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Do athletes specialize toward sports disciplines that are well aligned with
their anthropometry? Novel machine-learning algorithms now enable scientists to
cluster athletes based on their individual anthropometry while integrating multiple
anthropometric dimensions, which may provide new perspectives on anthropometry-
dependent sports specialization. We aimed to identify clusters of competitive cyclists
based on their individual anthropometry using multiple anthropometric measures,
and to evaluate whether athletes with a similar anthropometry also competed in
the same cycling discipline. Additionally, we assessed differences in sprint and
endurance performance between the anthropometric clusters. Twenty-four nationally
and internationally competitive male cyclists were included from sprint, pursuit, and
road disciplines. Anthropometry was measured and k-means clustering was performed
to divide cyclists into three anthropometric subgroups. Sprint performance (Wingate
1-s peak power, squat-jump mean power) and endurance performance (mean power
during a 15 km time trial, V̇O2peak) were obtained. K-means clustering assigned
sprinters to a mesomorphic cluster (endo-, meso-, and ectomorphy were 2.8, 5.0,
and 2.4; n = 6). Pursuit and road cyclists were distributed over a short meso-
ectomorphic cluster (1.6, 3.8, and 3.9; n = 9) and tall meso-ectomorphic cluster (1.5,
3.6, and 4.0; n = 9), the former consisting of significantly lighter, shorter, and smaller
cyclists (p < 0.05). The mesomorphic cluster demonstrated higher sprint performance
(p < 0.05), whereas the meso-ectomorphic clusters established higher endurance
performance (p < 0.001). Overall, endurance performance was associated with lean
ectomorph cyclists with small girths and small frontal area (p < 0.05), and sprint
performance related to cyclists with larger skinfolds, larger girths, and low frontal area
per body mass (p < 0.05). Clustering optimization revealed a mesomorphic cluster of
sprinters with high sprint performance and short and tall meso-ectomorphic clusters of
pursuit and road cyclists with high endurance performance. Anthropometry-dependent
specialization was partially confirmed, as the clustering algorithm distinguished short
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and tall endurance-type cyclists (matching the anthropometry of all-terrain and flat-
terrain road cyclists) rather than pursuit and road cyclists. Machine-learning algorithms
therefore provide new insights in how athletes match their sports discipline with their
individual anthropometry.

Keywords: physical performance, cycling, anthropometry, sports specialization, data science, machine learning

INTRODUCTION

The athlete’s physique is important for success in many sports
(Norton et al., 1996). Even though there are many determinants
that contribute to the performance of athletes, most sports
require a specific range in body size and shape to compete
at the top level (Norton and Olds, 2001). Consequently,
athletes tend to specialize toward sports disciplines that
are well aligned with their anthropometry (Foley et al.,
1989). Physical comparisons of athletic champions support
this anthropometry-dependent specialization, revealing large
anthropometric differences between sports disciplines and
a much more similar physique within sports disciplines,
especially at higher levels of competition (Carter, 1970).
It should be noted, however, that anthropometric measures
are commonly reported for groups of a specific sports
discipline (Carter, 1970; Norton and Olds, 2001), focusing
on group averages and standard deviations (Norton and
Olds, 2001) or distributions of a single anthropometric
measure within these groups (Carter, 1970). What remains
to be elucidated is whether grouping of athletes based on
similarities in their individual anthropometry using multiple
anthropometric dimensions, and subsequently evaluating their
sports discipline, will provide new insights in anthropometry-
dependent specialization.

In cycling, for example, athletes specialize into the
disciplines sprint, pursuit, uphill, time trial, flat-terrain,
and all-terrain, each demonstrating distinct anthropometric
characteristics (Foley et al., 1989; Padilla et al., 1999; Lucía
et al., 2000; Mujika and Padilla, 2001; Menaspà et al., 2012).
For instance, road climbers pursue a low body mass to
enhance their uphill performance, as body mass increases
the resistance from gravity (Mujika and Padilla, 2001). Flat-
terrain cyclists reduce their frontal area per body mass to
improve performance during flat stages, minimizing relative
energy costs to aerodynamic resistance (Mujika and Padilla,
2001). The diversity in body shapes is represented by the
somatotypes, describing a predisposition toward specific forms
of physical activities (Gabriel and Zierath, 2017). Mesomorph
body shapes are beneficial for strength and speed activities,
endomorphy contributes to strength and maximal force,
whereas ectomorphy is advantageous for endurance and uphill
performance (Gabriel and Zierath, 2017). Accordingly, sprint-
type cyclists were found to have high mesomorphy, whereas
endurance-type cyclists demonstrated higher ectomorphy
and lower mesomorphy (Foley et al., 1989). Also in cycling,
these anthropometric measures are commonly reported
in averages and standard deviations for predefined groups
of a specific sports specialization (e.g., Foley et al., 1989;

Padilla et al., 1999; Lucía et al., 2000; Mujika and Padilla, 2001;
Menaspà et al., 2012). However, these predefined groups may
still include individual athletes with a dissimilar anthropometry,
which would affect the group’s average anthropometry
and confound the assessment of anthropometry-dependent
sports specialization.

Alternatively, one could identify subgroups of athletes solely
based on their individual anthropometry, and independent
of their predefined sports discipline. Uncovered groups of
athletes with similar anthropometry and subsequent evaluation
of their actual sports disciplines will reveal whether there
is an unbiased interdependence between anthropometry and
sports discipline. Over the last decade, artificial intelligence
has been introduced into sports science, providing new
opportunities for data analytics in sports. As part of artificial
intelligence, machine-learning techniques now enable us to
identify subgroups of athletes with similar anthropometry,
using an integrative approach with multiple anthropometric
dimensions. Unsupervised machine-learning techniques, like
k-means clustering, help researchers to discover “hidden”
patterns in their data and to use these patterns to classify athletes
such that athletes within one subgroup are anthropometrically
similar to each other, but different from athletes in another
subgroup. With the implementation of such data science
techniques, it is now possible to provide a new and unbiased
perspective on anthropometry-dependent sports specialization.
To our knowledge, it is currently unknown whether the athletes
in an anthropometric cluster that is identified by similarities
in individual anthropometry using multiple anthropometric
measures will also compete in the same sports discipline, which
would confirm anthropometry-dependent sports specialization.

In addition to the athlete’s sports specialization, the
athlete’s physical performance will help to provide a more
detailed comprehension of anthropometry-dependent sports
specialization. Differences in sprint and endurance performance
are of interest, as it has been highlighted that performance and
physiological parameters should be interpreted in the context
of the athlete’s individual anthropometry (Mujika and Padilla,
2001). The relationships between anthropometric measures
and athletic performance have been assessed in various sports
(Chaouachi et al., 2009; Knechtle et al., 2011; Brocherie et al.,
2014). Endurance performance was negatively related to sum
of skinfolds in male triathletes (Knechtle et al., 2011); however,
others found no relationship between anthropometric measures
and track cycling performance within subgroups of cyclists
(McLean and Parker, 1989). What remains to be elucidated
is how anthropometry relates to both sprint and endurance
performance in one heterogeneous group of competitive sprint,
pursuit, and road cyclists. Anthropometric clustering using
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unsupervised machine learning is expected to provide a new
perspective on the interrelationships between anthropometry,
sports specialization, and athletic performance.

The aim of this study was to identify clusters based on
individual anthropometry of sprint, pursuit, and road cyclists
using multiple anthropometric measures, and to evaluate
whether athletes with a similar anthropometry also competed
in the same cycling discipline. Additionally, we aimed to assess
differences in the anthropometric clusters’ sprint and endurance
performance. Moreover, relationships between anthropometric
characteristics and both sprint and endurance performance were
assessed in all cyclists. We hypothesized that clustering based
on anthropometry will reveal separate subgroups for sprint,
pursuit, and road cyclists, confirming anthropometry-dependent
specialization in cycling.

MATERIALS AND METHODS

Subjects
Twenty-four male cyclists from sprint, pursuit, and road
disciplines volunteered to participate in this study. Cyclists
competed at the national, international, or Olympic level.
Prior to participation, subjects were familiarized with the
experimental procedures and subjects provided written informed
consent. The study was approved by the medical ethics
committee of the VU medical center, Amsterdam, Netherlands
(NL49060.029.14) and conducted according to the principles of
the Declaration of Helsinki.

Design
In this observational study, subjects visited the lab three
times. During the first visit, anthropometry was measured and
subjects performed a maximal incremental exercise test. The
second visit consisted of a vertical squat-jump test and 15-km
cycling time trial. In the third visit, subjects performed a 30-
s Wingate test. Before each visit, subjects were instructed to
avoid strenuous exercise and alcohol consumption within the
last 24 h and to consume no caffeine or food during the last
3 h before each test. Cycle ergometer handlebar and saddle
height were adjusted individually and subjects used their own
clipless pedals.

Methodology
Anthropometry
Measurements of body mass, stature, skinfolds, girths, and
breadths were obtained by the same investigator in accordance
with the International Society for the Advancement of
Kinanthropometry (ISAK) level 1 protocol (Marfell-Jones
et al., 2006). All measurements were taken on the right
side of the subject’s body. Skinfolds were obtained with a
Harpenden skinfold caliper (Baty International, West Sussex,
United Kingdom). Breadths were measured with a Cescorf
sliding bone caliper, after applying appropriate pressure to
minimize the influence of soft tissue. Measures were obtained
in duplicate and mean values were used, or in triplicate using
median values [i.e., if the first and second measure differed

>5% for skinfolds or >1% for other anthropometric measures
(Marfell-Jones et al., 2006)]. Somatotypes were determined
according to the Heath–Carter model (Heath and Carter,
1967). Body surface area was determined from weight and height
according to Du Bois and du Bois (1916), body fat percentage was
derived from the sum of four skinfolds (Durnin and Womersley,
1974), and percentage skeletal muscle mass was estimated using
an anthropometric regression model (Lee et al., 2000).

Sprint Performance
Sprint performance was assessed by the 1-s peak power output
(POpeak) during a 30-s Wingate test on a bicycle ergometer
(Monark 894 E Peak Bike, Monark Exercise AB, Vansbro,
Sweden), as described elsewhere (Van der Zwaard et al., 2018).
The test was preceded by a 10-min warm-up (brake weight
1.5 kg) with three short accelerations. Workload was set at 10%
body mass and was automatically applied to the flywheel after
two revolutions. Subjects were instructed to remain seated and
received strong verbal encouragement throughout the test.

Cyclists also performed a vertical squat-jump test. Subjects
were instructed to bend their knees to a 90◦ knee angle
and hold this position for 3 s before push-off. Jumps were
performed without arm swing, with hands placed above the
hips. Cyclists performed four jumps, with 2-min rest in-between
consecutive jumps. A fifth jump was performed if the fourth
jump was >5% higher than the previous jumps. An inertial
measurement unit (MPU-9150, ±16.0 g, 500 Hz, Invensense,
San Jose, CA, United States) was firmly secured to the lower
back, and was used to calculate average jump power during
push-off. Vertically directed acceleration was multiplied by
body mass to derive vertical force, which was multiplied by
vertical velocity (i.e., integrated acceleration) to obtain the
vertical power production. Subsequently, power production
was averaged over the entire push-off phase, from the initial
increase in vertical acceleration until takeoff. To ensure that
analyzed jumps were actual squat jumps, the jumps with a
countermovement were excluded. The highest squat jump was
used for analysis.

Endurance Performance
Endurance performance was obtained from a 15-km time
trial on an electronically braked bicycle ergometer (VU-MTO,
Amsterdam, Netherlands), as described previously (Van der
Zwaard et al., 2018). Gear ratio could be altered during the
time trial. Mean power output was determined from torque and
cadence measurements, sampled at 100 Hz and averaged over the
duration of the time trial (POTT).

Subjects also performed a maximal incremental exercise
test to obtain peak oxygen uptake (V̇O2peak), as described
elsewhere (Van der Zwaard et al., 2016). V̇O2 was recorded
breath-by-breath using open circuit spirometry (Cosmed Quark
CPET, Cosmed S.R.L., Rome, Italy). Before every test, volume
transducer and gas analyzer were calibrated according to
manufacturer’s instructions. V̇O2 data were filtered for extreme
values and V̇O2peak was defined as the highest average
30-s V̇O2 value.
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Unsupervised Machine Learning
K-means clustering is a popular unsupervised machine-learning
algorithm that divides a data set into subgroups based on
patterns in the data. Here, we performed k-means clustering
with the Hartigan–Wong algorithm (Hartigan and Wong, 1979)
and divided cyclists into subgroups based on anthropometric
measures of body shape (meso-, ecto-, and endomorphy),
body size (height, weight, and body surface area), and body
composition (sum of eight skinfolds, body fat percentage, and
skeletal muscle mass percentage). Optimization was performed
for maximal compactness of clusters by minimizing the total
within-cluster variation over all k clusters (Eq. 1). Initially, the
algorithm provides a random cluster center for all k clusters.
Then, observations are assigned to the nearest cluster center
based on the shortest Euclidean distance, and after all data points
have been assigned, the cluster centers are recalculated. The
“cluster assignment” and “cluster center update” steps are iterated
until the cluster assignment stops changing or the maximum
number of iterations is reached.

tot.withinss =
K∑

k=1

∑
xi∈Ck

||xi − µk||
2

Total within-cluster variation is minimized by minimizing
the sum of squared error in Euclidean distance between
individual data points and cluster centers. Where xi is the
individual data point belonging to cluster Ck, µk is the
center of cluster Ck, || xi − µk|| is the Euclidean distance
between the individual data point and cluster center, and
K is the total number of clusters, which must be specified
before clustering.

K-means clustering was performed using the stats
package in R. Before clustering, anthropometric measures
were standardized into Z-scores, removing differences in
measurement scales between variables. Using this input data, the
appropriate number of clusters was determined by the Elbow
Criterion, Bayesian Information Criterion from the mclust
package (Scrucca et al., 2016), and cluster validity criterions
from the NbClust package (Charrad et al., 2014), and was
found to be three clusters. Maximum number of iterations
was set at 50 (though clusters were obtained within three
iterations). Moreover, optimization was performed using 25
random starting partitions as initial cluster centers to enhance
cluster stability.

Statistical Analysis
All data are presented as individual values or as mean ± SD.
All performance measures were expressed relative to the body
mass of cyclists. One-way ANOVA tests or non-parametric
Kruskal–Wallis tests were used to detect group-differences
between anthropometric clusters, and least significant difference
post hoc tests or Mann–Whitney tests were used to localize
differences. Pearson or Spearman correlations were used to assess
relationships between anthropometry and physical performance.
Differences were considered statistically significant if p < 0.05.
Tendencies were reported if p < 0.10.

RESULTS

Anthropometric Clusters
K-means clustering divided cyclists into three anthropometric
clusters based on individual differences in body shape, size,
and composition (Figure 1 and Table 1). All sprint cyclists
were allocated to a mesomorphic cluster (endo-, meso-, and
ectomorphy were 2.8, 5.0, and 2.4, respectively; n = 6). Pursuit
and road cyclists were distributed over a short meso-ectomorphic
cluster (1.6, 3.8, and 3.9; n = 9), and tall meso-ectomorphic
cluster (1.5, 3.6, and 4.0; n = 9). The somatochart of these
subgroups is displayed in Figure 2. The mesomorphic cluster
consisted of heavier cyclists with larger girths, but who were not
as lean as cyclists of other clusters. These sprinters also had a
lower frontal area per body mass. The short meso-ectomorphic
cluster included cyclists that were significantly lighter, shorter,
and smaller compared to cyclists in the tall meso-ectomorphic
cluster, demonstrating lower thigh and shank lengths, smaller
femur breadths, and smaller girths, but a higher percentage
skeletal muscle mass. Pursuit and road cyclists were not allocated
to different clusters, but were evenly distributed over the short
and tall meso-ectomorphic clusters.

Sprint and Endurance Performance of
Clusters
Physical performance of the anthropometric clusters is presented
in Figure 3. The mesomorphic cluster showed a higher sprint
performance compared to the short and tall meso-ectomorphic

FIGURE 1 | Cluster plot with a two-dimensional representation of the three
anthropometric clusters. Clusters are displayed in the two most important
dimensions, which represent a combination of the anthropometric
characteristics and were obtained after dimension reduction of our
higher-dimensional data set [i.e., dimensions explaining 85% of the variation in
our data set; for more details, see Pison et al. (1999)]. Individual values,
cluster centers, and spanning ellipses of clusters are presented for the short
meso-ectomorph cluster (1, circles), the tall meso-ectomorph cluster (2,
triangles), and mesomorph cluster (3, pluses).
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TABLE 1 | Anthropometric characteristics of cyclists within the three anthropometric clusters.

Cluster Mean ± SD p-value

Mesomorphic Tall Short Tall vs. Short vs. Short vs.

meso-ectomorphic meso-ectomorphic meso cluster meso cluster tall cluster

(n = 6) (n = 9) (n = 9)

Basics

Age (years) 26 ± 8 26 ± 8 24 ± 8 0.859 0.634 0.375

Height (m) 1.86 ± 0.06 1.91 ± 0.03∗ 1.81 ± 0.03∗# 0.038 0.033 <0.001

Body mass (kg) 87.6 ± 6.2 79.1 ± 3.6∗ 68.4 ± 3.5∗# 0.001 <0.001 <0.001

BMI (kg/m2) 25.3 ± 1.1 21.7 ± 0.6∗ 20.9 ± 0.9∗# <0.001 <0.001 0.063

Cycling discipline 6 Sprint 4 Pursuit | 5 Road 4 Pursuit | 5 Road

Somatotypes

Mesomorphy 5.0 ± 0.8 3.6 ± 0.7∗ 3.8 ± 0.9∗ 0.003 0.009 0.631

Ectomorphy 2.1 ± 0.6 4.0 ± 0.3∗ 3.9 ± 0.5∗ <0.001 <0.001 0.546

Endomorphy 2.8 ± 0.7 1.5 ± 0.4∗ 1.6 ± 0.3∗ 0.002 <0.001 0.489

Body composition

Lean body mass (kg) 74.2 ± 3.1 71.8 ± 3.7 61.8 ± 3.7∗# 0.236 <0.001 <0.001

Lean body mass (%) 84.8 ± 3.7 90.8 ± 2.1∗ 90.4 ± 1.9∗ 0.005 0.003 0.605

Muscle mass (kg) 34.8 ± 1.9 33.4 ± 1.4∗ 30.4 ± 1.4∗# 0.088 <0.001 <0.001

Muscle mass (%) 39.8 ± 1.3 42.2 ± 1∗ 44.4 ± 1.5∗# 0.002 <0.001 0.001

Body fat (kg) 13.4 ± 4.1 7.3 ± 1.7∗ 6.6 ± 1.3∗ 0.002 <0.001 0.605

Body fat (%) 15.2 ± 3.7 9.2 ± 2.1∗ 9.6 ± 1.9∗ 0.005 0.003 0.605

Body size

Body surface area 2.12 ± 0.11 2.07 ± 0.06 1.87 ± 0.06∗# 0.208 <0.001 <0.001

Frontal area 0.39 ± 0.02 0.38 ± 0.01 0.35 ± 0.01∗# 0.208 <0.001 <0.001

BSA/body mass ∗ 10−3 24.3 ± 0.6 26.2 ± 0.4∗ 27.4 ± 0.7∗# <0.001 <0.001 <0.001

FA/body mass ∗ 10−3 4.5 ± 0.1 4.8 ± 0.1∗ 5.1 ± 0.1∗# <0.001 <0.001 <0.001

Lengths (cm)

Thigh 47.6 ± 2.3 50.4 ± 2.2∗ 46.6 ± 1.8# 0.016 0.372 0.001

Shank 42.8 ± 2.3 43.8 ± 1.4 40.6 ± 1.1∗# 0.242 0.014 <0.001

Skinfolds (mm)

Sum of six skinfolds 69.3 ± 17.7 40.1 ± 3.7∗ 41.4 ± 6.8∗ <0.001 0.001 0.508

Sum of eight skinfolds 92.1 ± 22.9 52.5 ± 4.3∗ 52.8 ± 8.4∗ 0.002 0.002 0.536

Breadths (mm)

Humerus 7.4 ± 0.1 7.2 ± 0.4 7.0 ± 0.2∗ 0.181 0.010 0.116

Femur 10.1 ± 0.4 10.2 ± 0.4 9.8 ± 0.5# 0.763 0.123 0.044

Girths (cm)

Upper arm relaxed 32.7 ± 2.0 29.1 ± 0.6∗ 27.0 ± 1.3∗# 0.001 <0.001 <0.001

Upper arm flexed 34.0 ± 1.9 31.3 ± 0.9∗ 29.1 ± 1.2∗# 0.001 <0.001 0.002

Waist 83.7 ± 4.1 77.5 ± 3.4∗ 74.3 ± 2.2∗# 0.001 <0.001 0.043

Gluteal 103.5 ± 2.4 97.9 ± 2.0∗ 93.2 ± 3.2∗# 0.001 <0.001 0.001

Calf 39.4 ± 2.2 37.9 ± 2.0 36.4 ± 2.1∗ 0.184 0.012 0.139

Thigh 60.1 ± 2.5 55.9 ± 2.2∗ 52.6 ± 1.3∗# 0.001 <0.001 0.002

Values are mean ± SD. ∗ significantly different from mesomorphic cluster, p < 0.05. # significantly different from tall meso-ectomorphic cluster, p < 0.05. ∗ and # indicate
tendencies, p < 0.10. BMI, body mass index; BSA, body surface area; FA, frontal area.

clusters (POpeak: p = 0.023 and p = 0.022, respectively; POjump:
p = 0.001 and p < 0.001) and lower endurance performance
(POTT: p < 0.001 and p < 0.001; V̇O2peak: p < 0.001 and
p < 0.001). Compared to the tall subgroup, the short meso-
ectomorphic cluster demonstrated similar values for POpeak
(p = 0.987) and POTT (p = 0.211), but a higher POjump
(p = 0.033) and tendency for a higher V̇O2peak (p = 0.056). In sum,
the mesomorphic cluster showed a higher sprint performance,

whereas the meso-ectomorphic groups demonstrated a better
endurance performance.

Relationships Between Anthropometry
and Physical Performance
Table 2 displays relationships between anthropometry and
physical performance. High time-trial performance and V̇O2peak
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FIGURE 2 | Somatochart with mesomorphy, endomorphy, and ectomorphy
values of the three anthropometric clusters. Individual and average
somatotype values (i.e., open and closed symbols, respectively) are presented
per cluster, including the mesomorph cluster (pluses), short meso-ectomorph
cluster (circles), and tall meso-ectomorph cluster (triangles).

were both associated with lean cyclists with small girths, a small
frontal area, high ectomorphy, and low meso- and endomorphy.
High POpeak and POjump related to cyclists with larger skinfolds,
larger girths, and a low frontal area and body surface area
per body mass, whereas high jumping performance also related
to less lean cyclists with a high meso- and endomorphy and
low ectomorphy. Thus, anthropometric characteristics of body
size, shape, and composition were significantly related to sprint
and endurance performance in a group of sprint, pursuit,
and road cyclists.

DISCUSSION

This study shows how k-means clustering divided sprint,
pursuit, and road cyclists into three distinct anthropometric
clusters with differing physical performance. The mesomorphic
cluster included all sprinters and demonstrated a higher sprint
performance, whereas the short and tall meso-ectomorphic
clusters of pursuit and road cyclists presented higher endurance
performance. Anthropometric measures were also significantly
related to performance. A high endurance performance was
associated with a lean ectomorph physique with small girths and
a small frontal area, whereas a high sprint performance related
to cyclists with larger skinfolds, larger girths, and a low frontal
area per body mass.

Anthropometry-Dependent
Specialization
Currently, anthropometric characteristics are commonly
reported for predefined groups of athletes of a specific sports
specialization. However, it is unknown whether a machine-
learning approach – grouping athletes based on individual
anthropometry using multiple anthropometric dimensions and
independent of sports specialization – will reveal clusters of

athletes that have a similar anthropometry and compete in the
same sports discipline. Using unsupervised machine learning, we
uncovered three clusters based on the athletes’ anthropometric
characteristics. The mesomorphic cluster included all sprinters
with a favorable somatotype for strength and speed performance,
similar to that of elite [endo-, meso-, and ectomorphy: 2.5, 5.2,
and 2.4 (White et al., 1982; McLean and Parker, 1989)] and
Olympic track sprinters [1.8, 5.2, and 2.4 (Garay et al., 1974)].
The body size profile of our sprinters was comparable to that of
Olympic track sprinters (Craig and Norton, 2001). Nonetheless,
our sprinters were not as lean as elite track sprinters, illustrated
by their higher sum of skinfolds and endomorphy (Garay
et al., 1974; Foley et al., 1989), which may hamper cycling
performance due to increased energetic costs to acceleration,
rolling friction, and aerodynamic resistance. Thus, all cyclists of
the mesomorphic cluster competed in track sprint disciplines and
had a similar body size and shape to that of elite track sprinters.

The short and tall meso-ectomorphic clusters included pursuit
and road cyclists, with somatotypes that favored endurance
performance. These results confirm the trend for a higher
ectomorphy and lower mesomorphy in more endurance-type
cyclists (Garay et al., 1974; Foley et al., 1989; McLean and
Parker, 1989). Cyclists in both clusters had a relatively low
body fat percentage (∼9%), comparable to that of professional
road cyclists (Mujika and Padilla, 2001). This is beneficial for
successful performance, as body fat adds to body mass but
not to power-producing capabilities (Craig and Norton, 2001).
The meso-ectomorphic clusters mainly differed in body size;
cyclists in the short cluster were significantly smaller, shorter,
and lighter. These cyclists were not necessarily very short
(∼180 cm), but shorter than average Dutch males, which are
the world’s tallest people (Stulp et al., 2015). Smaller cyclists
minimize the influence of aerodynamic resistance, giving them
a competitive edge on most terrains, specifically during uphill
climbing (Padilla et al., 1999; Lucía et al., 2000). Larger cyclists,
however, minimize the energy costs to aerodynamic friction per
body mass, giving them an advantage on level roads (Mujika and
Padilla, 2001). Interestingly, the body size of the short cluster
was remarkably similar to that of all-terrain road cyclists and
the tall cluster matched the body size of flat-terrain road cyclists
(Padilla et al., 1999).

Anthropometric clustering showed that all sprinters were
allocated to one cluster, whereas pursuit and road cyclists were
not assigned to separate clusters. Our findings demonstrate that
it is difficult to distinguish pursuit and road cyclists based on
their individual anthropometry, which corresponds to previous
literature reporting similar anthropometric characteristics for
pursuit and road cyclists (Garay et al., 1974; Foley et al., 1989).
Nonetheless, short and tall endurance-type clusters did match
the anthropometry of two other cycling specializations, that of
all-terrain and flat-terrain road cyclists. Therefore, our clustering
results did (partially) confirm existence of anthropometry-
dependent specialization.

Physical Performance
To gain more insight in how physical performance
differs between groups of athletes with similar individual
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FIGURE 3 | Group-differences in endurance performance (left) and sprint performance (right) were presented for the three anthropometric clusters. Time trial
performance (A) and V̇O2peak (C) were considered as measures of endurance performance, Wingate peak power (B) and squat jump mean power (D) were taken
as measures of sprint performance. Data are presented as mean ± SD. ∗ is significantly different from the mesomorphic cluster (p < 0.05), # is significantly different
from the tall meso-ectomorphic cluster (p < 0.05). # indicates a tendency for V̇O2peak (p = 0.056). POTT, mean power during a 15-km time trial; V̇O2peak, peak
oxygen uptake; POpeak, Wingate peak power; POjump, squat-jump mean power.

anthropometry, we also assessed the sprint and endurance
performance of each cluster. To our knowledge, actual
differences in sprint and endurance performance between
anthropometric clusters have not yet been assessed. According to
current literature (Gabriel and Zierath, 2017), anthropometry of
our mesomorphic cluster was beneficial for strength and speed
performance, whereas anthropometry of the meso-ectomorphic
clusters favored endurance performance. We now show that
performance differences between anthropometric clusters are
in line with their anthropometric pre-dispositions, confirming
higher sprint performance in the mesomorphic cluster and
higher endurance performance in both meso-ectomorphic
clusters (Figure 3).

The two endurance-type clusters revealed small, but
unforeseen performance differences. V̇O2peak was ∼5 mL kg−1

higher in the short cluster (p = 0.056), whereas POTT was
similar between both clusters. These findings were particularly
consistent with performance differences between all-terrain
and flat-terrain cyclists (Padilla et al., 1999) and may relate to

body size differences. Previous literature showed that smaller
cyclists had ∼12.5% higher V̇O2peak and ∼11% higher body
surface-to-mass ratios compared to larger cyclists, but similar
V̇O2-values at submaximal intensities (Swain et al., 1987). Also
in our study, V̇O2peak and BSA-to-mass ratios were proportional
and strongly related (r = 0.82), possibly due to the influence of
surface area-to-mass ratio on cardiovascular variables (Mitchell
et al., 1992). Therefore, it is likely that the higher V̇O2peak in
the short cluster was explained by their higher BSA-to-mass
ratio. For sprint performance, POpeak was similar, but POjump
was higher in the short cluster. The former result was expected,
as percentage lean body mass was comparable between clusters
and as similar relative peak power values (W/kg) have been
reported for subjects with a different body mass but comparable
proportion lean body mass (Maciejczyk et al., 2015). Conversely,
in line with isometric downscaling (Bobbert, 2013), the short
cluster was expected to produce less, not more, power per body
mass during jumping push-off. Smaller animals produce lower
power per body mass than larger animals, as they jump with
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TABLE 2 | Relationships between anthropometry and physical performance within a group of competitive sprint, pursuit, and road cyclists.

Correlation p-value

Endurance Sprint Endurance Sprint

POTT V̇O2peak POpeak POjump POTT V̇O2peak POpeak POjump

Basics

Height (m) −0.05 −0.19 −0.08 −0.26 0.822 0.377 0.709 0.221

Body mass (kg) −0.65∗∗ −0.75∗∗ 0.30 0.35 0.001 <0.001 0.151 0.096

BMI (kg/m2) −0.58∗∗ −0.60∗∗ 0.34 0.51∗ 0.003 0.002 0.103 0.012

Somatotypes

Mesomorphy −0.58∗∗ −0.53∗∗ 0.31 0.53∗∗ 0.003 0.008 0.146 0.008

Ectomorphy 0.56∗∗ 0.49∗ −0.30 −0.65∗∗ 0.005 0.016 0.154 0.001

Endomorphy −0.58∗∗ −0.66∗∗ 0.32 0.52∗∗ 0.003 0.001 0.123 0.009

Body composition

Lean body mass (%) 0.63∗∗ 0.68∗∗ −0.05 −0.51∗ 0.001 <0.001 0.806 0.013

Muscle mass (%) 0.63∗∗ 0.72∗∗ −0.14 −0.48∗ 0.001 <0.001 0.525 0.019

Body fat (%) −0.63∗∗ −0.68∗∗ 0.05 0.51∗ 0.001 <0.001 0.806 0.013

Body size

Body surface area −0.49∗ −0.61∗∗ 0.19 0.16 0.016 0.001 0.370 0.458

Frontal area −0.49∗ −0.61∗∗ 0.19 0.16 0.016 0.001 0.370 0.458

BSA/body mass ∗ 10−3 0.75∗∗ 0.82∗∗ −0.41∗ −0.52∗∗ <0.001 <0.001 0.047 0.010

FA/body mass ∗ 10−3 0.75∗∗ 0.82∗∗ −0.41∗ −0.52∗∗ <0.001 <0.001 0.047 0.010

Lengths (cm)

Thigh 0.04 −0.10 −0.04 −0.30 0.856 0.644 0.863 0.161

Shank −0.21 −0.30 −0.05 −0.20 0.314 0.160 0.811 0.349

Skinfolds (mm)

Sum of six skinfolds −0.59∗∗ −0.70∗∗ 0.43∗ 0.58∗∗ 0.002 <0.001 0.038 0.003

Sum of eight skinfolds −0.60∗∗ −0.71∗∗ 0.46∗ 0.59∗∗ 0.002 <0.001 0.024 0.002

Breadths (mm)

Humerus −0.39∗ −0.47∗ 0.31 0.19 0.060 0.020 0.134 0.382

Femur −0.15 −0.27 0.22 −0.08 0.496 0.210 0.298 0.700

Girths (cm)

Upper arm relaxed −0.72∗∗ −0.82∗∗ 0.40∗ 0.55∗∗ <0.001 <0.001 0.050 0.005

Waist −0.70∗∗ −0.68∗∗ 0.47∗ 0.46∗ <0.001 <0.001 0.020 0.025

Gluteal −0.67∗∗ −0.76∗∗ 0.38∗ 0.41∗ <0.001 <0.001 0.067 0.048

Thigh −0.65∗∗ −0.77∗∗ 0.33 0.43∗ 0.001 <0.001 0.115 0.036

Calf −0.54∗∗ −0.47∗ −0.07 0.26 0.006 0.021 0.743 0.228

All performance measures were expressed relative to the cyclist’s body mass. ∗ significant correlation, p < 0.05. ∗∗ significant correlation, p < 0.01. ∗ indicates tendencies,
p < 0.10. BMI, body mass index; BSA, body surface area; FA, frontal area; POTT, mean power during a 15-km time trial; V̇O2peak, peak oxygen uptake; POpeak, Wingate
peak power; POjump, squat-jump mean power.

higher accelerations due to their shorter body segments, which
hampers build-up of active state and let muscles operate at
unfavorably high velocities (Bobbert, 2013). Nonetheless, our
smaller cyclists did not show this and may have compensated
this disadvantage by their larger proportion of muscle mass.
In brief, the small performance differences between meso-
ectomorphic clusters were likely explained by differences in body
size and/or composition.

Relationships between anthropometry and performance
revealed that high endurance performance was associated with
a lean ectomorph physique with small girths and a small frontal
area. Lean body composition facilitates prolonged and efficient
power production, as illustrated in triathletes (Knechtle et al.,
2011). Ectomorph-shaped athletes with small girths are also
assumed to have long and slender muscles. Such muscles are
metabolically more efficient, as they avoid the negative effect

of a large muscle physiological cross-sectional area on oxygen
consumption during endurance performance (Van der Zwaard
et al., 2018). The high sprint performance related to cyclists
with larger skinfolds, larger girths, and a low frontal area per
body mass. Mesomorph athletes with larger girths are assumed
to have hypertrophied muscles. Such muscles generally have a
large physiological cross-sectional area – induced by muscle-
fiber hypertrophy – which contributes to high sprint performance
(Van der Zwaard et al., 2018). The relationship with skinfolds was
more surprising, but likely due to a suboptimal body composition
of our sprinters. The higher body fat percentage may explain
why peak power per body mass was lower in our cyclists
with respect to elite track sprinters, even though their absolute
sprint performance was the same (Dorel et al., 2005). Taken
together, our results show that sprint and endurance performance
correspond to the clusters’ anthropometric predispositions and
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highlight the value of interpreting physical performance in light
of the athlete’s individual anthropometry.

Data Science
Using unsupervised machine learning, we were able to
distinguish three subgroups with a distinct anthropometry,
which were formed independent of the athlete’s cycling
specialization. Unsupervised machine-learning techniques use
unlabeled data (i.e., data without defined categories or groups)
to learn and identify common relationships within the data.
Clustering algorithms use these commonalties to divide the
data into meaningful subgroups based on similarities in their
individual subject characteristics (e.g., anthropometry). On the
other hand, supervised machine-learning techniques may also
be used to classify athletes, but these require labeled data with
pre-defined subgroups (e.g., sports specialization). Therefore,
unsupervised clustering algorithms are preferred, as these divide
athletes into subgroups solely based on anthropometry and
independent of the athlete’s sports specialization.

While performing k-means clustering optimization, several
assumptions and considerations should be taken into account.
K-means clustering operates under the assumptions that clusters
should be spherical (circular and clearly separated) and of
similar size. Both assumptions were met in this study. As
for considerations, firstly, features should be standardized
to Z-scores during pre-processing, as no single feature is
more important than another. Secondly, all anthropometric
dimensions should have the same number of variables to
guarantee an equal contribution of dimensions to the formation
of subgroups (i.e., three features for body size, shape, and
composition). Nonetheless, the same clusters were obtained
when clustering without sum of skinfolds and BSA. Thirdly,
clustering algorithms require researchers to specify the number
of clusters in advance. Note that this could affect cluster validity,
and therefore, careful determination of the optimal number of
clusters using validity criterions is warranted (Charrad et al.,
2014; Scrucca et al., 2016). Lastly, for cluster stability, it is
recommended to repeat the clustering procedure several times
with different randomly chosen initial cluster centers (e.g., 25
starting partitions per trial). While fulfilling these considerations,
we tested cluster stability by repeating the k-means algorithm
for 1000 subsequent trials. Results presented the same clusters
in every trial (obtained within three iterations), confirming
stable anthropometric clusters in the present study. When
taking these considerations into account, novel machine-learning
clustering algorithms enable grouping of athletes based on
their individual anthropometry using an integrative approach
of multiple anthropometric dimensions, which provides new
perspectives on anthropometry-dependent sports specialization.

Practical Applications
Data science provides scientists with new tools for data analytics
in sports. Here, we show that unsupervised machine learning
divides cyclists into three anthropometric clusters with distinct
differences in body size, shape, and composition, and revealed
that sprint and endurance performance of clusters matched their
anthropometric predispositions. Clustering may help athletes

and coaches to discover how athletes match their sports discipline
with their individual anthropometry. Future studies may also
perform anthropometric clustering with a larger sample of
cyclists competing in all cycling specializations.

CONCLUSION

In this study, we show that unsupervised machine learning
enables clustering of athletes based on their individual
anthropometry using an integrative approach of multiple
anthropometric dimensions. K-means clustering revealed a
mesomorphic cluster of sprinters with a high sprint performance
and short and tall meso-ectomorphic clusters of pursuit and
road cyclists with a high endurance performance. Our clustering
results did confirm anthropometry-dependent specialization
for sprint- and endurance-type cyclists, whereas clusters
distinguished between short and tall endurance-type cyclists (that
matched the anthropometry of all-terrain and flat-terrain road
cyclists) rather than pursuit and road cyclists. Machine-learning
algorithms therefore provide new insights in how athletes match
their sports discipline with their individual anthropometry.
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