficient algorithm compared to

other online and batch incremental learning systems based on LSVM. Jaiyen, Phimoltares, and

Lursinsap [7] proposed a new study based on the condition of one-pass-throw-away learning

for a static environment. They also introduced the versatile elliptic basis function (VEBF) neu-

ral network using only a new incoming datum presented to the network for the learning pro-

cess. This technique could be considered as a prototype-based classifier. Its technique reached

the lowest bound on time complexity and achieved the smallest network structure. However,

the situation of more than one datum for parameter update has not been considered. Some

incremental learning algorithms cannot cope with the data stream classification, such as [5],

for which the complete training data were assumed. Furthermore, many sequentially incre-

mental learning algorithms, such as [7], were affected on the order of a presented sample or

chunk of samples.

The related incremental learning methods in streaming data classification are given in Sec-

tion 2. Next, Section 3 explains the studied problem. Sections 4 and 5 briefly describe the rele-

vant background and the proposed learning concept. Section 6 presents the stream chunk

incremental learning (SCIL) algorithm. The model evaluation, experimental setting, and

results are discussed and given in Section 7. Finally, Section 8 concludes the paper.

2 Related works

Various incremental learning algorithms for streaming data classification have been widely

proposed. Domingos and Hulten [9] proposed a Hoeffding tree for online learning from the

high-volume data stream called the very fast decision tree. The experimental results showed its

effectiveness in taking advantage of massive numbers of samples, but this method obtained a

tree with quite a large size. Pang et al. [10] proposed an incremental linear discriminant analy-

sis (ILDA), considered as incremental feature extraction in both sequential and chunk types of

incoming data. The proposed ILDA was tested on various numbers of classes and features.

The ILDA could effectively extract features and evolve a discriminant eigenspace to classify a

fast and large data stream, when compared with the traditional LDA. Wan and Banta [11] pro-

posed parameter incremental learning for a multi-layer perceptron (MLP) neural network.

The proposed method was evaluated on both functional approximation and classification. The

results showed that the speed of convergence and accuracy of the incremental MLP outper-

formed dramatically those of both the standard online backpropagation and the stochastic

diagonal Levenberg-Marquardt (SDLM) algorithms. Ozawa et al. [12] proposed a chunk incre-

mental principal component analysis called chunk IPCA. The discussion of chunk IPCA scal-

ability under one-pass learning scenarios was provided. The evaluation results showed that the

chunk IPCA spent less training time than the sequential IPCA to achieve the major eigenvec-

tors. Xu et al. [13] proposed an incremental learning vector quantization (ILVQ) algorithm for

pattern classification also viewed as a prototype-based classifier. The ILVQ was compared with

other incremental learning methods in stationary and incremental environments. The experi-

mental results showed that ILVQ was superior to other incremental algorithms in both of

accuracy and compression ratio. Some incremental learning algorithms based on Gaussian

mixture network were also proposed to handle streaming data classification with faster and
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scalable algorithms [14, 15]. In their works, the performance was evaluated in terms of classifi-

cation accuracy, number of used components, and learning time but the performance along

the course test was not evaluated as time goes by. Moreover, in some works [16, 17], data

reduction techniques were applied as preprocessing step to reduce the size of training data. In

[16], simple aggregation and approximation (SAX) and DB scan were used to reduce the vol-

ume of data and find the classes of incoming data. Then, support vector machine (SVM) was

employed to classify the label data. The main drawback of their method is that the data were

processed twice iteratively for clustering by DB scan and once for classification by SVM. In

[17], a variation of random forest techniques was proposed. They applied random forest with

stratified random sampling and Bloom filtering for solving steaming data classification with

reducing the training time. The random sampling and Bloom filter, which were preprocessing

steps, were employed to reduce the size of training samples before creating the random forest.

The experiments on four types of preprocessing training data of Forest Cover Type were con-

ducted. Their results showed that the accuracy values, measured by interleaved -test-then-train

criterion, were between 0.76 and 0.88. The size of strata sampling size affected the accuracy by

that the larger strata size set, the lower accuracy get.

Recently, a class-wise incremental learning (CIL) algorithm [18] was proposed to address

the classification problem on large data sets. A chunk incremental learning algorithm was used

to construct a versatile elliptic basis function (VEBF) network in [7]. The term “chunk incre-

mental learning” referred to update parameters through multiple data points. Their results

showed the effectiveness on high classification accuracy and the reduction in the effect of

incoming datum order. However, the main drawback of their proposed technique is that the

structure of a VEBF neural network may grow according to the new incoming classes and

data, which makes the space complexity too high in some applications.

In this work, we propose the improvement of the learning algorithm, called SCIL, for han-

dling streaming data. The SCIL is an expanded work of [18] to address the parameter update

for multiple data points under the discard-after-learn concept, in which the data are presented

to the network only once and, then, thrown away from the learning process. The proposed

method protects the over-fitting problem originated from the increase of hidden neurons. The

performance is expressed in terms of classification accuracy(%), the number of hidden neu-

rons, and the computational or learning time(s). Moreover, the evaluation of course test on the

classification of sequential incoming datum was conducted. Therefore, the VEBF network

with an incremental learning algorithm for one datum is not efficient to manage the data

stream scenario.

3 Studied problems

The aim of this work is to develop an incremental learning algorithm to handle the streaming

chunk of data under the discard-after-learn concept and to make the network structure elastic

and adaptive to the distribution of data chunks at different times. Generally, to learn the

incoming data by neurons, there are two possible approaches. The first approach is to separate

each cluster of one class from the others by using a set of neurons in forms of linear functions

such as hyperplanes. The second approach is by using a set of neurons in forms of hyper-ellip-

soids to capture clusters of data in the same class. Although both approaches can achieve a

good performance but the first approach is not suitable for learning in a streaming data envi-

ronment where the continuously incoming data can overflow the memory. To handle the

memory overflow based on discard-after-learn concept, the learned data must be completely

discarded and only their distribution must be captured and represented by a compact mathe-

matical shape with a minimum set of adjustable parameters. A hyperplane cannot be used to
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cover the exact region of data distribution because it just separates the data space into two

regions. Each region starts from the hyperplane and extends itself to infinity. Furthermore, the

length and size of hyperplane of one class may interfere the data of several other classes. On

the other hand, the structure of hyper-ellipsoid can cover the exact region of data distribution

which makes it most suitable for the implementation of discard-after-learn concept. In this

paper, the structure of hyper-ellipsoid was adopted as the structure of each neuron. A set of

recursive functions for computing the relevant parameters of a new neuron, based on statisti-

cal confidence interval, was introduced. The hyper-ellipsoid is capable of translating, rotating,

and scaling in all dimensions.

Since the incoming streaming data can contain a mixture of different classes, the following

realistic scheme of class flow is concerned. Apparently, the number of classes presented in

each chunk is random in real situations and unpredictable in advance before the time when a

new class appears. An example of the data stream in a 2-dimensional space is shown in Fig 1.

For the first data chunk at time t1, there are two classes denoted by triangles and stars. After

some duration at time ti, a new class enters the learning process as denoted by circles.

In many incremental learning algorithms, the number of learning epochs is uncontrollable

because the training data must be used again and again for weights update until reaching the

stopping condition. Moreover, most on-line incremental learning methods have been affected

by the order of presenting a datum during the learning process called the sensitivity of the

learning data sequence. One of the solutions to reduce the effect of sensitivity of the sequence

is learning through a data chunk with one class at a time. Once the data in any class are

learned, they are completely discarded and never learned again to maintain the available mem-

ory space for the next incoming chunk. To reach the minimum number of required neurons

for any class, it is essential to estimate the number of distributed sub-clusters first and to cap-

ture these sub-clusters by a set of basic activation functions to reduce the effect of misclassifica-

tion. To manage the most concerned factors, which are (1) the number of uncontrollable

epochs, (2) the unpredictable number of hidden neurons, and (3) the unknown prior data dis-

tribution, the following problems must be addressed.

(1). How can the number of neurons be minimized in the non-stationary streaming data

with multiple classes? The goal is to achieve less neurons than those produced by the

learning methods capable of coping with non-stationary streaming data.

(2). Is it possible to obtain a time complexity of O(d2), where d stands for the number of data,

regardless of classes?

4 Relevant background

Due to the approach of the discard-after-learn concept, all the previously learned data cannot

be recalled and mixed with those new incoming data for training the network. Hence, it is nec-

essary to capture the region and distribution of all previously learned data of each class by a

mathematical function. This function must be able to indicate the boundary of all discarded

data of any classes. One of the simplest functions called VEBF introduced in [7] can be effi-

ciently applied to this representation. In a n-dimensional space, we can express the shape of

VEBF by

Xn

i¼1

ððx � cÞTuiÞ
2

w2
i

¼ 1: ð1Þ

Set fuig
n
i¼1

is a set of orthogonal bases, and c is the center. The bases ui may not be the same as

the original bases of the incoming-data space, but they are the bases derived from the actual
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direction of the data distribution. The width in dimension i is denoted by wi, and its value is

estimated by using the eigenvalue of each ui. A data point x 2 Rn inside or outside a VEBF can

be easily determined by the following function:

cðxÞ ¼ cðxjc;U;wÞ ¼
Xn

i¼1

ððx � cÞTuiÞ
2

w2
i

� 1; ð2Þ

where U ¼ ½u1 u2 � � � un�; ui 2 R
n

and w ¼ ½w1 w2 � � � wn�
T
2 Rn

. Let c
k
j ðxÞ denote the

VEBF of neuron j of class k. A data point x 2 Rn
is inside or covered by the jth neuron of class

k if c
k
j ðxÞ � 0. Otherwise, x is outside neuron j.

During the learning process of neuron j, all relevant parameters are adjusted. Hence, when

referring to neuron j of class k during this period, neuron j will be considered as a collection of

these relevant parameters. Let O
k
j ¼ ðm

k
j ; c

k
j ; S

k
j ;U

k
j ;w

k
j Þ be the neuron jth in the subhiddel layer

kth with the collection of relevant parameters. The description of notations and symbols, used

throughout this paper, are given in Table 1. Each class k contains a set of dk neurons in the sub-

hidden layer k (Λk). The whole network is obviously formed by all sets of hidden neurons of all

classes denoted as Γ = {Λ1, Λ2, . . ., Λr}.

5 Proposed concept of Stream Chunk Incremental Learning (SCIL)

The size of a VEBF in the original algorithm reported in [7] can be expanded. Their approach

was infeasible in terms of number of neurons and learning time when handling streaming data

chunk. The disadvantage was improved by gradually expanding the size of a VEBF to cover all

data in the same class. CIL [18] covers one datum and expands the size of VEBF later to cover

another datum in the same class if the distance of the second datum is close to the VEBF. The

Fig 1. An example of streaming data with different classes of various sizes in a 2-dimensional space.

https://doi.org/10.1371/journal.pone.0220624.g001

Table 1. The list of symbols and notations used in this paper.

Symbol Description

Λk
- kth Subhidden layer, where L

k
¼ fO

k
1
;O

k
2
. . . ;O

k
dk
g.

dk - Number of neurons in Λk, where dk 2 R:

O
k
j

- jth Neuron in Λk.

mk
j - Total number of data covered by O

k
j :

ck
j - Center vector corresponding to O

k
j ; where ck

ji 2 R
n
:

Sk
j - Covariance matrix corresponding to O

k
j :

Uk
j - Matrix of orthogonal bases corresponding to O

k
j :

uk
j;i - ith Orthogonal basis of Uk

j ; where uk
ji 2 R

n
:

wk
j - Width vector corresponding to O

k
j ; where wk

ji 2 R
n
:

c
k
j ðxÞ - VEBF value of a given input vector x at O

k
j :

https://doi.org/10.1371/journal.pone.0220624.t001
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class-wise streaming data is used for the learning process. The example of the class-wise

streaming data in a 2-dimensional space is shown in Fig 2. At any time ti, one or many chunks

of data of different classes may enter the learning process. However, if the distance is too far

away, then a new VEBF is introduced to cover the second datum. This approach is iterated

until all data in the same class are covered. However, it is possible that two VEBFs are far apart

at some past periods, but they can be near each other at the present time due to the expansion

to cover new incoming data belonging to the same class. In fact, CIL does not merge these two

near VEBF into one VEBF. This will increase the number of VEBFs and the computational

complexity during the learning and testing processes.

For each Λk, the number of neurons in any class k can be increased due to the large distance

between an uncovered datum in that class and the existing VEBFs in Λk. Too many neurons

can cause the over fitting problem. Therefore, one approach to prevent the increase of neurons

is to merge two near hidden neurons in the same Λk. Two hidden neurons O
k
a
¼

ðmk
a
; ck

a
; Sk

a
;Uk

a
;wk

a
Þ and O

k
b
¼ ðmk

b
; ck

b
; Sk

b
;Uk

b
;wk

b
Þ are merged if the following condition is satis-

fied:

c
k
a
ðck

b
Þ � 0 or ck

b
ðck

a
Þ � 0: ð3Þ

This means that either O
k
a

or O
k
b

cover the center of another, as shown by the example in Fig 3.

A new neuron O
k
g
¼ ðmk

g
; ck

g
; Sk

g
;Uk

g
;wk

g
Þ is induced to replace O

k
a

and O
k
b

after merging them,

and the parameters are computed and defined as follows:

mk
g
¼ mk

a
þmk

b
; ð4Þ

ck
g
¼

1

mk
g

ðmk
a
xk
a
þmk

b
ck
b
Þ; ð5Þ

Sk
g
¼

mk
a

mk
g

Sk
a
þ

mk
b

mk
g

Sk
b
þ

mk
a
mk
b

mk
g

ðck
a
� ck

b
Þðck

a
� ck

b
Þ
T
; ð6Þ

wk
g;l ¼ za

2

ffiffiffiffiffiffiffiffiffi
jl

k
g;lj

mk
g

s

; ð7Þ

where wk
g;l 2 wk

g
; l

k
g;l is the lth eigenvalue obtained from the new covariance matrix Sk

g
; and za

2
is

Fig 2. An example of class-wise data chunk.

https://doi.org/10.1371/journal.pone.0220624.g002
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the z-value related to (1 − a)100% confidence interval. For Eq (7) in this work, za
2
¼ z0:025 ¼

1:96 is considered as a 95% confidence interval. After merging, both O
k
a

and O
k
b

are discarded

from the network. The merging process and the equations for computing all new parameters

are included in the proposed learning algorithm to be discussed in the following section.

6 Stream Chunk Incremental Learning (SCIL) algorithm

The SCIL algorithm was proposed to handle a continuous learning scenario. A stream of

class-wise data chunks is successively presented to the proposed learning algorithm. At any

time, let Xk = {x1, x2, . . ., xn} be the set of incoming chunks of class k. There may be more

than one class entering the learning process at any time, but SCIL learns one class at a time.

The learning process consists of three algorithms. The first algorithm is the main algorithm.

The second algorithm creates a new neuron and computes the parameters of the newly cre-

ated neuron. The third algorithm merges two neurons and computes all parameters of the

new neuron. The main process of SCIL to learn class k at any time is described in the follow-

ing algorithm.

SCIL Algorithm:
Input: (1) Data set Xk of class k in n-dimensional space.

(2) Initial width value of each created neuron.
Output: A set of trained neurons for data set Xk.
1. If class k is a new class then
2. Let set Λk = ;.
3. Create a set of hidden neurons by using Algorithm 1 and put them
in Λk.
4. Compute all parameters of neurons in Λk by using the recursive
functions proposed in CIL [13].
5. Else
6. Do lines 7-10 Until Xk is empty or no neuron used for updating
parameter.
7. Compute the mean vector �x of the current data Xk.
8. Select the neuron O

k
a such that

a ¼ arg min
1⩽s⩽dk

fc
k
s ð�xÞg:

9. Update all relevant parameters of O
k
a by using the recursive

functions proposed in CIL [13].

Fig 3. Two overlapping conditions for merging two neurons.

https://doi.org/10.1371/journal.pone.0220624.g003
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10. Use Algorithm 2 to possibly merge O
k
a with other neurons of the

same class.
11. EndDo
12. If Xk is not empty then
13. Do lines 14-15 Until Xk is empty.
14. Create a new hidden neuron O

k
a
by using Algorithm 1 and set

Λk
¼ Λk

[ fO
k
a
g.

15. Update all relevant parameters of O
k
a
by using the recursive

functions proposed in CIL [13].
16. EndDo
17. EndIf
18. EndIf
19. Discard Xk.

Algorithm 1: Creating a neuron O
k
a
¼ ðmk

a
; ck

a
; Sk

a
;Uk

a
;wk

a
Þ

Input: (1) Data set Xk of class k in n-dimensional space.
(2) Initial width value of each created neuron.

Output: A hidden neuron and updated Xk.
1. Select randomly a data vector xi 2 Xk.
2. Set the initial center vector ck

a
by ck

a
¼ xi.

3. Set the initial covariance matrix by Sk
a
as a null matrix.

4. Set the orthonormal basis by Uk
a
¼ In�n, where I is an identity matrix.

5. Set mk
a ¼ 1.

6. Set each width value to an initial constant width value.
7. Set Xk = Xk − {xi} and discard xi from the learning process.
8. Create a neuron O

k
a
¼ mk

a
; �xk

a
; Sk

a
;Uk

a
;wk

a

� �
.

Algorithm 2: Merging two neurons in class k
Input: O

k
a
¼ mk

a
; ck

a
; Sk

a
;Uk

a
;wk

a

� �
and set of all neurons Λk.

Output: Set Λk with updated content after merging some neurons.
1. Set index β = 1.
2. While (ck

b
ck
a

� �
> 0 and c

k
a
ðck

b
Þ > 0) and (β 6¼ α) do

3. β = β + 1.
4. EndWhile
5. Replace neurons O

k
a
and O

k
b
by O

k
g
.

6. Compute the parameters mk
g
; ck

g
; Sk

g
, wk

g
by using (4)–(7).

7. Compute the basis vectors Uk
g
by applying PCA to the updated matrix

Sk
g
.

8. Set Λk
¼ Λk

� ffO
k
a
g [ fO

k
b
gg and re-index all neurons in Λk.

The time complexity Talg of the Stream Chunk Incremental Learning (SCIL) algorithm is

stated in the following Theorem. The proof of this theorem is given in S1 Appendix.

Theorem 1. Given a data chunk having d samples with multiple classes in n−dimensional
space, the time complexity Talg of the Stream Chunk Incremental Learning (SCIL) algorithm is O
(d1n2) + O(d2n3), where d1 and d2 stand for the numbers of data with new class labels and
learned class labels, respectively.

7 Experiments and performance evaluation

Many real-world data sets with various sizes were used to evaluate the performance of the pro-

posed SCIL algorithm. Percentage of accuracy classification (%), the number of processing or

hidden neurons, and the computational time (s) of the learning process are measured. The

results were compared with four incremental learning methods, namely, the versatile elliptic

basis function (VEBF) neural network [7], incremental learning vector quantization (ILVQ)

[13], chunk incremental linear discriminant analysis (CILDA) [10], and robust incremental

Fast incremental learning with low structural complexity for class-wise data stream classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0220624 September 9, 2019 9 / 20

https://doi.org/10.1371/journal.pone.0220624


learning methods (RIL) [34], in which the exponential forgetting function was set to 1 for sta-

tionary class labels. All methods were implemented by MATLAB programming. Percentage of

classification accuracy (%) is computed by

% accuracy ¼
T
N
� 100; ð8Þ

where T and N stand for the numbers of correct classified and all test data, respectively. Eleven

real-world data sets with various sizes were examined. Ten of them are available on the Univer-

sity of California, Irvine [35], and the rest data set is of a physical protein-protein interaction

of yeast Saccharomyces Cerevisiae [36] given in S1 Dataset. The size of each data set was deter-

mined by the product of the numbers of features and data. The attribute type of all data set is

numeric. The detail of each data set is shown in Table 2. The size of each data set is computed

by the product of the numbers of attributes and instances. The last column shows the ratio of

the number of data in the class labels with a minimum number of data per the number of data

in the class labels with a maximum number of data. The experiments were conducted on a sys-

tem with Intel Core(TM) 2 Quad, 2.83 GHz processor and 6 GB RAM.

7.1 Experimental setting for incremental scenario

For experiments in the incremental environment, we used a 5-fold cross validation criterion to

evaluate and compare the performance of SCIL and the other selected relevant methods. In

5-fold cross validation, the whole data set was randomly divided into five independent and

equal-size subsets. One subset was labeled as test subset and the rest four subsets were gathered

and labeled as training subset. The validation process was performed repeatedly five times so

that each subset was used only once for testing. After that, the average performance is calcu-

lated among these five test subsets. To create streaming data chunks for each model, the first

chunk was formed by selecting randomly 25% out of the total data in the training subset to cre-

ate the initial network. For the remaining training data, v data points from the training set

were randomly chosen to create a data chunk. A data chunk was repeatedly created until the

training data set was empty. For the SCIL algorithm, each created chunk was managed into K
class-wise data chunks, where K is the number of class labels in a chunk. The initial width of

VEBF w0 ¼ ½w0
1

w0
2

. . . w0
n�

T
was computed by

w0
i ¼

d

ðm1Þ
2

Xm1

i¼1

Xm1

j¼1

kxi � xjk; i ¼ 1; . . . ; n; ð9Þ

where k�k is the Euclidean distance function, m1 is the number of data in the first chunk and δ
is constant. Relevant parameters setting in each data set were given in Table 3. For CILDA and

ILVQ, one-nearest neighbor method was used as a classifier.

7.2 Experimental results

In this work, a 5-fold cross validation was used to evaluate the performance of the models. For

each fold, ten of distinctive streaming data chunks in the training subset were generated. The

classification accuracy, the number of hidden or processing neurons, and the computational

time were measured on the testing subset shown in Tables 4, 5 and 6, respectively. For each

method and each data set, the average values of the accuracy and number of neurons, com-

puted from ten distinctive streaming chunks patterns in each of five folds, are independent

and, by central limit theorem (CLT), they are normal distribution. Generally, the independent

t-test is used to infer if there is significantly different between average values of two groups

Fast incremental learning with low structural complexity for class-wise data stream classification
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where the distribution of each group is normal and independent. So, the independent t-test

was used to verify the statistically significant difference between the best average value and the

others. Value with an asterisk (�) shows no statistical significance at a p-value� 0.05 between

the best value and the values of other methods in the same data set. The best and second best

average values for each data set are identified by the bold typeface and italic typeface, respec-

tively. Some data sets could not be learned by CILDA and RIL because of a singularity problem

when solving for the weight matrix. The average rank of each method on the number of used

experimental data sets is given in the last row for each set.

The accuracy for each data set is given in Table 4. The accuracy average values of SCIL are

the highest in eight data sets. Significance at a p-value < 0.05 is found in six data sets, namely

Forest cover type, Internet, Image segmentation, Letter recognition, Liver, and Protein-protein

interaction, but there is no significant found in the Iris and Yeast data sets. For the Miniboo

and Waveform data sets, the accuracy values of the RIL method are the highest. The accuracy

of RIL is significantly greater than those of the others with p−value < 0.05 from the Waveform

data set. For the Spambase data set, the accuracies of the SCIL and CILDA methods are slightly

different. Moreover, SCIL provides the smallest values of standard deviation in most data sets.

This finding implies that the influence of the incoming order of data chunks in the training

Table 2. Description of each data set.

Data set Number of Attributes Number of Instances Size Number of Classes Area Ratio of min/max

Iris 4 150 600 3 Life 1.00

Yeast 8 1,484 11,872 10 Life 0.53

Image segmentation 19 2,310 43,890 7 Computer 1.00

Waveform 21 5,000 105,000 3 Physical 1.00

Letter recognition 16 20,000 320,000 26 Computer 0.90

Forest cover type 54 581,012 31,374,648 7 Life 0.01

Liver 7 345 2,415 2 Life 0.73

Spambase 57 4,601 262,257 2 Computer 0.65

Internet advertisement 1,558 2,359 3,675,322 2 Computer 0.19

Protein-protein interactions 398 11,188 4,452,824 2 physical 1.00

MinibooNE particle 50 130,065 6,503,250 2 Physical 0.39

https://doi.org/10.1371/journal.pone.0220624.t002

Table 3. Parameter setting in each data set.

Data set SCIL

(δ)

VEBF [7]

(δ)

ILVQ [13]

(λ, AgeOld)

Iris 0.7 0.3 (21,17)

Yeast 0.4 1 (70,35)

Image segmentation 0.7 1 (180,130)

Waveform 0.7 1 (70,110)

Letter recognition 0.7 0.7 (80,100)

Liver 0.15 1 (16,80)

Spambase 0.4 1 (90,18)

Internet advertisement 0.7 0.7 (200,60)

Protein-protein interaction 0.7 1.2 (155,60)

MinibooNE particle 0.7 0.5 (200,150

Forest cover type 0.05 0.7 (280,180)

https://doi.org/10.1371/journal.pone.0220624.t003
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process slightly affects the accuracy of the proposed SCIL when compared with the other

methods. For the rank average, the SCIL method provides the best rank at 1.27.

The number of hidden neurons for each data set is given in Table 5, the average numbers of

hidden neurons of CILDA and those of RIL are equal to the number of samples in the training

set and the number of class labels, respectively. The average number of hidden neurons of

CILDA is the worst in all the data sets. Although, the hidden neurons of RIL are the minimum

value for all the data sets, the learning process cannot cope with the data of new class label.

Therefore, the results of SCIL, VEBF, and ILVQ are compared. The number of hidden neurons

of SCIL is significantly less than that of VEBF and ILVQ, with a p−value < 0.05 on eight data

sets, namely, Iris, Image segmentation, Letter recognition, Waveform, Prote-in-protein inter-

action, MiniBooNE, Spambase, and Internet. For Liver, the number of hidden neurons of

ILVQ is the lowest but is not significantly different from that of SCIL with a p−value� 0.05.

For Forest cover type and Yeast, the numbers of hidden neurons of VEBF are significantly less

than those of SCIL with p−value< 0.05. These two numbers of hidden neurons by SCIL were

obtained due to the trade-off between the number of neurons and accuracy. For classification

accuracy, the standard deviation of neurons in SCIL is dramatically less than that of the other

Table 4. Average classification accuracy with standard deviation ð�x � sdÞ of each data set.

Data set SCIL VEBF [7] ILVQ [13] CILDA [10] RIL [34]

Iris 97.47 ± 1.45� 92.13 ± 5.92 95.73 ± 4.14� 96.17 ± 3.47� 96.67 ± 0.00
Image segmentation 91.77 ± 0.80 69.27 ± 10.52 84.78 ± 1.76 78.48 ± 8.66 83.74 ± 2.11

Liver 73.33 ± 4.54 59.77 ± 6.85 60.29 ± 5.61 62.75 ± 6.58 63.35 ± 6.77
Yeast 56.03 ± 2.48� 42.62 ± 12.03 49.63 ± 3.03 25.72 ± 10.77 55.13 ± 2.90�

Letter recognition 87.62 ± 0.42 58.64 ± 2.33 80.2 ± 1.17 38.86 ± 3.33 55.51 ± 0.8

Waveform 85.25 ± 0.75 70.79 ± 14.19 81.71 ± 1.34 78.21 ± 1.08 85.87 ± 0.87

Protein-protein interaction 89.31 ± 1.36 50.28 ± 3.52 59.73 ± 0.67 80.94 ± 0.54 76.26 ± 0.59

Miniboo 87.88 ± 0.49� 59.65 ± 11.44 86.19 ± 0.5 87.58 ± 1.36� 90.07 ± 0.25

Forest cover type 80.25 ± 1.14 63.58 ± 0.25 73.98 ± 13.12 51.3 ± 13.12 70.11 ± 0.15

Spambase 90.76 ± 1.01 68.77 ± 7.49 70.92 ± 2.44 91.47 ± 0.83 N/A

Internet 95.93 ± 0.40 64.3 ± 20.90 89.58 ± 2.42 N/A N/A

Rank average 1.27 4.45 3.10 3.50 2.22

https://doi.org/10.1371/journal.pone.0220624.t004

Table 5. Average number of used hidden neurons with the standard deviation ð�x � sdÞ of each data set.

Data set SCIL VEBF [7] ILVQ [13] CILDA [10] RIL [34]

Iris 3.76 ± 0.72 4.28 ± 0.98 23.04 ± 9.53 120 3

Image segmentation 16.96 ± 1.93 19.68 ± 1.57 196.16 ± 56.53 1, 848 7

Liver 31.48 ± 5.55� 47.84 ± 4.5 27 ± 15.62� 276 2

Yeast 54.56 ± 7.93 19.08 ± 1.91 149.36 ± 72.21 1, 187.4 10

Letter recognition 30.36 ± 3.34 235.44 ± 14.17 670.48 ± 51.47 16, 000 26

Waveform 3.16 ± 0.47� 5.52 ± 2.93 177.84 ± 71.3 4, 000 3

Protein-protein interaction 8.56 ± 3.08 37.48 ± 13.43 190.2 ± 59.39 895.06 2

Miniboo 78 ± 7 2, 691 ± 423 2, 285 ± 43 104, 051.2 2

Forest cover type 2, 830 ± 248 88 ± 4 1, 550 ± 90 464, 809.6 7

Spambase 13.8 ± 2.43 20.04 ± 1.95 137.44 ± 27.27 3, 681.2 N/A

Internet 7.8 ± 1.59 18.72 ± 2.48 137.04 ± 47.56 N/A N/A

Rank average 2.27 2.81 3.64 5 1

https://doi.org/10.1371/journal.pone.0220624.t005
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methods in almost all data sets. This finding implies that the influence of the incoming order

data points in the training process does not affect the number of hidden neurons of the pro-

posed SCIL. For the rank average, the SCIL method provides the best rank at 2.27.

For the learning time (s), as shown in Table 6, CILDA is the lowest in all data sets. The

CILDA method consumes time only for updating the within-class scatter matrix and the

between-class scatter matrix. Although the learning time of CILDA is the lowest, one of the

drawbacks of CILDA is that it spends a long time assigning a class label for only the new sam-

ples that are available. This is caused by computing the distance between the new sample and

each of the training data sets. The learning time of SCIL ranks second for the nine data sets,

except for Liver and Forest cover type. The learning time of SCIL is slightly lower than the

time of the RIL method. For Forest cover type, since the initial width of the VEBF neuron is

quite small, the learning time of SCIL is quite long. However, that is the trade-off between

learning time (s) and the accuracy of the forest cover type data set. The average rank for learn-

ing time of SCIL is 2.36.

In this work, the performance along the course test was also conducted and evaluated by

prequential or interleaved test-then-train which was one of popular approaches for data stream

validation [37]. The first data chunk was used to create the initial network. Then, each next

data chunk was used for testing the network before it is used to incrementally update the

parameters of the network. Two types of courses were considered. If a number of samples of a

data set is less than 5,000, then it was divided into 11 data chunks. Otherwise, the data set was

divided into 41 data chunks. For an in-depth evaluation of the performance along the course

test, a paired t-test with a significance level of 0.05 was used to show the significant difference

between the proposed SCIL and the previous CIL methods [18]. The initial width vectors of

both SCIL and CIL were equal. For accuracy on the course test for each data set, the hypotheses

were given by,

H0: Accuracy of SCIL is equal to CIL along the course test.

H1: Accuracy on SCIL is greater than CIL along the course test.

The test results are shown in Table 7. For Iris and Waveform, since accuracy values by SCIL

and CIL are equal in every data chunk, the p-values of both data sets are not available, and

there is no difference between SCIL and CIL on these two data sets. The accuracy of SCIL is

greater than CIL along the course test on five data sets with p-value < 0.05. The accuracy of

Table 6. Average computational time (s) with the standard deviation ð�x � sdÞ of each data set.

Data set SCIL VEBF [7] ILVQ [13] CILDA [10] RIL [34]

Iris 0.02 ± 0.004 0.04 ± 0.004 0.07 ± 0.005 0.003 ± 0.000 0.02 ± 0.002
Image segmentation 1.17 ± 0.01 1.23 ± 0.08 5.77 ± 0.59 0.03 ± 0.01 27.26 ± 6.3

Liver 0.15 ± 0.05 0.36 ± 0.04 0.19 ± 0.03 0.007 ± 0.009 0.1 ± 0.03
Yeast 0.23 ± 0.06 0.54 ± 0.07 2.43 ± 0.43 0.02 ± 0.006 5.91 ± 1.12

Letter recognition 0.88 ± 0.1 18.68 ± 0.84 109.78 ± 4.61 0.16 ± 0.02 493 ± 145

Waveform 0.32 ± 0.02 2.37 ± 0.6 11.93 ± 1.76 0.07 ± 0.01 33.37 ± 8.7

Protein-protein interaction 21.14 ± 3.73 2, 266 ± 605 47.25 ± 2.13 6.99 ± 0.38 5, 624 ± 542

Miniboo 65 ± 20 936 ± 106 603 ± 59 2.74 ± 0.08 1, 673 ± 153

Forest cover type 202, 913 ± 60, 915 2,451 ± 86 38, 034 ± 465 69 ± 6 27, 536 ± 1, 395

Spambase 1.24 ± 0.59 19.93 ± 1.24 8.28 ± 0.48 0.18 ± 0.05 N/A

Internet 257 ± 51 29, 229 ± 1967 33.5 ± 1.43 N/A N/A

Rank average 2.36 3.36 3.45 1 4.11

https://doi.org/10.1371/journal.pone.0220624.t006
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SCIL is equal to CIL along the course test on the left three data sets with p-value� 0.05. The

accuracy values on the last data chunk of SCIL outperform CIL on six data sets specified by the

boldface number.

For the number of neurons on course test for each data set, the hypothesis test was given by

H0: The number of neurons of SCIL is equal to that of CIL along the curse test.

H1:The number of neurons of SCIL is less than that of CIL along the course test.

The test results are shown in Table 8. The numbers of neurons of SCIL are less than those of

CIL on Iris and Waveform. The number of neurons of SCIL is less than that of CIL along

course test on six data sets with p-value < 0.05. The number of hidden neurons on the last data

chunk of SCIL is less than that of CIL on six data sets specified by the boldface number. More-

over, we observe that the average of the accuracy values on the last ten data chunks is rather

high with small standard deviation values. The average of number of hidden neurons on the

last ten data chunks is rather low, with respect to the number of data and with small standard

deviation values, as well. Figs 4 and 5 show the average accuracy and the average number of

Table 7. Comparison using a paired t-test with a significant level of 0.05 for accuracy along the course test between SCIL and CIL methods on each data set.

Data set Average accuracy with s.d. on the last ten

chunks

Accuracy on the last chunk p-value Reject/Accept

SCIL CIL [18] SCIL CIL [18] H0

Iris 96.88 ± 5.09 96.88 ± 5.09 95.00 95.00 N/A −
Image segmentation 86.38 ± 5.11 85.24 ± 5.19 92.86 92.38 0.000 Reject

Liver 65.61 ± 15.52 54.45 ± 14.96 88.57 77.14 0.004 Reject

Yeast 51.60 ± 10.10 46.64 ± 11.14 64.58 59.03 0.003 Reject

Letter recognition 87.99 ± 1.50 87.62 ± 1.45 90.58 90.58 0.005 Reject

Waveform 85.11 ± 15.59 85.11 ± 15.59 82.50 82.50 N/A −
Protein-protein interaction 89.25 ± 7.82 83.47 ± 13.05 89.94 74.03 0.139 Accept
Miniboo 97.93 ± 0.84 98.32 ± 0.28 98.68 98.52 0.000 Reject

Spambase 86.34 ± 15.25 85.59 ± 14.60 94.06 93.58 0.147 Accept
Internet 94.39 ± 5.69 94.19 ± 5.79 99.09 99.09 0.278 Accept

https://doi.org/10.1371/journal.pone.0220624.t007

Table 8. Comparison using a paired t-test with a significance level of 0.05 for the number of used neurons along the course test between SCIL and CIL methods on

each data set.

Data set Average number of neurons on the last ten

chunks

Number of neurons on the last

chunk

p-value Reject/Accept

SCIL CIL [18] SCIL CIL [18] H0

Iris 3.00 ± 0.00 4.00 ± 0.00 3 4 N/A −
Image segmentation 8.11 ± 0.31 11.22 ± 1.55 9 15 0.000 Reject

Liver 8.67 ± 4.22 12.89 ± 6.84 13 24 0.002 Reject

Yeast 14.78 ± 3.64 25.78 ± 3.42 22 29 0.000 Reject

Letter recognition 50.3 ± 4.47 83.20 ± 0.40 57 84 0.000 Reject

Waveform 3.00 ± 0.00 3.00 ± 0.00 3 3 N/A −
Protein-protein interaction 41.8 ± 3.09 139.80 ± 5.19 47 150 0.000 Reject

Miniboo 65.00 ± 3.10 52 ± 0.00 67 52 0.374 Accept
Spambase 21.60 ± 4.29 28.11 ± 6.69 30 39 0.000 Reject

Internet 6.22 ± 1.03 6.33 ± 0.94 7 7 0.278 Accept

https://doi.org/10.1371/journal.pone.0220624.t008
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Fig 4. Classification accuracy on the last ten data chunks for each data set.

https://doi.org/10.1371/journal.pone.0220624.g004
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hidden neurons on the last ten data chunks for each data set, respectively. The classification

accuracy is rather stable on the last ten data chunks for eight data sets. Only liver and yeast

show slightly different accuracy values, as shown in Fig 4. Additionally, the network structure

could adjust itself as expressed in terms of the increase and decrease in the number of hidden

Fig 5. The number of hidden neurons on the last ten data chunks for each data set.

https://doi.org/10.1371/journal.pone.0220624.g005
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neurons, as shown in Fig 5. Moreover, for comparing to the results in [17], they applied ran-

dom forest with stratified random sampling and Bloom filtering for Forest Cover Type data

set. The average accuracy(%) along the course test of the propose SCIL method is 89.62 which

is quite higher than those of [17] for both filtered data from actual data and from sampled data

which were 76.62 and 75.58, respectively.

8 Conclusion

This paper presented the Stream Class-wise Incremental Learning (SCIL) algorithm for a ver-

satile elliptic basis function neural network (VEBFNN) to handle the stream of data chunks. In

this study, each incoming chunk contains multiple classes. One important aspect of the pro-

posed learning algorithm is based on the discard-after-learn concept. The created network can

adapt itself to learn new knowledge without forgetting old one, which is opposite to that of the

stability-plasticity dilemma. For performance evaluation, accuracy (%) and number of used

neurons of SCIL are measured and compared to the four incremental methods. The experi-

mental results showed that the accuracy of SCIL are higher than that of the others for most

data sets. Only Waveform and Miniboo data sets, the accuracy of SCIL is lightly less than that

of the RIL method. In addition, the number of neurons of the SCIL is less than those of the

VEBF, ILVQ, CILDA and CIL methods for most data sets. For RIL, the number of hidden neu-

rons is determined by the number of class labels. For Forest cover type, SCIL uses more num-

ber of neurons than VEBF because of the trade-off between accuracy and the number of

neurons. For the learning time, the learning time of CILDA is the lowest for all data sets, but

CILDA takes an extremely long time to assign a class label for a new sample. The learning time

of SCIL is the second lowest for nine data sets, as shown in underlined numbers, except for

liver and forest cover type. The learning time of SCIL is slightly lower than the time of the RIL

method. For Forest cover type, since the initial width of SCIL is quite small, the time of SCIL is

quite high, which is the trade-off between learning time and accuracy for forest cover type.

Moreover, the proposed method is capable of increasing or decreasing the number of hidden

neurons, according to the widths based on the z-score with a 95% confidence interval. Thus,

the over fitting problem due to the excessive number of neurons can be easily diminished.

All experiments were conducted by using a single processing unit. However, it is possible to

deploy the capability of graphic card to speed up the computational time, especially step 8 in

the main SCIL Algorithm and steps 2-4 in Algorithm 2, since these steps have no data depen-

dency among them.
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