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Abstract
Texture enhancement is one of the most important techniques in digital image processing

and plays an essential role in medical imaging since textures discriminate information. Most

image texture enhancement techniques use classical integral order differential mask opera-

tors or fractional differential mask operators using fixed fractional order. These masks can

produce excessive enhancement of low spatial frequency content, insufficient enhance-

ment of large spatial frequency content, and retention of high spatial frequency noise. To

improve upon existing approaches of texture enhancement, we derive an improved Variable

Order Fractional Centered Difference (VOFCD) scheme which dynamically adjusts the frac-

tional differential order instead of fixing it. The new VOFCD technique is based on the sec-

ond order Riesz fractional differential operator using a Lagrange 3-point interpolation

formula, for both grey scale and colour image enhancement. We then use this method to

enhance photographs and a set of medical images related to patients with stroke and Par-

kinson’s disease. The experiments show that our improved fractional differential mask has

a higher signal to noise ratio value than the other fractional differential mask operators.

Based on the corresponding quantitative analysis we conclude that the new method offers a

superior texture enhancement over existing methods.

Introduction
Texture plays an important role in the identification of regions of interest in an image, hence
texture enhancement is an essential component in digital image processing [1]. The aims of
texture enhancement are to improve the overall visual effect of the image through purposefully
emphasizing local or whole characteristic features and impair characteristics of little interest.
The quality of the image, especially the texture, is critical in the clinical diagnosis and identifi-
cation of pathology based on medical images.
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Integral order differential mask operators, such as the Sobel, Roberts, Prewit and Laplacian
techniques [1, 2], are widely used in image enhancement algorithms. However, there are several
disadvantages using an integral order differential operator. For example, first order masks pro-
duce wide edges after image processing; second order masks generate double responses when
the grey scale changes, and are therefore sensitive to noise [2, 3].

A growing number of research projects in science and engineering utilise fractional calculus
to improve the understanding and description of physical phenomena [4–14]. These benefits
provide an excellent motivation for researchers to apply fractional derivatives to digital image
processing [3, 8, 15–27]. Chen et al. proposed a digital fractional order Savitzky–Golay differ-
entiator, and experiments showed that it can estimate the fractional order derivative of the con-
taminated signal [15, 16]. Based on the Riemann–Liouville definition, Zhang et al. developed
an algorithm to enhance the texture and edges of digital images [3]. Furthermore, the mask
used had an improved visual effect with richer texture information than that obtained by inte-
gral order masks. Sejdić et al. showed that the fractional Fourier transform is potentially a very
powerful tool in signal processing [17]. A stochastic fractal model was also developed for image
processing, which is basically an analysis and synthesis tool for images [18]. Mathieu et al.
applied fractional differential masks to detect edges, which improved the criterion of thin
detection, or detection selectivity for parabolic luminance transitions [19]. Generally, robust-
ness to noise was improved using these masks. Based on the Grünwald–Letnikov definition,
Gao et al. applied a quaternion fractional differential to a colour image [23]. When applied to
every channel of the image the experiments showed that their method, when compared to
Sobel and mixed edge fractional techniques, has fewer false negatives in the textured regions
and is better at detecting edges that are partially defined by texture. The use of an improved
fractional differential operator based on a piecewise quaternion resulted in excellent textural
detail enhancement of rich-grained digital images [21]. The authors subsequently proposed
four new fractional directional differentiation masks and corresponding numerical simulation
rules [22]. Experiments showed that their method can enhance the texture details of rich–
grained digital images. Garg and Singh proposed a Grünwald–Letnikov fractional differential
mask using a Lagrange 3–point interpolation formula for image texture enhancement [27].
The outcome was enhancement of both the image texture and lightness, and the information
entropy was found to improve by 7%. Based on the Grünwald–Letnikov definition, Pu et al.
derived some algorithms that perform well when applied to grey scale images, but produce dis-
torted colour images [25]. They showed that their two algorithms YiFeiPU-1 and YiFeiPU-2
are widely applicable, particularly YiFeiPU-2, which using a Lagrange 3-point interpolation
formula performs best based on a relative errors analysis. Based on this work, we extended the
method to a second order Riesz fractional differential operator FCD-1 [8, 26]. The use of a frac-
tional centered difference scheme enables our method to provide higher signal-to-noise ratios
and superior image quality than the classical integral order differential mask operators and
other first order fractional differential operators, such as YiFeiPU-1 [25]. These existing frac-
tional order differentiation methods employ a fixed fractional order. Overall, fixed order tech-
niques tend to excessively enhance the low spatial frequency content of an image, whilst
insufficiently enhancing high spatial frequency content and amplifying image noise [3, 8,
24–26].

An optimization algorithm for choosing the fractional order parameter has been proposed
to overcome limitations of fixed order methods [16]. Gilboa et al. adjusted the nonlinear diffu-
sion coefficient locally according to image features, such as edges, textures and moments [28].
They illustrated that this approach works well, and sharpening and denoising can be combined
together in the enhancement of grey–level and colour images. Huang et al. outlined an adaptive
image enhancement algorithm that dynamically adjusts the fractional differential order
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according to the image local statistics and structural features [29]. Results were provided for
the Lena image only, and a rigorous quantitative analysis of their findings was not performed.
They did show that their method had a higher signal-to-noise ratio and superior image quality
than the traditional fractional differential operator and classical integral order differential
mask operators. In view of these findings, it appears that variable fractional order calculus pro-
vides benefits over fixed order methods. Hence, our work aims to further develop variable frac-
tional order methods in the context of image enhancements.

In our previous work we showed that the use of the Riesz fractional differential operator
instead of the Grünwald–Letnikov definition results in higher accuracy due to the positive ben-
efits of using a symmetric second order instead of a one sided first order fractional operator [8,
26]. In view of these findings, we changed the YiFeiPU-2 method [25] by replacing the Grün-
wald–Letnikov definition with the Riesz fractional differential operator. Moreover, we incorpo-
rated variable fractional order [29] into the algorithm to estimate the fractal dimension of a
local region instead of using fixed fractional order differentiation. The outcome is an image
enhancement method applicable across a range of image types that adapts the fractional order
of the differential to local features. As such, we achieve larger flexibility by being able to change
the weights used in the reconstruction algorithm. The key differences of our method with pre-
vious work [8, 26] are that we apply a Lagrange 3-point interpolation formula on the Riesz frac-
tional differential operator and incorporate variable fractional order into the algorithm. Key
differences of the method with Pu et al. [25] are that we replace the Grünwald–Letnikov defini-
tion by the Riesz fractional differential operator and incorporate variable fractional order into
the algorithm. Key differences of the method with Huang et al. [29] are that we replace the
Grünwald–Letnikov definition by the Riesz fractional differential operator and apply a
Lagrange 3-point interpolation formula on the Riesz fractional differential operator to achieve
different effects based on the choice of the weights used in the reconstruction.

This paper is organized as follows. Firstly, the mathematical preliminaries used throughout
the paper are introduced. Secondly, we give the theoretical analysis for our improved fractional
differential mask, termed VOFCD, based on the second order Riesz fractional differential oper-
ator using a Lagrange 3-point interpolation formula. Then, the VOFCD method is presented.
Furthermore, we present an overview of the data acquisition process and give an outline of the
algorithm for enhancing the quality of a grey–level image. Finally, we compare our algorithm
with Pu et al.’s best algorithm (YiFeiPU-2) [25] and Yu et al.’s algorithm (FCD-1) [8, 26] when
applied to medical images of the human brain.

Preliminary Knowledge
Here we outline the important definitions used throughout the paper.

Definition 1. The v-order Grünwald-Letnikov based fractional derivative GLD
v
xsðx; yÞ with

respect to x for the finite interval x 2 [a, X] can be expressed by [30, 31]:

GLD
v
xsðx; yÞ ¼

dv

½dðx � aÞ�v sðx; yÞ
����
GL

¼ lim
N!1

x � a
N

� ��v

Gð�vÞ
XN�1

k¼0

Gðk� vÞ
Gðkþ 1Þ s x � k

x � a
N

� �� �8<
:

9=
;;

ð1Þ

where v is any real number. The v-order Grünwald-Letnikov based fractional derivative

GLD
v
ysðx; yÞ with respect to y can be defined in a similar manner.
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Definition 2. The v-order (0< v� 2) Riesz fractional derivative @v sðx;yÞ
@jxjv with respect to x for

the infinite interval −1< x< +1 is defined as [8]:

@vsðx; yÞ
@jxjv ¼ �cv

@v

@xv
þ @v

@ð�xÞv
� �

sðx; yÞ; ð2Þ

where cv = [2 cos(πv/2)]−1 (v 6¼ 1), n − 1< v� n, and

@vsðx; yÞ
@xv

¼ 1

Gðn� vÞ
@n

@xn

Z x

�1

sðx; yÞdx
ðx � xÞvþ1�n ; ð3Þ

@vsðtÞ
@ð�xÞv ¼ ð�1Þn

Gðn� vÞ
@n

@xn

Z þ1

x

sðx; yÞdx
ðx� xÞvþ1�n : ð4Þ

The Riesz fractional derivative @vsðx;yÞ
@jyjv of order v (0< v� 2) with respect to y can be defined in a

similar manner.

The Fractional Differential Mask
Utilizing the second order fractional centered difference scheme [8, 26, 32], we discretize the
Riesz fractional derivative @v s(x, y)/@jxjv (0< v� 2) with respect to x with step h as:

@vsðx; yÞ
@jxjv ¼ � 1

hv

X1
k¼�1

ð�1ÞkGðv þ 1Þ
G

v
2
� kþ 1

� �
G

v
2
þ kþ 1

� � � sðx � kh; yÞ þ Oðh2Þ: ð5Þ

Assume that r = x + (vh/2) − kh, then r 2 [x − kh, x + h − kh]. Using a Lagrange 3–point
interpolation formula for the three neighboring nodes s(x + h − kh, y), s(x − kh, y), and s(x − h
− kh, y), we have

sðr; yÞ ffi ðr � x þ khÞðr � x þ hþ khÞ
2h2

sðx þ h� kh; yÞ

� ðr � x � hþ khÞðr � x þ hþ khÞ
h2

sðx � kh; yÞ

þ ðr � x � hþ khÞðr � x þ khÞ
2h2

sðx � h� kh; yÞ:

ð6Þ

Noting that r = x + (vh/2) − kh, we then obtain

s x þ v
2
h� kh; y

� �
ffi v

4
þ v2

8

� �
sðx þ h� kh; yÞ þ 1� v2

4

� �
sðx � kh; yÞ

þ v2

8
� v
4

� �
sðx � h� kh; yÞ:

ð7Þ

Compared with s(x − kh, y) in Eq (5), s(x + (vh/2) − kh, y) in Eq (7) is a linear combination
of the neighboring nodes, which implies that s(x + (vh/2) − kh, y) contains more information
in its neighborhood and leads to richer texture details. Thus, replacing s(x − kh, y) in Eq (5)
with s(x + (vh/2) − kh, y), and substituting Eq (7) into Eq (5), we obtain a new Riesz fractional
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differential with respect to x as

@vsðx; yÞ
@jxjv ffi � 1

hv

X1
k¼�1

ð�1ÞkGðv þ 1Þ
G

v
2
� kþ 1

� �
G

v
2
þ kþ 1

� � � s x þ v
2
h� kh; y

� �

ffi � 1

hv

X1
k¼�1

ð�1ÞkGðv þ 1Þ
G

v
2
� kþ 1

� �
G

v
2
þ kþ 1

� � �
�

v
4
þ v2

8

� �
sðx þ h� kh; yÞ

þ 1� v2

4

� �
sðx � kh; yÞ þ v2

8
� v
4

� �
sðx � h� kh; yÞ

�
:

ð8Þ

By first noting that for 0< v< 1, GðtÞGð1� tÞ ¼ p
sinðptÞ (0< t< 1), we have

Gðv
2
ÞGð1� v

2
Þ ¼ p

sinðpv2 Þ
, and GðvÞGð1� vÞ ¼ p

sinðpvÞ ¼ p
2sinðpv2 Þcosðpv2 Þ

gives

1

2 cos
pv
2

� � ¼ GðvÞGð1� vÞ
G

v
2

� �
G 1� v

2

� � ; 0 < v < 1; ð9Þ

we can rewrite Eq (8) in the form

@vsðx; yÞ
@jxjv ¼ � 1

2 cos
pv
2

� � @v

@xv
þ @v

@ð�xÞv
� �

sðx; yÞ

ffi � 1

2 cos
pv
2

� �
hv

(X1
k¼0

ok

�
v
4
þ v2

8

� �
sðx þ h� kh; yÞ þ 1� v2

4

� �
sðx � kh; yÞ

þ v2

8
� v
4

� �
sðx � h� kh; yÞ

�
þ

X0

k¼�1
ok

�
v
4
þ v2

8

� �
sðx þ h� kh; yÞ

þ 1� v2

4

� �
sðx � kh; yÞ þ v2

8
� v
4

� �
sðx � h� kh; yÞ

�)

;ð10Þ

where

o0 ¼ � Gð1� v=2Þ
vGð1þ v=2ÞGð�vÞ ;

ok ¼ ð�1Þkþ1Gðv=2ÞGð1� v=2Þ
Gðv=2� kþ 1ÞGðv=2þ kþ 1ÞGð�vÞ ;

ð11Þ

for k = ±1, ±2, � � �. It can be seen from Eq (10) that the Riesz fractional derivative can be discre-
tized into two parts, one located on the positive x–axis and the other on the negative x–axis.
From this formulation the Riesz fractional mask can be obtained.

In the context of medical images, the authors in [8, 25, 26] discuss the biggest variable of the
grey level being limited, and the shortest distance for a change in the grey level image must be
at an adjacent pixel. Therefore, the pixel signal is used to measure the duration of a two–dimen-
sional digital image s(x, y) with respect to the two variables x and y. Here, the duration is the
dimension of the image matrix assuming that the duration of x and y is [0, X] and [0, Y],
respectively. The uniform distances for the x and y–coordinates are hx = X/N = 1 and hy = Y/
N = 1 and the number of divisions are Nx = [X/hx] = [X] and Ny = [Y/hy] = [Y].
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For a two–dimensional digital image s(x, y) at pixel signal (x1, y1) on the positive x–axis
with region [0, x1 + h], the N + 2 pixels are

sNðx1; y1Þ ¼ sð0; y1Þ; � � � ; skðx1; y1Þ ¼ sðx1 � kh; y1Þ; � � � ;
s0ðx1; y1Þ ¼ sðx1; y1Þ; s�1ðx1; y1Þ ¼ sðx1 þ h; y1Þ:

After truncation, the anterior n + 2 approximate fractional centered difference of the Riesz
fractional differential with order 0< v< 1on the positive x–axis is:

@vsðx; yÞ
@xv

ffi � 1

2 cos
pv
2

� �
hv

Xn�1

k¼0

ok

�
v
4
þ v2

8

� �
sðx þ h� kh; yÞ

þ 1� v2

4

� �
sðx � kh; yÞ þ v2

8
� v
4

� �
sðx � h� kh; yÞ

�
:

ð12Þ

Similarly, the anterior n + 2 approximate fractional centered difference of the Riesz frac-
tional differential with order 0< v< 1on the negative x–axis is:

@vsðx; yÞ
@xv

ffi � 1

2 cos
pv
2

� �
hv

X0

k¼�ðn�1Þ
ok

�
v
4
þ v2

8

� �
sðx þ h� kh; yÞ

þ 1� v2

4

� �
sðx � kh; yÞ þ v2

8
� v
4

� �
sðx � h� kh; yÞ

�
:

ð13Þ

To obtain the fractional differential masks for the eight symmetric directions and make
them rotationally invariant, we implement eight fractional differential masks positioned
respectively on the negative x–axis, positive x–axis, negative y–axis, positive y–axis, left down-
ward diagonal, right upward diagonal, left upward diagonal, and right downward diagonal.
They are correspondingly denoted byWl (l = 1, 2, . . ., 8) (see Fig 1).

In Fig 1, Cs0 is the mask coefficient associated with the pixel of interest. When n = 2m − 1, a
(2m + 1) × (2m + 1) fractional differential mask is implemented. To ensure that the fractional
differential mask remains symmetric and the centre of the mask aligns with a pixel, in general,
n is taken as an odd positive integer.

Digital image processing is based on direct processing for discrete pixels, and the algorithm
normally adopts an airspace filtering scheme whose principle is to move the mask pixel by
pixel [25]. Therefore, there are separate algorithms for grey and colour image fractional differ-
ential masks.

Next, we deduce the following fractional differential algorithm, VOFCD, based on the Riesz
fractional differential operator Eq (2). To treat the Nx × Ny digital grey–level image s(x, y), we
perform a convolution filter on the above eight directions in the (2m + 1) × (2m + 1) masks,
and propose that the eight fractional differential masks are computed by what we refer to as the
VOFCD operator:

sl1ðx; yÞ ¼
XNl1

i¼Ml1

XQl1

j¼Pl1

Wl1
ði; jÞsðx þ i; y þ jÞ; ð14Þ

sl2ðx; yÞ ¼
XNl2

i¼Ml2

XQl2

j¼Pl2

2�v=2Wl2
ði; jÞsðx þ i; y þ jÞ

þð1� 2�v=2ÞWl2
ð0; 0Þsðx; yÞ;

ð15Þ
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where l1 = 1, 2, 3, 4, l2 = 5, 6, 7, 8, and

M1 ¼ �2m; N1 ¼ 1; P1 ¼ �m; Q1 ¼ m;

M2 ¼ �1; N2 ¼ 2m; P2 ¼ �m; Q2 ¼ m;

M3 ¼ �m; N3 ¼ m; P3 ¼ �2m; Q3 ¼ 1;

M4 ¼ �m; N4 ¼ m; P4 ¼ �1; Q4 ¼ 2m;

M5 ¼ �1; N5 ¼ 2m; P5 ¼ �2m; Q5 ¼ 1;

M6 ¼ �2m; N6 ¼ 1; P6 ¼ �1; Q6 ¼ 2m;

M7 ¼ �2m; N7 ¼ 1; P7 ¼ �2m; Q7 ¼ 1;

M8 ¼ �1; N8 ¼ 2m; P8 ¼ �1; Q8 ¼ 2m:

Fig 1. Fractional differential operator VOFCD for the eight directions. (a)W1(negative x–axis), (b)
W2(positive x–axis), (c)W3(negative y–axis), (d)W4 (positive y–axis), (e)W5(left downward diagonal), (f)W6

(right upward diagonal), (g)W7(left upward diagonal), (h)W8 (right downward diagonal).

doi:10.1371/journal.pone.0132952.g001
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Thus, we have the digital grey–level images sI(x, y)as

sIðx; yÞ ¼

X8

l¼1

slðx; yÞ

4
Xn

k¼�1

Csk
þ

Xn

k¼�1;k6¼0

2ð4�vÞ=2Csk
þ 4Cs0

; ð16Þ

where Csk is the mask coefficient given in Eq (17). As for the digital colour image, the algorithm
is similar to that for a grey–level image, however the RGB components use the fractional differ-
ential respectively.

When 0< v< 1, we implement the fractional differential mask respectively on the eight
symmetric directions using what we call the VOFCD operator, having the same structure as
YiFeiPU-2 in [25] but with different coefficients. The mask coefficients of the VOFCD operator
are given by

Cs�1
¼ � 1

2 cos ðpv=2Þhv

v
4
þ v2

8

� �
o0;

Cs0
¼ � 1

2 cos ðpv=2Þhv 1� v2

4

� �
o0 þ

v
4
þ v2

8

� �
o1

� �
;

..

.

Csk
¼ � 1

2 cos ðpv=2Þhv

v2

8
� v
4

� �
ok�1 þ 1� v2

4

� �
ok þ

v
4
þ v2

8

� �
okþ1

� �
;

..

.

Csn�1
¼ � 1

2 cos ðpv=2Þhv

v2

8
� v
4

� �
on�2 þ 1� v2

4

� �
on�1

� �
;

Csn
¼ � 1

2 cos ðpv=2Þhv

v2

8
� v
4

� �
on�1;

ð17Þ

which ensures that the fractional differential operator VOFCD produces a sparse matrix having
dimension n + 2. Moreover, all the coefficients depend on the fractional differential order v. It
can also be proven that the sum of the coefficients is nonzero, which is the main difference
between the fractional differential mask and the integral version.

Variable Fractional Differential Order
The average gradient and information entropy are widely used for quantitative analysis of
images [23, 25, 27]. The average gradient reflects the clarity of the image, and expresses con-
trast due to small details. It can be used to measure the spatial resolution of the image, i.e., a
larger average gradient means a higher spatial resolution [33–35]. Generally speaking, a large
gradient value is likely to correspond to regions of edges, margins and textures within images,
hence a larger fractional order is required to enhance textural details [8, 25, 26]. On the con-
trary, a smaller value of the average gradient is likely to correspond to smooth image regions,
hence a smaller fractional order is needed to enhance image textures. However, the gradient is
quite large for both boundaries and noise. Therefore, a suitable method is needed to identify
the margin and noise.

Note that the margin of the object is continuously smooth, and it is easy to find another
margin point that has a similar magnitude of gradient as the margin of interest. However, the
noise is random, and it is difficult to find any noise around the region of interest having a
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similar magnitude of gradient. Hence, margin or noise can be identified through the following
process:

R ¼
0; min fk rsij �rNðsijÞ kg � T

1; min fk rsij �rNðsijÞ kg > T
ð18Þ

8<
:

wherersij is the gradient magnitude associated with the pixel of interest s(xi, yj),rN(sij) is the
gradient magnitude associated with the pixel around the region of interest s(xi, yj), and T is the
threshold value.

The information entropy evaluates the average information included in the image and
reflects the detail information of the image [23, 25, 27, 36–38], that is small in the smooth area
and large in the rich texture area of the image. Image entropy is calculated as:

H ¼ �
X
i;j

Pðxi; yjÞ log 2Pðxi; yjÞ; ð19Þ

where P(xi, yj) is the probability mass function of s(xi, yj).
The local image roughness is the relative offset measurement of the image pixel grey scale

value [36, 39, 40], that is also small in the smooth area and large in the rich texture area of the
image. The local roughness of an image is calculated as

Q ¼ 1� 1

1þ s2 ; ð20Þ

where σ is the local variance of the pixel signals of the image.
The order of the fractional differential is not only related to the magnitude of the gradient,

but also impacted by the image local statistics, namely variance and entropy [23, 25, 27]. Thus,
using a weighted summation of three parameters to reflect local image information, we have:

gðjrsj;H;QÞ ¼ k1 k rs k þk2H þ k3Q; ð21Þ
where 0� k1, k2, k3 � 1 and k1 + k2 + k3 = 1.

As suggested by Huang et al. [29], utilizing the exponential function property, we can obtain
the variable fractional differential order function as:

v ¼ ð�1ÞRðeagðkrsk;H;QÞ � bÞ; ð22Þ

where α and β are regularization parameters.

Data Acquisition and Algorithm Development
In this section, we outline the implementation of our algorithm to enhance textures in grey
level and colour images. We first present the details of the data acquisition. Then, we demon-
strate the algorithm development.

Data Acquisition
The research project was approved by the Human Research Ethics Committee of Queensland
Health, Brisbane, Australia. Participants provided written consent prior to participating in the
study, the process of which was approved by the ethics committee. Furthermore, all data sets
were de-identified for the project.

The first data set of the stroke patients was acquired at the Royal Brisbane and Women’s
Hospital using the 3T Siemens MRI scanner. Patients admitted with a clinical diagnosis of
acute ischemic stroke were recruited between May 2011 and April 2012. Patients underwent an
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MRI examination at admission from which two MRI datasets were randomly selected for this
study. Susceptibility weighted magnetic resonance images were acquired on a 3T Siemens Trio
human scanner running the Syngo proprietary software housed at the hospital. Data acquisi-
tion was performed using the Syngo SWI sequence with the following parameters: matrix
size = 224 × 256, repetition time (TR) = 200ms, echo time (TE) = 20ms, flip angle = 15o,
bandwidth = 120Hz per pixel, in-plane resolution, 1mm × 1mm slice thickness and
separation = 2mm and number of slices = 72. Magnitude, phase and susceptibility images were
saved separately, and only the magnitude images were used in this study. The original image
slices 32 to 47 from the first stroke patient show the stroke in the left hemisphere of the brain,
as for example, can be seen in Figs 2(a) and 3(a). For the second patient, the stroke was visible
in slices 42 to 61 to various extents.

The second data set is for MRI data acquisition–3T in vivo for a patient with Parkinson’s
disease. The data was obtained from St Andrew’s War Memorial Hospital, Brisbane, Australia.
The pre-surgery data we use here is from a patient diagnosed with Parkinson’s disease. The

Fig 2. Comparison of texture details between original image slice 35 from the first stroke patient and its fractional differential using YiFeiPU-2,
FCD-1 and VOFCD and (0.45, 0.01, 0.54) for the weights. (a) Original image slice 35, (b) 0.5–order YiFeiPU-2 with mask 5 × 5, (c) 0.5–order FCD-1 with
mask 5 × 5, (d) VOFCD with mask 5 × 5.

doi:10.1371/journal.pone.0132952.g002
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brain diffusion tensor MR images are acquired using a GE Medical System (SIGNA 3T) scan-
ner. All image matrix sizes are 256 × 256. Pre surgery data is acquired using an echo time of
93.7 ms and repetition time of 7s. Twenty four interleaved, 5 mm thick slices are acquired in
the horizontal plane perpendicular to the coronal and sagittal planes, using the multislice
mode. Diffusion sensitization is performed along 35 different diffusion gradient orientations
using a diffusion weighting of b = 1000 sec/mm2 (b is the degree of diffusion sensitization
defined by the amplitude and the time course of the magnetic field gradient pulses used to
encode molecular diffusion displacements [41]). A reference image without diffusion weighting
(b = 0 sec/mm2) not illustrated here was also acquired.

Image Evaluation
The regulation parameters are set to α = 1 and β = 1.7, which gives the variable fractional differ-
ential order function as:

v ¼ ð�1ÞRðek1krskþk2Hþk3Q � 1:7Þ: ð23Þ

After normalization with the magnitude of the gradient krsk, the entropy of the image H and
the roughness of the image Q, we have 0� krsk, H, Q� 1. Hence, if R = 0, we have v 2 [0, e
− 1.7] which effectively enhance textures in images, where e is the base of the natural logarithm
and approximately equal to 2.71828; If R = 1, we have v 2 [1.7 − e, 0] which can remove noise
to some extent.

We define the signal to noise ratio (SNR) [26]

SNR ¼ ðAsignal=AnoiseÞ2; ð24Þ

Fig 3. Comparison of textures in the region of interest between original image slice 35 from the first
stroke patient and its fractional differential using YiFeiPU-2, FCD-1 and VOFCD and (0.45, 0.01, 0.54)
for the weights. (a) Original full image slice 35, (b) original region of interest, (c) 0.5–order YiFeiPU-2 with
mask 5 × 5, (d)0.5–order FCD-1 with mask 5 × 5, (e) VOFCD with mask 5 × 5.

doi:10.1371/journal.pone.0132952.g003
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where A is the root mean square amplitude. For MRI data, the image background was used to
compute Anoise.

Images are evaluated based on the intensity histogram Entropy (Ent), Standard Deviation
(STD), and Mean Absolute Difference Coefficient (MADC) [42]. The higher the value of Ent,
the more visual information the image contains, and an increase in Ent means an increase in
information and therefore an improvement in image quality. The STD demonstrates how
much the image intensities deviate from the expected value, and a variation of STD measures
how much corresponding points vary across the source and images. The MADC is used to
measure image clarity, such as activity, and is defined as the mean of the sum of difference val-
ues over rows and columns of the image pixel intensities [42, 43]:

MADC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

X
y

ðI2x þ I2y Þ=ðNxNyÞ
r

; ð25Þ

where Ix = [s(x, y) − s(x − 1, y)]2 and Iy = [s(x, y) − s(x, y − 1)]2.

Simulation Study
The algorithm given in Table 1 provides the process for enhancing the quality of a grey-level
image using the symmetric Riesz variable fractional order substitution.

Results and Discussion
In this section, we compare our algorithm to YiFeiPU-2 [25] and FCD-1 [8, 26], and apply the
method to a set of medical images.

Evaluation of Weights
After testing weights k1, k2 and k3 ranging from 0 to 1 with step 0.01 subject to the condition k1
+ k2 + k3 = 1, Figs 4–6 show the convergence curves of SNR, Ent, STD and MADC with differ-
ent mask sizes in image slice 35 for the first stroke patient (see Fig 2(a)). Using a 5 × 5 mask,
Tables 2 and 3 show different combinations of k1, k2 and k3 for obtaining the largest and lowest
SNR, Ent, STD and MADC.

According to the different combinations of k1, k2 and k3 from Tables 2 and 3, Fig 7 shows
the corresponding image slice.

Table 1. Algorithm for enhancing the quality of a grey–level image.

Input: Read original grey image, and add Gaussian noise with mean 0 and variance 0.01.

Output: s(x, y)

Choose m = 2, n = 3 and mask 5 × 5 Compute the variable fractional differential order using Eq (23)
Compute the mask coefficients Csk

using Eq (17) Compute the dimension Nx × Ny of the image matrix for
x = 2:Nx − 1 do

for y = 2:Ny − 1 do

for l = 1:8 do

Compute sl(x, y) using Eqs (14) and (15)

end

Compute sI(x, y) using Eq (16)

end

end

Display adjusted image sI(x, y).

doi:10.1371/journal.pone.0132952.t001
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In a similar manner to the data exhibited for the first stroke patient, Figs 8–10 show the con-
vergence curves for SNR, Ent, STD and MADC with different mask sizes for image slice 51
from the second stroke patient. Figs 11–13 show the corresponding results from clinical data
for a patient diagnosed with Parkinson’s disease prior to surgery.

Additional experiments were performed on different image slices of stroke patients, the
results of which are provided as Supporting Information.

We have shown that the outlined approach can be applied to different data, and the weights
can be manipulated to achieve the highest or lowest SNR, Ent, STD or MADC.

Fig 4. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image slice 35 for the first stroke patient.

doi:10.1371/journal.pone.0132952.g004

Fractional Calculus in Medical Imaging

PLOS ONE | DOI:10.1371/journal.pone.0132952 July 17, 2015 13 / 35



Qualitative Analysis
Without loss of generality, we only show results using the 5 × 5 mask applied to the first stroke
patient image using two particular combinations of k1, k2 and k3. The results of the second
stroke patient are provided as Supporting Information. The parameter set (0.45, 0.01, 0.54)
obtained the largest SNR in slice 35 depicted in Fig 7, whilst (0.01, 0.01, 0.98) produced the
largest MADC. These two choices of parameters allow us to evaluate image SNR versus
contrast.

Fig 5. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image slice 35 for the first stroke patient.

doi:10.1371/journal.pone.0132952.g005
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Fig 6. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image slice 35 for the first stroke patient.

doi:10.1371/journal.pone.0132952.g006

Table 2. Weights k1, k2 and k3 to obtain the largest SNR, Ent, STD andMADC using various mask sizes. Data taken from image slice 35 for the first
stroke patient.

Mask = 3 × 3 Mask = 5 × 5 Mask = 7 × 7

Value k1 k2 k3 Value k1 k2 k3 Value k1 k2 k3

SNR 105.1185 0.47 0.01 0.52 104.5495 0.45 0.01 0.54 103.9047 0.47 0.01 0.52

Ent 6.5951 0.42 0.05 0.53 6.6704 0.45 0.01 0.54 6.6626 0.45 0.01 0.54

STD 0.3563 0.07 0.25 0.68 0.3552 0.5 0.01 0.49 0.3547 0.49 0.01 0.5

MADC 0.06785 0.01 0.01 0.98 0.1247 0.01 0.01 0.98 0.1385 0.01 0.01 0.98

doi:10.1371/journal.pone.0132952.t002

Fractional Calculus in Medical Imaging

PLOS ONE | DOI:10.1371/journal.pone.0132952 July 17, 2015 15 / 35



Table 3. Weights k1, k2 and k3 to obtain the lowest SNR, Ent, STD and MADC using variousmask sizes.Data taken from image slice 35 for the first
stroke patient.

Mask = 3 × 3 Mask = 5 × 5 Mask = 7 × 7

Value k1 k2 k3 Value k1 k2 k3 Value k1 k2 k3

SNR 104.3209 0.01 0.01 0.98 94.2579 0.01 0.01 0.98 79.2511 0.01 0.01 0.98

Ent 6.5666 0.01 0.01 0.98 6.3978 0.01 0.01 0.98 6.1545 0.01 0.01 0.98

STD 0.3552 0.01 0.98 0.01 0.3352 0.01 0.01 0.98 0.2958 0.01 0.01 0.98

MADC 0.05804 0.45 0.03 0.52 0.068907 0.46 0.01 0.53 0.07590 0.44 0.04 0.52

doi:10.1371/journal.pone.0132952.t003

Fig 7. Comparison of images across different combinations of (k1, k2, k3) reconstructed using a 5 × 5mask.Data is for slice 35 from the first stroke
patient, and the weights are (a) (0.45, 0.01, 0.54), (b) (0.46, 0.01, 0.53), (c) (0.5, 0.01, 0.49), (d) (0.01, 0.01, 0.98).

doi:10.1371/journal.pone.0132952.g007
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Figs 2, 3, 14 and 15 provide the corresponding results obtained with (0.45, 0.01, 0.54). We
now present clinical data used to test our methods on human brain images from first patient
diagnosed with stroke. In Fig 2, we compare VOFCD with YiFeiPU-2 and FCD-1. Fig 3 shows
the comparison of texture details in the region of interest between the original image slice 35
and its differential using the YiFeiPU-2, FCD-1 and VOFCD methods. It can be seen from Figs
2 and 3 that the image resulting from our method (VOFCD) is qualitatively better than the
images constructed using the other methods. We note in particular that the visual effect offered
by VOFCD is better than that of YiFeiPU-2 and FCD-1 with fractional order v = 0.5 when
using the same mask dimensions. This choice of v allows us to make consistent comparisons

Fig 8. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image slice 51 from the second stroke patient.

doi:10.1371/journal.pone.0132952.g008
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across the different methods. Additional comparisons using different values of v are provided
as Supporting Information.

Through the use of histograms, Fig 14 shows the comparison of texture details between the
original image slices 40, 44, 45, and 46 of first stroke patient, and their fractional differential
using VOFCD with a 5 × 5 mask. Again, we can see that VOFCD has enhanced the textural
details in these images.

Fig 15 provides a comparison of SNR between the original image slices of first stroke patient
and the fractional differential with mask 5 × 5 for VOFCD, YiFeiPU-2 and FCD-1 with v = 0.5.

Fig 9. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image slice 51 from the second stroke patient.

doi:10.1371/journal.pone.0132952.g009
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From Fig 15, it can be seen that VOFCD produces the largest values of SNR, which implies a
superior texture enhancement over the other methods.

We now present clinical data to test our methods on a human brain image from a patient
diagnosed with Parkinson’s disease prior to surgery.

Applying the fractional differential to the three elements in the HSI colour space, respec-
tively, and then reverting to RGB colour space, one can obtain a colour image without distor-
tion. Fig 12 shows that the parameter set (0.25, 0.74.0.01) obtained the largest SNR for an
original fractional anisotropy weighted orientation map from a patient diagnosed with Parkin-
son’s disease prior to surgery with mask 5 × 5, and the parameter set (0.01, 0.01, 0.98) produced

Fig 10. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image slice 51 from the second stroke patient.

doi:10.1371/journal.pone.0132952.g010

Fractional Calculus in Medical Imaging

PLOS ONE | DOI:10.1371/journal.pone.0132952 July 17, 2015 19 / 35



the largest MADC. Fig 16 shows the comparison of texture details between an original frac-
tional anisotropy weighted orientation map and its fractional differential using YiFeiPU-2,
FCD-1 and VOFCD using weights (0.25, 0.74.0.01). Table 4 provides the comparison of SNR
for a region of interest of a fractional anisotropy weighted colour orientation map between
VOFCD using (0.25, 0.74.0.01) and YiFeiPU-2 and FCD-1 with v = 0.5. We can conclude from
Table 4 that VOFCD has the largest SNR in comparison to the other fractional order differen-
tial methods. The value of this measure is consistent with the VOFCD image shown in Fig 16,
wherein features appear to be smoother than in the other images.

Fig 11. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for an original fractional anisotropy weighted orientation map from a
patient diagnosed with Parkinson’s disease prior to surgery.

doi:10.1371/journal.pone.0132952.g011
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In a similar manner to the first set of weights, Figs 17–21 and Table 5 show the results using
weights (0.01, 0.01, 0.98). With this choice of weights, the SNR is reduced however MADC
increases. This finding is consistent with a likely increase in image contrast. Hence, the choice
of weights can be used to influence or trade-off SNR against contrast. It is unlikely that a fixed
choice of weight can be applied to any image, since images not only vary in modality but also
have different types of textures and contrast within them.

Fig 12. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for an original fractional anisotropy weighted orientation map from a
patient diagnosed with Parkinson’s disease prior to surgery.

doi:10.1371/journal.pone.0132952.g012
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Quantitative Analysis
Measures of Ent, STD and MADC were used for the quantitative analysis. Fig 15 provides the
comparison of this analysis between the original image slices of first stroke patient and the frac-
tional differential with mask 5 × 5 for VOFCD using weights (0.45, 0.01, 0.54), YiFeiPU-2 and
FCD-1 with v = 0.5. It can be seen from Fig 15 that VOFCD has larger Ent values than the
other fractional differential methods, and together with Fig 2 we can see that VOFCD can effec-
tively enhance the image quality. The results presented in Fig 15 allow us to conclude that

Fig 13. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for an original fractional anisotropy weighted orientation map from a
patient diagnosed with Parkinson’s disease prior to surgery.

doi:10.1371/journal.pone.0132952.g013
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using VOFCD, the values of STD are larger than the other fractional differential methods. The
increase in STD is due to increased signal intensities across the entire image. Furthermore,
VOFCD has a smaller value of MADC than the other fractional differential methods, which
implies a reduction in noise in VOFCD reconstructed images.

Based on a human brain image from a patient diagnosed with Parkinson’s disease prior to
surgery, Table 6 provides a comparison of the relevant quantitative analysis for a region of
interest of a fractional anisotropy weighted colour orientation map between VOFCD using
weights (0.25, 0.74.0.01) and YiFeiPU-2 and FCD-1 with v = 0.5. We conclude from Table 6
that VOFCD has the largest Ent value, and smallest STD and MADC values in comparison to
the other fractional order differential methods. Again, the values of these measures are consis-
tent with the VOFCD image shown in Fig 16, wherein features appear to be smoother than in
the other images.

In a similar manner to the first set of weights, Fig 20 and Table 7 show the results using
weights (0.01, 0.01, 0.98).

Fig 14. Comparison of texture details between original image slices 40, 44, 45, and 46 of first stroke patient and their fractional differential using
VOFCDwith a 5 × 5 mask using weights (0.45, 0.01, 0.54). (a) Original image slice 40 with histogram, (b) image slice 40 using VOFCDwith histogram, (c)
original image slice 44 with histogram, (d) image slice 44 using VOFCDwith histogram, (e) original image slice 45 with histogram, (f) image slice 45 using
VOFCDwith histogram, (g) original image slice 46 with histogram, (h) image slice 46 using VOFCD with histogram.

doi:10.1371/journal.pone.0132952.g014
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We have established that the use of the fractional differential not only nonlinearly preserves
the contour features in smooth areas, but also maintains a high frequency edge feature in areas
where the grey scale has obvious changes. It also preserves high frequency characteristics of
texture detail in those areas where the grey scale does not change considerably. Furthermore,
VOFCD has a higher SNR than the other fractional differential mask operators, and our quan-
titative analysis verified that VOFCD leads to superior texture enhancement.

Fig 15. Comparison for SNR, Ent, STD andMADC between original image slices of first stroke patient and its fractional differential with mask 5 × 5
between VOFCD using weights (0.45, 0.01, 0.54) and YiFeiPU-2 and FCD-1 with v = 0.5.

doi:10.1371/journal.pone.0132952.g015
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Fig 16. Comparison of texture details between an original fractional anisotropy weighted orientation map and its fractional differential using
YiFeiPU-2, FCD-1 and VOFCD and (0.25, 0.74.0.01) for the weights. (a) Original image, (b) 0.5–order YiFeiPU-2 with mask 5 × 5, (c) 0.5–order FCD-1 with
mask 5 × 5, (d) VOFCD with mask 5 × 5.

doi:10.1371/journal.pone.0132952.g016

Table 4. Comparison of SNR of region of interest of fractional anisotropy weighted orientationmap in
colour between VOFCD using weights (0.25, 0.74.0.01) and YiFeiPU-2 and FCD-1 with v = 0.5 and 5 × 5
mask.

Operators for comparison SNR

YiFeiPU-2 0.3318

FCD-1 0.3167

VOFCD 0.5704

doi:10.1371/journal.pone.0132952.t004
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Using our method it is possible to achieve different effects based on the choice of the weights
used in the reconstruction (i.e.k1, k2 and k3). For example, we showed that SNR can be maxi-
mised through appropriate choices of the weights. Similarly, we found weights that maximised
MADC. Therefore, the choices of the weights can be optimised for the application. Nonethe-
less, it is difficult to establish a set of weights that can be applied robustly across all applications,
since particular applications may rely on suppression of noise (i.e. SNR improvements) and
others on differentiation of structures within images (i.e. MADC improvements).

Conclusion
For grey scale and colour image enhancement, we derived an improved fractional differential
algorithm, VOFCD, based on the second order Riesz fractional differential operator using a
Lagrange 3–point interpolation formula. We estimated the fractal dimension of a local region

Fig 17. Comparison of texture details between original image slice 35 from the first stroke patient and its fractional differential using YiFeiPU-2,
FCD-1 and VOFCD and (0.01, 0.01, 0.98) for the weights. (a) Original image slice 35, (b) 0.5–order YiFeiPU-2 with mask 5 × 5, (c) 0.5–order FCD-1 with
mask 5 × 5, (d) VOFCD with mask 5 × 5.

doi:10.1371/journal.pone.0132952.g017
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instead of using fixed fractional order differentiation. The experiments showed that the use of
VOFCD results in higher SNR than the existing methods of YiFeiPU-2 and FCD-1, which
implies superior texture enhancement of medical images. In addition, VOFCD produces quali-
tatively better results than YiFeiPU-2 and FCD-1 with variable fractional order and same mask
dimensions. A quantitative analysis was conducted to verify that VOFCD produces superior
texture enhancement in comparison to the other methods considered. This may be helpful in
clinical diagnosis and monitoring, and as future work, further analysis of this data will be car-
ried out in conjunction with medical specialists. The optimal choice of reasonable parameters
to obtain the variable fractional differential order remains challenging. In future research, we
plan to perform an evaluation of how the weighted parameters and regularisation parameters
affect the performance of the variable fractional differential order algorithm.

Supporting Information
S1 Fig. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image
slice 34 from the first stroke patient.
(EPS)

S2 Fig. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image
slice 34 from the first stroke patient.
(EPS)

Fig 18. Comparison of texture details in the region of interest between original image slice 35 from the
first stroke patient and its fractional differential using YiFeiPU-2, FCD-1 and VOFCD and (0.01, 0.01,
0.98) for the weights. (a) Original full image slice 35, (b) original region of interest, (c) 0.5–order YiFeiPU-2
with mask 5 × 5, (d) 0.5–order FCD-1 with mask 5 × 5, (e) VOFCDwith mask 5 × 5.

doi:10.1371/journal.pone.0132952.g018

Fractional Calculus in Medical Imaging

PLOS ONE | DOI:10.1371/journal.pone.0132952 July 17, 2015 27 / 35

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132952.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132952.s002


S3 Fig. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image
slice 34 from the first stroke patient.
(EPS)

S4 Fig. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image
slice 36 from the first stroke patient.
(EPS)

S5 Fig. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image
slice 36 from the first stroke patient.
(EPS)

Fig 19. Comparison of texture details between original image slices 40, 44, 45, and 46 of first stroke patient and their fractional differential using
VOFCDwith a 5 × 5 mask using weights (0.01, 0.01, 0.98). (a) Original image slice 40 with histogram, (b) image slice 40 using VOFCDwith histogram, (c)
original image slice 44 with histogram, (d) image slice 44 using VOFCDwith histogram, (e) original image slice 45 with histogram, (f) image slice 45 using
VOFCDwith histogram, (g) original image slice 46 with histogram, (h) image slice 46 using VOFCD with histogram.

doi:10.1371/journal.pone.0132952.g019
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S6 Fig. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image
slice 36 from the first stroke patient.
(EPS)

S7 Fig. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image
slice 40 from the first stroke patient.
(EPS)

S8 Fig. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image
slice 40 from the first stroke patient.
(EPS)

Fig 20. Comparison for SNR, Ent, STD andMADC between original image slices of first stroke patient and its fractional differential with mask 5 × 5
between VOFCD using weights (0.01, 0.01, 0.98) and YiFeiPU-2 and FCD-1 with v = 0.5.

doi:10.1371/journal.pone.0132952.g020
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Fig 21. Comparison of texture details between an original fractional anisotropy weighted orientation map and its fractional differential using
YiFeiPU-2, FCD-1 and VOFCD and (0.01, 0.01, 0.98) for the weights. (a) Original image, (b) 0.5–order YiFeiPU-2 with mask 5 × 5, (c) 0.5–order FCD-1 with
mask 5 × 5, (d) VOFCD with mask 5 × 5.

doi:10.1371/journal.pone.0132952.g021

Table 5. Comparison of SNR of region of interest of fractional anisotropy weighted orientationmap in
colour between VOFCD using weights (0.01, 0.01, 0.98) and YiFeiPU-2 and FCD-1 with v = 0.5 and 5 × 5
mask.

Operators for comparison SNR

YiFeiPU-2 0.3318

FCD-1 0.3167

VOFCD 0.3906

doi:10.1371/journal.pone.0132952.t005
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S9 Fig. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image
slice 40 from the first stroke patient.
(EPS)

S10 Fig. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image
slice 44 from the first stroke patient.
(EPS)

S11 Fig. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image
slice 44 from the first stroke patient.
(EPS)

S12 Fig. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image
slice 44 from the first stroke patient.
(EPS)

S13 Fig. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image
slice 45 from the first stroke patient.
(EPS)

S14 Fig. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image
slice 45 from the first stroke patient.
(EPS)

S15 Fig. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image
slice 45 from the first stroke patient.
(EPS)

Table 6. Comparison of quantitative analysis of region of interest of fractional anisotropy weighted
orientation map in colour between VOFCD using weights (0.25, 0.74.0.01) and YiFeiPU-2 and FCD-1
with v = 0.5. A 5 × 5 mask was used to generate the results.

Operators for comparison Ent STD MADC

YiFeiPU-2 6.2858 0.1536 0.1239

FCD-1 6.0358 0.1885 0.1617

VOFCD 6.1749 0.1612 0.1045

doi:10.1371/journal.pone.0132952.t006

Table 7. Comparison of quantitative analysis of region of interest of fractional anisotropy weighted
orientation map in colour between VOFCD using weights (0.01, 0.01, 0.98) and YiFeiPU-2 and FCD-1
with v = 0.5. A 5 × 5 mask was used to generate the results.

Operators for comparison Ent STD MADC

YiFeiPU-2 6.2858 0.1536 0.1239

FCD-1 6.0358 0.1885 0.1617

VOFCD 6.3168 0.1696 0.1095

doi:10.1371/journal.pone.0132952.t007
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S16 Fig. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image
slice 46 from the first stroke patient.
(EPS)

S17 Fig. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image
slice 46 from the first stroke patient.
(EPS)

S18 Fig. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image
slice 46 from the first stroke patient.
(EPS)

S19 Fig. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image
slice 44 from the second stroke patient.
(EPS)

S20 Fig. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image
slice 44 from the second stroke patient.
(EPS)

S21 Fig. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image
slice 44 from the second stroke patient.
(EPS)

S22 Fig. Convergence curves for SNR, Ent, STD and MADC using a 3 × 3 mask for image
slice 60 from the second stroke patient.
(EPS)

S23 Fig. Convergence curves for SNR, Ent, STD and MADC using a 5 × 5 mask for image
slice 60 from the second stroke patient.
(EPS)

S24 Fig. Convergence curves for SNR, Ent, STD and MADC using a 7 × 7 mask for image
slice 60 from the second stroke patient.
(EPS)

S25 Fig. Comparison for SNR, Ent, STD and MADC between original image slices of first
stroke patient and its fractional differential with mask 5 × 5 between VOFCD using weights
(0.45, 0.01, 0.54) and YiFeiPU-2 and FCD-1 with v = 0.1.
(EPS)

S26 Fig. Comparison for SNR, Ent, STD and MADC between original image slices of first
stroke patient and its fractional differential with mask 5 × 5 between VOFCD using weights
(0.45, 0.01, 0.54) and YiFeiPU-2 and FCD-1 with v = 0.3.
(EPS)

S27 Fig. Comparison for SNR, Ent, STD and MADC between original image slices of first
stroke patient and its fractional differential with mask 5 × 5 between VOFCD using weights
(0.45, 0.01, 0.54) and YiFeiPU-2 and FCD-1 with v = 0.7.
(EPS)

S28 Fig. Comparison for SNR, Ent, STD and MADC between original image slices of first
stroke patient and its fractional differential with mask 5 × 5 between VOFCD using weights
(0.45, 0.01, 0.54) and YiFeiPU-2 and FCD-1 with v = 0.9.
(EPS)
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S29 Fig. Comparison for SNR, Ent, STD and MADC between original image slices of first
stroke patient and its fractional differential with mask 5 × 5 between VOFCD using weights
(0.01, 0.01, 0.98) and YiFeiPU-2 and FCD-1 with v = 0.1.
(EPS)

S30 Fig. Comparison for SNR, Ent, STD and MADC between original image slices of first
stroke patient and its fractional differential with mask 5 × 5 between VOFCD using weights
(0.01, 0.01, 0.98) and YiFeiPU-2 and FCD-1 with v = 0.3.
(EPS)

S31 Fig. Comparison for SNR, Ent, STD and MADC between original image slices of first
stroke patient and its fractional differential with mask 5 × 5 between VOFCD using weights
(0.01, 0.01, 0.98) and YiFeiPU-2 and FCD-1 with v = 0.7.
(EPS)

S32 Fig. Comparison for SNR, Ent, STD and MADC between original image slices of first
stroke patient and its fractional differential with mask 5 × 5 between VOFCD using weights
(0.01, 0.01, 0.98) and YiFeiPU-2 and FCD-1 with v = 0.9.
(EPS)

S33 Fig. Comparison of texture details between original image slice 51 from the second
stroke patient and its fractional differential using YiFeiPU-2, FCD-1 and VOFCD and
(0.35, 0.06, 0.59) for the weights. (a) Original image slice 51, (b) 0.5–order YiFeiPU-2 with
mask 5 × 5, (c) 0.5–order FCD-1 with mask 5 × 5, (d) VOFCD with mask 5 × 5.
(EPS)

S34 Fig. Comparison of textures in the region of interest between original image slice 51
from the second stroke patient and its fractional differential using YiFeiPU-2, FCD-1 and
VOFCD and (0.35, 0.06, 0.59) for the weights. (a) Original full image slice 51, (b) original
region of interest, (c) 0.5–order YiFeiPU-2 with mask 5 × 5, (d)0.5–order FCD-1 with mask
5 × 5, (e) VOFCD with mask 5 × 5.
(EPS)

S35 Fig. Comparison of texture details between original image slice 51 from the second
stroke patient and its fractional differential using YiFeiPU-2, FCD-1 and VOFCD and
(0.01, 0.01, 0.98) for the weights. (a) Original image slice 51, (b) 0.5–order YiFeiPU-2 with
mask 5 × 5, (c) 0.5–order FCD-1 with mask 5 × 5, (d) VOFCD with mask 5 × 5.
(EPS)

S36 Fig. Comparison of textures in the region of interest between original image slice 51
from the second stroke patient and its fractional differential using YiFeiPU-2, FCD-1 and
VOFCD and (0.01, 0.01, 0.98) for the weights. (a) Original full image slice 51, (b) original
region of interest, (c) 0.5–order YiFeiPU-2 with mask 5 × 5, (d) 0.5–order FCD-1 with mask
5 × 5, (e) VOFCD with mask 5 × 5.
(EPS)
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