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Cells sense their environment through the cell membrane receptors.

Interaction with extracellular ligands induces receptor clustering at the

nanoscale, assembly of the signaling complexes in the cytosol and activation

of downstream signaling pathways, regulating cell response. Nanoclusters of

receptors can be further organized hierarchically in the cell membrane at the

meso- and micro-levels to exert different biological functions. To study and

guide cell response, cell culture substrates have been engineered with features

that can interact with the cells at different scales, eliciting controlled cell

responses. In particular, nanoscale features of 1–100 nm in size allow direct

interaction between the material and single cell receptors and their

nanoclusters. Since the first “contact guidance” experiments on parallel

microstructures, many other studies followed with increasing feature

resolution and biological complexity. Here we present an overview of the

advances in the field summarizing the biological scenario, substrate

fabrication techniques and applications, highlighting the most recent

developments.
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1 Introduction

The compartmentalization of cellular functions is a ubiquitous strategy to

increase efficiency, providing spatio-temporally discrete domains for dynamic

processes to take place simultaneously, in close vicinity, and without interfering

with each other. The plasma membrane is generally accepted as being

compartmentalized (Garcia-Parajo et al., 2014; Nicolson, 2014). This characteristic

emerges from the temporary limitation of lateral diffusion, promoting confinement

and allowing lipids and proteins to be organized in specific locations of variable size

and composition (Kusumi et al., 1993; Jacobson et al., 2019). Restrictions in lateral

diffusion of membrane components have been mainly attributed to their association

to the underlying cytoskeleton as described by the “membrane skeleton fence model”,

in which fences or corrals are defined by transmembrane proteins acting as posts
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FIGURE 1
(A)Hierarchical organization of cell membrane compartments. Reprinted with permission from Kusumi et al., 2011. Copyright 2011 Elsevier. (B)
Receptor nanoclustering: Ligand-mediated integrin clustering initiates the recruitment of adaptor proteins at FAs, leading to cytoskeleton
engagement, force transmission and downstream signaling activation. Adapted with permission from Kechagia et al., 2019. Copyright 2019 Springer
Nature. (C)Osteoprogenitor differentiation (osteopontin (OCP) and osteocalcin (OCN) expression, and bone nodule formation (white arrows))
on nanotopographies with different levels of disorder, fabricated by EBL. Reprinted with permission from Dalby et al., 2007b. Copyright
2007 Springer Nature. (D)BCML combinedwith photolithography were used to createmicro- and nanopatterned surfaces of the cell adhesive ligand
cyclic-(RGDfK). The development of stable FAs, number, size and adhesion strength is more influenced by local than global ligand density. Adapted
with permission from Deeg et al., 2011. Copyright 2011 American Chemical Society. (E) The nanopatterning of RGD functionalized dendrimers
revealed a threshold nanopattern configuration to induce cell response promoting chondrogenic differentiation and enhancing GJIC. Adapted from
Casanellas et al., 2020 and Reprinted with permission Casanellas et al., 2022. Copyright 2022 Future Medicine Ltd.
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linked to the cytoskeletal structures (Kusumi and Sako, 1996;

Kusumi et al., 2012). Also, the presence of extracellular lattices

(Lajoie et al., 2009), or specific lipid domains or “lipid rafts”

(van Meer et al., 1987) can create regions of restricted lateral

diffusion in the plasma membrane. This

compartmentalization is hierarchically organized from

small nanoclusters of dynamic small protein oligomers (of

3–10 nm diameter) and lipid rafts (2–20 nm) to actin-

cytoskeletal fence domains (40–300 nm) up to bigger

domains of several micrometers, thereby allowing the

multiscale regulation of the membrane protein function

(Kusumi et al., 2011) (Figure 1A).

The cellular microenvironment is also organized at the

nanoscale, as seen for collagen, the main structural protein in

the extracellular matrix (ECM). Collagen I is assembled by three

peptide chains of collagen that conform a helical structure of

around 1.5 nm diameter and 300 nm length, which then organize

into microfibrils with a cross-section of around 3 × 5 nm (Jiang

et al., 2004). The ECM protein fibronectin forms bundles of

fibrils, in which the average span of a fibronectin molecule (a

dimer of two polynucleotides) in each fibronectin fibril is ~92 nm

(Früh et al., 2015). This favors ligand interaction with the

receptors at the cell membrane in a particular configuration

that is confined to the nanometer scale.

Therefore, nanotopography represents an effective physical

approach for studies on cell behavior mediated by cell-cell

environment interactions. Nanotopographies (1–100 nm) lie in

the same scale range as many ECM proteins, allowing the direct

interaction of the material with single cell receptors and their

nanoclusters. Nanoscale surface topography affects cellular and

tissue responses, including adhesion, migration, growth,

morphogenesis, and differentiation (Martínez et al., 2009; Luo

et al., 2022).

2 Receptor nanoclustering

Specific protein-protein and protein-lipid interactions

promote oligomerization, aiding the formation of signaling

complexes at the cell membrane. Glycosylphosphatidyl-

anchored proteins (GPI-APs) are a class of soluble proteins

attached to the external side of the plasma membrane. They

form small clusters of up to four molecules (<5 nm) stabilized in

sphingolipid- and cholesterol-dependent domains or rafts. These

lipid rafts act as sorting platforms for the GPI-APs selective

delivery to the apical membrane in polarized epithelial cells,

where they exert specialized functions (Zurzolo and Simons,

2016). Besides lipid-linked proteins, many transmembrane

proteins also cluster to exert their functions.

The clustering of transmembrane receptors is common

among different types of immune cells (Dustin and Groves,

2012; Li and Yu, 2021). T cell receptors (TCRs) on resting

T cells can be found as monomers and as cholesterol- and

sphingomyelin-stabilized nanoclusters (<10%) containing

2–30 TCRs each (Molnár et al., 2012). Upon activation of

TCRs, they assemble into larger clusters of ten up to

hundreds of receptors, which recruit kinases and adaptor

proteins including Lck, ZAP-70, Lat, and SLP76. These

microclusters initiate and sustain TCR signaling at the

immunological synapse. Moreover, TCR microclusters

associate and are transported by cortical F-actin flows over

micrometer distances along the synapse (Dustin and Groves,

2012; Yi et al., 2019; Balagopalan et al., 2021). The enrichment of

oligomeric TCRs has been reported to increase the sensitivity of

memory T cells compared to naïve T cells (Kumar et al., 2011). A

similar hierarchical organization has been described for integrin

receptors. Integrins are transmembrane receptors that mediate

cell-cell and cell-extracellular matrix (ECM) adhesion (Kechagia

et al., 2019). However, integrin binding alone is insufficient to

elicit full adhesion. Instead, upon ligand binding, integrin

receptors arrange into nanoclusters that build tension through

the recruitment of adaptor proteins such as paxillin, vinculin,

talin, FAK or SRC, cytoskeletal engagement into focal adhesions

(FAs) and downstream signaling activation (Hu et al., 2015;

Kechagia et al., 2019) (Figure 1B). Remarkably, within FAs, active

and inactive β1 integrins segregate into different nanoclusters,

thus suggesting integrin activity is not only regulated at the

monomeric level but is subjected to collective or coordinate

regulation at the level of the nanoclusters (Spiess et al., 2018).

As integrins, Eph tyrosine kinase receptors cluster upon the

interaction with their ligand, ephrin, which is presented on

the surface of neighboring cell membranes. During

development, Eph receptors act as positional cues in tissue

patterning by regulating cell adhesion and repulsion. Ephrin

ligands presented as concentration gradients guide axonal

patterning in retinotectal mapping and stem cell migration in

the developing intestines (Klein, 2012). Activation of Eph

receptors occurs immediately after ligand interaction, inducing

receptor polymerization. Maximum receptor activation is

reached on clusters of five to eight receptors, after which

oligomers cannot grow further by recruiting more monomers

and instead, they grow through the condensation of oligomers

into larger complexes that dampen the signaling. These

polymerization–condensation dynamics provide a framework

for the mechanism by which cells properly respond to

variable concentrations and gradients of the ephrin ligand

(Ojosnegros et al., 2017).

3 Nanofabrication

From the first contact guidance experiments (Curtis and

Varde, 1964), microfabrication techniques first developed for the

electronics industry came into use to produce micro- and

nanopatterned surfaces for cell studies, with high feature

resolution and increased biological complexity. Fabrication
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methods to produce controlled nanotopographies on cell culture

substrates mainly rely on the use of lithographic techniques,

which in general require specialized equipment and skilled

personnel, thus limiting their widespread application. The

later introduction of the directed self-assembly techniques to

produce nanostructured surfaces greatly facilitated the

implementation of nanotopography production in general wet

labs. Here we summarize the main fabrication techniques used to

generate nanotopographical substrates, and their characteristics.

3.1 Photolithography

Photolithography or optical lithography is a patterning

technique in which a light-sensitive chemical (photoresist)

coated on the substrate is selectively exposed to light through

a mask. The photoresist either collapses or hardens in the regions

exposed to light and the pattern emerges on the substrate by

dissolving the softer parts of the coating, which can subsequently

be transferred to the substrate material. The wavelength of the

light used determines the minimum feature size that can be

impressed on the photoresist: The use of incoherent, vacuum

ultraviolet (VUV) radiation of 172 nm allowed the production of

nanoscale features with a minimum lateral feature size of 350 nm

(Mironov et al., 2020). To overcome the resolution limitations,

surface plasmon polaritons (SPPs), able to surpass the

diffraction-limits, have been used for the fabrication of

nanopatterns with a half-pitch resolution of less than 15 nm

(Luo and Ishihara, 2004; Dong et al., 2014).

3.2 Electron beam lithography and ion
beam lithography

In electron beam lithography or e-beam lithography (EBL),

a focused beam of electrons is applied (direct-writing) on an

electron sensitive coating on a substrate (Lercel et al., 1994).

This is a maskless lithography technique in which custom

nanopatterns can be transferred to a substrate with up to

3–5 nm resolution (Ermis et al., 2018). Like

photolithography, the coating is degraded or crosslinked

upon exposure and after a development process, patterns are

revealed. While conventional lithography mostly relies on flat

wafer-base processing, EBL can be applied on curved surfaces

(Lee et al., 2019). However, compared to photolithography,

only small areas can be patterned at a time and the equipment

manipulation is tough, which makes the whole process

significantly slower. Ion beam lithography (IBL) or focused

ion beam lithography (FIBL) uses a narrow scanning ion beam

source (typically of gallium ions) instead of a focused beam of

electrons to pattern a resist. Compared to EBL, IBL offers higher

resolution due to ions have much heavier mass than electrons

and more momentum, thus leading to smaller wavelengths and

reducing diffraction, but also minimizing the back scattering

and radiation towards sensitive resists (Joshi-Imre and

Bauerdick, 2014; Li et al., 2021).

3.3 Scanning probe lithography
approaches

SPL approaches are a set of maskless nanolithographic

techniques based on the ability of scanning probe

microscopy to create variable surface patterns either by

adsorption, nanoshaving and/or nanografting (Rosa and

Liang, 2009). They include dip-pen nanolithography (DPN),

fluidic force microscopy (FluidFM), and polymer pen

lithography (PPL), among others. DPN was pioneered by the

group of Prof. Mirkin (Piner et al., 1999; Salaita et al., 2007),

where an AFM tip is used to create patterns of 15–100 nm by

direct writing on the substrate. A molecular ink is transferred

from the atomic force microscope (AFM) tip to the substrate by

the spontaneous formation of a water meniscus, which is

facilitated by the ambient conditions. DPN can work in

sequential or parallel modes (multiplexed DPN), where

parallel DPN tip arrays are scanned on the substrate

simultaneously, thus significantly improving the throughput

limitations of the technique (Ma et al., 2018). FluidFM

introduces microfluidic channels (300 nm-8 µm) into the

AFM probes allowing to dispense volumes of fluid that can

be below the femtoliter range. The patterns are created when the

nanopipette contacts the surface and the ink is released from the

probe with a short pressure pulse (few hPa) (Zambelli et al.,

2018). Alternatively, a cantilever-free scanning probe molecular

printing technology referred as polymer pen nanolithography

(PPL) was introduced to overcome the throughput issues and

the use of complicated pen arrays (Huo et al., 2008). Since the

SPL techniques work under mild conditions, they allow

patterning sensitive compounds such as DNA, proteins,

lipids, viruses and even polymers for 3D additive

manufacturing (Liu et al., 2022).

3.4 Nanoimprint lithography

Nanoimprint lithography (NIL) is a simple and low-cost

lithography technique in which a pattern is transferred by

mechanical deformation of a polymer resist from a previously

nanostructured mold (created by photolithography or EBL). The

transfer of the nanopattern can be conducted in several ways: by

thermocompression using high temperatures to soften the

polymer resist while pressing it with the stamp, also known as

hot embossing lithography, or by using UV light to cross-link

and harden a soft polymer resist during the imprint (UV-NIL).

UV-NIL requires the substrate and/or stamp to be transparent to

UV wavelengths (Modaresialam et al., 2021).
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TABLE 1 Influence of nanotopographies on cell response.

Technique Cell type Cell response Ref

NIL (Hot embossing) SMC Nanopatterned gratings with 350 nm line width,
700 nm pitch, and 350 nm depth in PMMA, produced
cell alignment towards the gratings both of nuclei and
cell body, elongation, polarization of MTOC towards
the axis of cell alignment, and reduced cell proliferation

Yim et al. (2005)

EBL Human fibroblasts The nanopits (of 100 nm diameter and 100 nm depth
on PMMA) reduced adhesion, spreading and stress
fiber formation. Also reduced the nuclear area and there
was a closer spacing of centrosomes within the nucleus

Dalby et al. (2007a)

EBL, Hot embossing Osteoprogenitors from bone marrow
samples, hMSCs

120 nm diameter, 100 nm depth, 300 nmmean spacing
nanopits in PMMA with different levels of disorder.
Highly ordered nanotopographies produce low to
negligible cellular adhesion and osteoblastic
differentiation

Dalby et al. (2007b)

Soft lithography, Hot embossing hMSCs The nanopatterned gratings (350 nm line width,
700 nm pitch and 350 nm in depth in PDMS and
TCPS) decreased the expression of integrins and
promote an aligned actin cytoskeleton towards the
gratings. On the rigid TCPs, gratings (500 nm line
width, 1 µm pitch and 350 nm in depth) affect the
mechanical properties of the cells

Yim et al. (2010)

DPN hMSCs Nanodots with 70 nm diameter, separated by defined
spacings of 140–1,000 nm with different terminal
groups (carboxyl, amino, methyl and hydroxyl).
Spacing and chemistry have different effects on
adhesion and stemness maintenance

Curran et al. (2010)

EBL, Hot embossing MSCs from bone marrow,
SaOS2 osteoblasts

Pits of 120 nm diameter, 100 nm depth and a random
displacement of ±50 nm, with mean 300 nm pitch in
PCL increase cell adhesion in both cell lines and
promote osteogenic differentiation through adhesion in
MSCs

Allan et al. (2018)

BCML with poly-styrene (PS) homopolymer as
an ordering interference reagent

MC3T3-E1 osteoblasts Integrin clustering depends on the local order of RGD
ligands when the global average ligand spacing is larger
than 70 nm

Huang et al. (2009)

BCML, photolithography REF Cell adhesion more influenced by local (<60 nm ligand
spacing) than global ligand density

Deeg et al. (2011)

BCML HSCs 32 nm maximum ligand spacing for cell adhesion, and
lipid raft clustering

Altrock et al. (2012)

BCML hMSCs Maintenance of undifferentiated state favored on
nanopatterns of 68 nm spacing

Medda et al. (2014)

BCML, transfer lithography rMSCs Large (161 nm) nanospacings favor chondrogenic
differentiation

Li et al. (2015)

BCML, photolithography, and transfer
lithography

hMSCs Adipogenic and osteogenic differentiation favored on
large (95 nm) nanospacings

Wang et al. (2015)

BCML, with poly-styrene (PS) homopolymer
as an ordering interference reagent, transfer
lithography

Human breast myoepithelial cell line,
HUVECs, MEFs, MCF 10A

Integrin clustering and the formation of FAs integrate
the effects of ligand spacing and substrate force loading

Oria et al. (2017)

Self-assembled diblock copolymers HEK293T expressing the
EphB2 receptor fused to the fluorescent
protein mRuby

Nanopatterns of surface-bound ephrinB1/Fc ligands
accelerate receptor oligomerization (receptor monomer
polymerization was accelerated by 25–30%)

Hortigüela et al.
(2018)

Dendrimer nanopatterning hASCs Chondrogenesis and GJIC are enhanced by a
nanopattern configuration in which 90% of the surface
area presents adhesion sites separated <70 nm,
providing an onset for cell signaling

(Lagunas et al., 2017;
Casanellas et al., 2022)

SMC: bovine pulmonary artery smooth muscle cells; PMMA: polymethylmethacrylate; MTOC: microtubule organizing centers; hMSCs: human mesenchymal stem cells; PDMS:

polydimethylsiloxane; TCPS: tissue culture polystyrene; PCL: polycaprolactone; REF: rat embryonic fibroblasts; HSCs: hematopoietic stem cells; rMSCs: rat mesenchymal stem cells;

HUVECs: human umbilical vein endothelial cells; MEFs: mouse embryonic fibroblasts; MCF, 10A: mammary epithelial cells; HEK293T: human epithelial kidney 293 cells; hASCs: human

adipose-derived mesenchymal stem cells.
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3.5 Soft lithography

First introduced by Bain and Whitesides in 1989 (Bain and

Whitesides, 1989), soft lithography refers to a number of

techniques that use elastomeric stamps (typically of

polydimethylsiloxane (PDMS)) previously cast on a master, to

transfer micro- or nanopatterns to a substrate. It includes replica

molding, microcontact printing, micromolding in

microcapillaries, microtransfer molding, and solvent-assisted

micromolding. Soft lithography is a low-cost technique that

does not require stringent control over the environment (such

as a clean-room facilities), thus being accessible to general wet

labs (Qin et al., 2010).

3.6 Directed self-assembly of
nanostructures

Supramolecular chemistry can be used as a bottom-up

approach to achieve nanopatterned surfaces based on the self-

organization of molecular scale architectures, allowing precision

on the nanofeature position. Compared to the self-assembly of

small molecules, polymers offer higher stability and durability

due to their mechanical and physical properties. Self-assembly of

block copolymers (BCPs) has attracted considerable attention in

nanoscience due to its ability to self-assemble both in bulk and in

solution into different types of nanostructures through the

repulsion of their immiscible blocks (Mai and Eisenberg,

2012). BCP micelle nanolithography (BCML) has been

extensively used to generate ordered and disordered

nanopatterns of gold nanoclusters on surfaces with well-

controlled interparticle distances (Glass et al., 2003).

Dendrimers, presenting a highly branched and easily tunable

size and chemical structure, have been used to create

nanopatterns with a liquid-like order on low charged surfaces

(Lagunas et al., 2014), and DNA and peptides have been used to

build nanostructures presentingmultiple epitopes with nanoscale

spatial control (Stephanopoulos et al., 2015; Wang et al., 2021).

4 Biological applications

The first visible phenomena of nanostructures-cell

interaction are the changes in cell adhesion, spreading and

morphology, which provide cues to predict cellular functions.

Studies have explored the influence of different

nanotopographies on the adhesive/spreading behavior of

various cell types, some of them summarized in Table 1.

Nanotopography has been vastly employed to control cell

differentiation with especial emphasis on enhancing tissue

integration in bone implants (Chen et al., 2018). Due to the

easy manufacturing, first attempts were conducted by using the

surface roughness strategy. However, the lack of control in the

produced structures, and poor reproducibility, prompted the use

of lithographic techniques to fabricate nanostructured

biocompatible materials that promote osteointegration

(Figure 1C and Table 1).

In many cases, the assembly of membrane receptors into fully

functional microcomplexes requires of both ligand occupancy

and receptor clustering. Spatz and coworkers used BCML to

create ordered gold nanopatterns coated with the integrin

receptor ligand arginine-glycine-aspartic acid (RGD), present

in many ECM proteins. The gold nanodots, of less than 8 nm

in diameter, allowed the binding of one integrin per dot and were

positioned at different interdot spacings on a non-fouling

substrate. Authors observed that a ligand spacing of more

than 73 nm impairs integrin clustering, cell adhesion and

spreading, and dramatically reduces the formation of FAs and

actin stress fibers (Arnold et al., 2004). Since this seminal work,

BCML has been used in a number of cell studies, showing the

prevalence of local over global ligand density (Deeg et al., 2011)

(Figure 1D and Table 1), and that integrin clustering influences

many aspects of cell behavior, including cell differentiation

(Table 1). More recently, Roca-Cusachs and coworkers used

BCML to create cell adhesive nanopatterns on substrates of

different rigidity, and they found that the optimal ligand

spacing for cell adhesion increases as substrate stiffness

decreases (Oria et al., 2017) (Table1).

The multivalent interactions between ligand and receptors, in

which the simultaneous binding of multiple ligands on receptor

complexes takes place (Kiessling et al., 2006), have been

extensively used to study receptor clustering and the

downstream signaling in cells. Self-assembled diblock

copolymers of polystyrene-blockpoly(methyl methacrylate)

(PS-b-PMMA) were used to produce nanopatterned substrates

able to establish multivalent interactions between surface-bound

ephrinB1 ligands and membrane EphB2 receptors. The

preclustering of ephrinB1 ligands in the nanopatterns resulted

in a more efficient and faster receptor oligomerization kinetics

compared to the traditional cross-linked ligand presentation

(Hortigüela et al., 2018). Also, dendrimer nanopatterning of

RGD-functionalized dendrimers was used to study the effects

of the local RGD ligand density on the adhesion, differentiation,

and gap junction intercellular communication (GJIC) of

mesenchymal stem cells (Lagunas et al., 2017; Casanellas

et al., 2020; Casanellas et al., 2022) (Figure 1E).

5 Conclusions and perspectives

Nanoscale cell-environmental interactions regulate cell

behavior. Nanotopography produced by lithographic

techniques and/or by the self-assembly of molecular scale

architectures effectively mimics those interactions, helping to

direct particular cell responses and providing information about

the underlying mechanisms. We expect that further advances in
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the field by including stimuli-responsive materials, combined

with super-resolution microscopies, will bring more detailed

information on the molecular mechanisms that direct cell

function, unveiling traits that are normally hidden by the

ensemble average in bulk experiments. This will provide an

otherwise unavailable insight on the cell interactions at the

nanoscale so that they can be used to systematically drive cell

responses by fabricating the appropriate nanotopographical

substrates, with potential applications in translational medicine.
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