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Abstract: For micro-electromechanical system (MEMS) resonators, once the devices are fabricated
and packaged, their intrinsic quality factors (Q) will be fixed and cannot be changed, which seriously
limits the further improvement of the resonator’s performance. In this paper, parametric excitation
is applied in a push-pull driven disk resonator gyroscope (DRG) to improve its sensitivity by
an electrical pump, causing an arbitrary increase of the “effective Q”. However, due to the differential
characteristics of the push-pull driving method, the traditional parametric excitation method is
not applicable. As a result, two novel methods are proposed and experimentally carried out to
achieve parametric excitation in the push-pull driven DRGs, resulting in a maximum “effective
Q” of 2.24 × 106 in the experiment, about a 7.6 times improvement over the intrinsic Q. Besides,
subharmonic excitation is also theoretically analyzed and experimentally characterized. The stability
boundary of parametric excitation, defined by a threshold voltage, is theoretically predicted and
verified by related experiments. It is demonstrated that, when keeping the gyroscope’s vibration at
a constant amplitude, the fundamental frequency driving voltage will decrease with the increasing
of the parametric voltage and will drop to zero at its threshold value. In this case, the gyroscope
operates in a generalized parametric resonance condition, which is called subharmonic excitation.
The novel parametric and subharmonic excitation theories displayed in this paper are proven to be
efficient and tunable dynamical methods with great potential for adjusting the quality factor flexibly,
which can be used to further enhance the resonator’s performance.

Keywords: parametric excitation/amplification; quality factor; parametric resonance; subharmonic
excitation; push-pull driving method; MEMS disk resonator gyroscope

1. Introduction

The disk resonator gyroscope (DRG) is a kind of vibratory gyroscope based on the
Coriolis effect, attracting significant attention from MEMS researchers in industry and
academia [1]. High precision angular rate measurement and great performance potential
make it an admirable inertial gyroscope. For this type of MEMS gyroscopes, its quality
factor (Q) is one of the most important properties, representing the energy dissipation rate
in one oscillation cycle.

There are various factors that lead to the energy dissipation in MEMS gyroscopes, such
as the air damping, the surface loss, the thermoelastic damping, and so on [2–4]. These
damping terms determine the limitation of the gyro’s intrinsic Q and have already been
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fixed during the processing. In this case, we consider pumping energy into the vibration
modes to enhance their “effective Q” and hence improve the device’s sensitivity [5–8].

Moreover, the nonlinearity of the MEMS gyroscopes becomes significant due to the
continuous size reduction, which has been deeply investigated in the recent past [9–13].
There are not only negative effects that must be suppressed, but also useful properties
that can be exploited in nonlinear MEMS resonators [10]. Most of the MEMS resonators
are operated in the linear regime to avoid hysteresis and additional noise associated with
nonlinearities, in which the double hysteresis behavior is caused by the electrostatic and
mechanical nonlinearities [11]. Besides, electrostatic nonlinear mode coupling is very
common in capacitive MEMS resonators [14]. Research in a high-order nonlinear MEMS
resonator demonstrates that the parametric noise can be suppressed and the frequency
stability can be improved when operated at two of its bifurcation points [11]. The dynamic
characteristics and bifurcation analysis were investigated in a 4-DOF micro gyroscope [12],
and the influence of nonlinearity on the phase characteristics was analyzed [13].

Parametric excitation is a technique to enhance the “effective Q” by pumping energy
into the oscillation system [15], which is usually realized by modulating the device’s
stiffness with the double resonance frequency signals [16]. In this condition, the gyroscope
can be modeled as a driven damped harmonic oscillator with a time-dependent dynamic
stiffness, whose motion can be described by the Mathieu–Hill equation [17], as shown in
Equation (1).

m
..
q +

mωn

Q
.
q + [k0 + ∆k sin(2ωdt + φ)]q = F(t) (1)

Here, ωn is the natural frequency, ωd is the driving frequency, k0 is the initial stiffness,
and ∆k is the stiffness modulation. Experiments in previous studies have proven that the
“effective Q” of the gyroscope can be tuned by parametric excitation signals [16,18–25],
indicating that the parametric pump can not only enhance the “effective Q factor”, but also
suppress it. Because the effect of parametric excitation is phase-sensitive, the parametric
pump will amplify the oscillation at a particular phase, but squeeze it at the inverter [26,27].

Generally, it is difficult to detect the signal of angular velocity due to the small
resonant mass and weak Coriolis force, which lead to the decrease of the gyro’s sensitivity.
Parametric excitation in sense mode provides an approach to amplify the Coriolis response
directly, making an improvement in the scale factor. Besides, this amplification occurs
before the addition of the noise of the first electronic stage, which is a particular advantage
for noise squeezing, cause that electronic noise is the major noise contributor for these
kinds of MEMS sensors [28]. In this case, the output of the gyro is increased, while the
circuit noise maintains the same level, which indicates the particular advantage of the
improvement of the signal-to-noise ratio (SNR). The open-loop parametric amplification
of sense mode was demonstrated in an encapsulated DRG, resulting in an 8.8 times scale
factor improvement [18]; and the SNR improved by a factor of 9.5 [20].

In push-pull circuits, the drive signal is usually applied to one pair of electrodes,
and its reverse signal is simultaneously applied to the other pair of differential electrodes.
Under these circumstances, although the excitation efficiency can be sufficiently improved,
the parametric amplification becomes invalid when the parametric pumps are applied
to the same differential electrodes in the same way. This is because the working terms
for parametric amplification are eliminated due to the differential characteristics of the
push-pull circuits. Therefore, although these ring gyroscopes have multiple symmetrically
distributed electrodes, the parametric excitation pump was coincidentally applied on
a single electrode in previous studies [16,18–20]. In this case, the amplification efficiency is
limited and unsatisfactory.

Moreover, it has been noted that there is a stability boundary in the parametric
excitation process, which determines the stability and the maximum efficiency of parametric
amplification [16,19,20]. When the parametric excitation voltage Vp is larger than the
threshold Vth, sustained oscillations, called the parametric resonance, will occur [5,16].
Specifically, when the driving force of the fundamental frequency withdraws while the
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double frequency parametric excitation signal remains at the threshold level (or even larger),
the gyroscope will keep vibrating. In this case, the gyroscope operates in a generalized
parametric resonance condition, which is called subharmonic excitation.

In this paper, parametric excitation and subharmonic excitation in the disk resonator
gyroscopes are theoretically analyzed by the experiment results. Firstly, the structure and
dynamic model of the DRG are introduced in Section 2. Then, the analysis of the basic
laws of parametric excitation in push-pull driven circuits is carried out in Section 3. In this
part, to take advantage of the push-pull driving method and parametric amplification,
two modified methods are presented. The threshold voltage for the stability boundary of
parametric excitation and subharmonic excitation is theoretically analyzed in Section 4.
Furthermore, Section 5 presents the related experimental results of the DRG’s parametric
amplification and subharmonic excitation. Finally, the basic principles for parametric
excitation and subharmonic excitation in disk resonator gyroscopes are concluded in
Section 6.

2. The Device Description and Dynamic Model of the DRG

The disk resonator gyroscope is one kind of typical axisymmetric gyroscope operating
in two elliptical modes, which are drive mode and sense mode, respectively. In this paper,
a honeycomb-like disk resonator gyroscope was chosen for this study, and it works in the
n = 2 elliptical mode as shown in Figure 1a. This kind of DRG inherits many advantages
from the traditional DRG and owns unique characteristics due to its topology structure,
such as higher immunity to fabrication errors, better resonant mode consistency, and
better inner electrode arrangement [29]. Ideally, these two modes have an identical natural
frequency with the same mode shapes, which is convenient to achieve mode matching [1].
When the external angular velocity acts on the gyroscope, the sense mode of the gyroscope
in the orthogonal direction will be excited and sense the changing of the angular velocity.
The gyroscope can be equivalently modeled as a two-degree-of-freedom system, which
can be represented by a spring-mass-damper in each orthogonal direction [30] as shown in
Figure 1b. The simplified dynamic equation in the ideal state can be described as:

m
..
x + c1

.
x + k1x = F(t)

m
..
y + c2

.
y + k2y = −2nAgmΩ

.
x

(2)

where m, c, and k are the effective vibration mass, damping coefficient, and stiffness of each
mode, respectively; Ag is the angular gain, and for n = 2 degenerate mode, Ag ≈ 0.37; and
Ω is the outside angular rate.
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working modes; (b) the two DOF equivalent model of the DRG.
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Generally, for the ideal model of the DRG (c1 = c2 and k1 = k2), the mechanical
sensitivity can be obtained by solving Equation (2):

Smech =
y
Ω

=
4AgQ

ωn
|x| = 2Agτ|x| (3)

where |x| is the oscillation amplitude of drive mode, and τ is the decaying time constant
that satisfies τ = 2Q/ωn.

3. Parametric Excitation in the Push-Pull Driven DRG
3.1. Parametric Excitation by a Single Electrode

Compared with the traditional resonant excitation methods where generally only
fundamental frequency excitation signals are applied to the system, fundamental frequency
driving signals are applied to the gyroscope associated with pump signals simultaneously.
The frequency of the pump signal ωp satisfies the condition of ωp ≈ 2ωn/l, where ωn is the
natural frequency of the system, and l is a positive integer [16,17]. The first order of l = 1
is considered in this paper. In the case of parametric excitation, the gyroscope’s response
can be amplified by a small parametric excitation pump, which appears as a dynamical
parameter in the gyroscope’s governing equation [11].

In the previous study where parametric excitation was applied to a ring gyroscope,
parametric excitation signals were commonly applied to a single electrode, as shown in
Figure 2. In this case, the electrostatic driving force can be calculated as Equation (4) after
the Taylor expansion:

Felec =
εrε0 Ae f f

2(d0−x)2

[
Vdc + Vd sin ωdt + Vp sin

(
ωpt + φ

)]2
=

∞
∑

j=0
Kj(t)xj (4)

where:
Kj(t) = εrε0 Ae f f

j + 1

2dj+2
0

[
Vdc + Vd sin ωdt + Vp sin

(
ωpt + φ

)]2 (5)

where εr is the relative permittivity, ε0 is the vacuum dielectric constant, and d0 is the initial
capacitive clearance. In this case, a DC voltage bias Vdc is applied to the device through
the center anchor, and a sinusoidal voltage Vd(t) = Vdsinωdt superposed with a pump
signal Vp(t) = Vpsin(ωpt + φ) is applied to the drive electrode, where ωp = 2ωd. Aeff is the
equivalent capacitance area between the drive electrodes and the resonant structure.
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Figure 2. The parametric excitation signals applied to a single electrode. (a) The simplified ring
structure and the diagram for parametric excitation; (b) the equivalent dynamic model of the DRG
when actuated by a single electrode.
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Generally, the displacement of the ring is limited to much smaller than the gap to
avoid the pull-in effect. Moreover, the terms of higher orders (j ≥ 2) in Equation (4) can
be neglected in this condition, and the expression of the electrostatic driving force can be
written as:

Felec ≈ F0(t) + K(t)x (6)

where:

F0(t) =
εrε0 Ae f f

d2
0

VdcVd sin ωdt

K(t) =
εrε0 Ae f f

2d3
0

[
(2V2

dc + V2
d + V2

p ) + 4VdcVp sin(2ωdt + φ) + 2VdVp sin ωdt sin(2ωdt + φ)−V2
d cos 2ωdt

] (7)

Considering that generally 4VdcVp > 10,000V2
d in real experiment settings and the

component of sinωdtsin(ωpt + φ) does not work for parametric excitation either [11], the
expression of K(t) can be further simplified as:

K(t) ≈
εrε0 Ae f f

2d2
0

[
(2V2

dc + V2
d + V2

p ) + 4VdcVp sin(2ωdt + φ)
]

(8)

Substituting (6)–(8) into the dynamic Equation (2) of the DRG, we can obtain the
Mathieu–Hill equation:

..
x +

ω1

Q1

.
x +

[
ω2

1 − H1 − H2 sin(2ωdt + φ)
]

x = H3 sin ωdt (9)

where:
β1 =

εrε0 Ae f f

2md3
0

, β2 =
εrε0 Ae f f

md2
0

H1 = (2V2
dc + V2

d + V2
p )β1

H2 = 4VdcVpβ1

H3 = VdcVdβ2

(10)

Here, ω1 is the natural frequency and Q1 is the quality factor of the drive mode,
respectively. Moreover, we noticed that H1 is a constant term related to the square of the
DC voltages, and it appears as a coefficient of x in the dynamic equation, which is directly
related to the stiffness of the system. In this case, the natural frequency of the resonator
will go down due to the applied voltages. Based on the harmonic balance method [17,31],
considering that the motion of drive mode is approximately periodic, the steady-state
solution can be written as a Fourier series:

x(t) =
∞

∑
k=1

(ak cos kωdt + bk sin kωdt) (11)

Substituting (11) into (9) and equating the coefficients of coskωt and sinkωt on the two
sides of “=” respectively, two sets of inhomogeneous equations can be obtained:

A1a+B1b=c1
A2a+B2b=c2

(12)
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where:

A1 =



−ζ1ωd 0 −H2 cos φ
2

0 −2ζ1ωd 0
. . .

H2 cos φ
2 0 −3ζ1ωd

. . . −H2 cos φ
2

. . . . . . . . . 0
H2 cos φ

2 0 −kζ1ωd



B1 =



ω2
1 −ω2

d 0 H2 sin φ
2

0 ω2
1 − 4ω2

d 0
. . .

H2 sin φ
2 0 ω2

1 − 9ω2
d

. . . H2 sin φ
2

. . . . . . . . . 0
H2 sin φ

2 0 ω2
1 − (kωd)

2



A2 =



ω2
1 −ω2

d 0 H2 sin φ
2

0 ω2
1 − 4ω2

d 0
. . .

H2 sin φ
2 0 ω2

1 − 9ω2
d

. . . H2 sin φ
2

. . . . . . . . . 0
H2 sin φ

2 0 ω2
1 − (kωd)

2



B2 =



ζ1ωd 0 H2 cos φ
2

0 2ζ1ωd 0
. . .

−H2 cos φ
2 0 3ζ1ωd

. . . H2 cos φ
2

. . . . . . . . . 0
−H2 cos φ

2 0 kζ1ωd


a =

[
a1 a2 · · · ak

]T

b =
[

b1 b2 · · · bk
]T

c1 =
[

H3 0 0 · · · 0
]T

c2 =
[

0 · · · 0 0
]T

ζ1 = ω1ωd
Q1

ω2
1 = ω2

1 − H1

ω̂2
1 = ω2

1 −ω2
d

(13)

Here, ω1 represents the modulated frequency of the DRG, which has been decreased by
the applied voltages, and ω̂1 represents the mistuning between the driving frequency ωd
and the DRG’s modulated frequency ω1 [16]. Neglecting high-order harmonic signals, the
coefficients of (11) can be calculated as:

a1 =
−4ζ1 + 2H2 cos φ

4ω̂4
1 + 4ζ2

1 − H2
2

, b1 =
4ω̂2

1 − 2H2 sin φ

4ω̂4
1 + 4ζ2

1 − H2
2

(14)

As a result, the steady-state solution of Equation (9) can be expressed as:

x(t) = A1 sin(ωdt + ψ1) (15)
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where:
A1 =

2H3
√

4ω̂4
1+4ζ2

1+H2
2−4H2(ω̂

2
1 sin φ+ζ1 cos φ)

4ω̂4
1+4ζ2

1−H2
2

ψ1 = tan−1
(
− 2ζ1−H2 cos φ

2ω̂2
1−H2 sin φ

) (16)

According to Equation (16), the parametrically amplified amplitude A1 is a function
of the frequency mistuning ω̂1, the parametric voltage Vp, and the phase advance φ.
The maximum amplitude of A1 appears at φ = ±π, while the amplitude will be suppressed
when φ = 0, indicating that parametric excitation is phase-sensitive. As a result, the
“effective Q” can be tuned by modifying the phase φ.

It is also apparent from Equation (16) that the following condition has to be satisfied
for a stable oscillation of the DRG when parametrically excited:

4ω̂4
1 + 4ζ2

1 − H2
2 > 0 (17)

When it approaches zero, the oscillation amplitude will increase without bound in
open-loop driving mode. What is more, the stability boundary of the system is also
determined by Equation (16), and it will be discussed in detail in Section 4.

To evaluate the magnification of the parametric amplification, the parametric amplifi-
cation gain factor G1 is defined as:

G1 =
A1|Vp 6=0

A1|Vp=0
=

2ζ1

2ζ1 − H2
(18)

It represents the ratio of the amplitude with and without parametric excitation under
the condition of the maximum oscillation amplitude (ω̂2

1 = 0 and φ = ±π), which is
a function of parametric voltage Vp. Substituting (10) and (13) into (18), it can be obtained
that there is a linear relationship between the reciprocal of G1 and the parametric excitation
voltage Vp:

1
G1

= 1− H2

2ζ1
= 1−

(
2β1VdcQ1

ω1ωd

)
Vp (19)

3.2. Parametric Excitation in Traditional Push-Pull Driving

To reduce the asymmetry errors and to improve the driving efficiency, the excitation
signals are typically applied to two pairs of differential electrodes based on the push-pull
driving method, as shown in Figure 3. The parametric excitation signals and driving
signals are superimposed together, and then, their in-phase signals and inverted signals are
simultaneously applied to the differential electrodes. In this case, the effective capacitive
area doubles, and the electrostatic driving force is calculated as (20), where A′eff= 2Aeff .

F′elec =
εrε0 A′e f f

2(d0 − x)2

[
Vdc + Vd sin ωdt + Vp sin

(
ωpt + φ

)]2 − εrε0 A′e f f

2(d0 + x)2

[
Vdc −Vd sin ωdt−Vp sin

(
ωpt + φ

)]2 (20)Micromachines 2021, 12, x 8 of 19 
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Similarly, after the Taylor expansion and neglecting the high-order terms, the driving
force can be written as:

F′elec ≈ F′0(t) + K′(t)x (21)

where:
F′0(t) =

εrε0 A′e f f

d2
0

2VdcVd sin ωdt

K′(t) =
εrε0 A′e f f

d3
0

[
(2V2

dc + V2
d + V2

p )+4VdVp sin ωdt sin(2ωdt + φ)
] (22)

It is obvious that there are no terms that can work for parametric excitation in the
expression of the driving force, as the effective terms of double frequency are symmet-
rically eliminated during the differential excitation process. In other words, parametric
excitation has failed in traditional push-pull driven gyroscopes. Therefore, to combine the
advantages of the push-pull driving method and parametric excitation, two novel methods
are proposed to achieve parametric excitation in push-pull driven gyroscopes.

3.2.1. Triple-Frequency Parametric Excitation in Push-Pull Driving

The first method is the triple-frequency parametric excitation method, where the
frequency of the parametric excitation signal is three times the resonant frequency instead
of the traditional double one. The schematic diagram of this method is consistent with
parametric excitation in the traditional push-pull driving method, as shown in Figure 3,
only with the changing of the pump frequency from double frequency to triple frequency.
Under these circumstances, ωp = 3ωd, and only in this frequency can a term of double
frequency be generated in K′(t) as shown in Equation (23), which can be used to achieve
parametric excitation.

K′(t) =
εrε0 A′e f f

d3
0

[
(2V2

dc + V2
d + V2

p )+4VdVp sin ωdt sin(3ωdt + φ)
]

=
εrε0 A′e f f

d3
0

[
(2V2

dc + V2
d + V2

p )− 2VdVp cos(4ωdt + φ) + 2VdVp cos(2ωdt + φ)
] (23)

Neglecting the term of 4ωd that does not work for parametric excitation and letting
Φ = φ + π/2, Equation (23) can be described by:

K′(t) =
εrε0 A′e f f

d3
0

[
(2V2

dc + V2
d + V2

p ) + 2VdVp sin(2ωdt + Φ)
]

(24)

In this case, the reciprocal of the parametric gain is calculated as:

1
G′1

= 1−
(

4β1Q1

ω1ωd

)
VdVp (25)

In this case, the term sinωdtsin(ωpt + φ) will produce a double frequency component
when ωp = 3ωd, while this term did not operate previously in the traditional parametric
excitation condition where ωp = 2ωd. Specifically, this term will produce the effective
stiffness modulation term of parametric excitation only when ωp = 3ωd, indicating that
other frequencies such as 2, 4, and 5 times have no parametric amplification effect. With
this novel method, parametric excitation and the push-pull driven method can be applied
at the same time without changing the circuit driving system, effectively improving the
driven efficiency and sensitivity.

Comparing Equation (19), as for this method, it is obvious that the efficiency of the
amplification depends on the magnitude of the driving voltage Vd, while it is generally
much smaller than the DC bias Vdc. Although the efficiency of the amplification is smaller
than that in the single electrode driven method, this method is the first to successfully
combine parametric excitation with the push-pull driven method, which realizes the joint
improvement of the driving efficiency and amplification gain. This method provides a new
way to achieve the parametric amplification by using a triple frequency pump signal in
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the push-pull driven method, which reveals a significant potential to reduce the parasitic
signals in capacitive sensing and improve the gyroscope’s sensitivity.

3.2.2. The Non-Differential Parametric Excitation in Push-Pull Driving

The second method is the non-differential parametric excitation that applies the same
double frequency signals to the driving electrodes without the differential transformation,
as shown in Figure 4. As a result, the in-phase parametric excitation signals are applied on
the differential electrodes, which ensures that the effective parametric amplification signals
are not offset.
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In this case, the mixed excitation force can be described by:

F′′elec =
εrε0 A′e f f

2(d0−x)2

[
Vdc + Vd sin ωdt + Vp sin

(
ωpt + φ

)]2
−

εrε0 A′e f f

2(d0+x)2

[
Vdc −Vd sin ωdt + Vp sin

(
ωpt + φ

)]2
≈ F′′0 (t) + K′′ (t)x

(26)

where:
F′′0 (t) =

εrε0 A′e f f

d2
0

[
2VdcVd sin ωdt + VdVp cos(ωdt + φ)

]
K′′ (t) =

εrε0 A′e f f

d3
0

[
(2V2

dc + V2
d + V2

p )+4VdcVp sin(2ωdt + φ)
] (27)

In this case, the effect of parametric amplification depends on the DC bias voltage
Vdc, which is larger than the driving voltage Vd. Therefore, only a smaller parametric
excitation voltage is required to reach the same effect of amplification compared with
the triple frequency parametric excitation. The efficiency of the amplification improved
sufficiently. Considering that generally 2Vdc > 100Vp, the term VdVpcos(ωdt + φ) can be
neglected, and the gain factor of non-differential parametric amplification is expressed as:

1
G′′1

= 1−
(

8β1VdcQ1

ω1ωd

)
Vp (28)
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Compared with the traditional parametric excitation by a single electrode, the para-
metric gain factor of the non-differential excitation in the push-pull driven method im-
proved by:

K =
G′′1
G1

= 1 +
6β1

ζ1
VdcVp

− 8β1
(29)

As mentioned above, β1 is a coefficient related to the DRG’s geometric parameters,
and ζ1 is determined by the natural frequency and quality factor of the DRG. As shown
in Equation (29), the specific value of K, representing the enhancement of non-differential
parametric excitation, has a more significant effect when the parametric voltage Vp is held
at a higher level.

4. Subharmonic Resonance
4.1. The Analysis of the Threshold Voltage in Parametric Excitation

According to Equation (16), the sustained oscillation occurs when the vibration sys-
tem satisfies:

4ω̂4
1 + 4ζ2

1 − H2
2 = 0 (30)

Theoretically, when the above-mentioned equation is satisfied, the amplitude of the
gyroscope will become infinite, and it will no longer be a steady-state response. In this
case, the gyroscope operates in a parametric resonance condition, which determines the
stability boundary of the parametrically excited systems [16]. The threshold between the
steady-state and the unsteady-state can be obtained by solving Equation (32):

Vt =
ω1ωd

2β1Q1Vdc
(31)

When Vp = Vt, the gyroscope will sustain its vibrating even if the driving signal Vd(t)
is removed. Moreover, the oscillation amplitude will increase without bound theoretically
when Vp > Vt, but it will be limited by the pull-in effect when its amplitude reaches a certain
level in the real system. It is demonstrated that the “effective” Q-factor will grow infinitely
with the input of parametric energy.

4.2. The Analysis of Subharmonic Excitation

When the fundamental driving signals are removed while the double frequency
parametric excitation signals remain at the threshold voltage level (or even larger), the
gyroscope will enter a special parametric resonance condition called subharmonic excita-
tion. In general, the appearance of subharmonic excitation is caused by the gyroscope’s
nonlinearities, and the frequency multiplier of the harmonic excitation is consistent with
the order of the functioning nonlinearity. In this paper, the DRG’s subharmonic resonance
caused by the quadratic nonlinearity is analyzed.

Previous research demonstrated that electrostatic nonlinearity is the main nonlinearity
in disk MEMS gyroscopes, which is caused by electrostatic forces [32]. The nonlinear
dynamic model of the gyroscope is usually represented as:

m
..
x + c

.
x + (k0 + k1)x + k2x2 + k3x3 = F0 cos(Ωt) (32)

Here, k0 is the inherent mechanical elastic coefficient, while k1, k2, and k3 are the gyroscope’s
first-order, second-order, and third-order nonlinear elastic coefficient, respectively, which
can be expressed as: 

k1 =
2ε0εr AV2

dc
d3

0
, k2 =

3ε0εr AV2
dc

d4
0

k3 =
4ε0εr AV2

dc
d5

0
, F0 = 2ε0εr AVdcVd

d2
0

(33)

Traditional methods are not suitable for solving high-order nonlinear equations for
which the multi-scale method is applied to analyze this oscillation system. Firstly, we unify



Micromachines 2021, 12, 61 11 of 18

the dimensions of the items in Equation (32) by introducing a small parameter ε. Then, we
extend the traditional time scale of the system to multiple time scales, where T0 = t, T1 = εt.
Therefore, the differential Equation (32) can be rewritten as:

..
u + ω2

0u = −2εµ
.
u− εα2u2 − ε2α3u3 + f0 cos Ωt (34)

When the excitation signal’s frequency satisfies Ω = 2ω0 + εσ, where σ is the fre-
quency detuning, based on the perturbation method, the solution of Equation (34) can be
calculated as:

u = a exp(λεt) cos
(

1
2

Ωt± θ

)
+

f0

ω2
0 −Ω2 cos(Ωt) (35)

where:

λ = −µ±

√√√√√ α2
2 f 2

0

4ω2
0

(
ω2

0 −Ω2
)2 −

σ2

4
(36)

It is clear that the gyroscope’s response contains a steady-state term (double frequency
response) and a time-varying term (fundamental frequency response), whose evolutionary
principle is related to the value of λ. When λ is a complex number, the amplitude of
the fundamental frequency response is a continuous oscillation attenuation term; when
λ is a real number and λ < 0, it is an attenuation term without oscillation; when λ is
a real number and λ > 0, it is a rising term without oscillation. Generally, the resonant
frequency of the gyroscope is locked by the phase-locked loop, ensuring that the frequency
detuning is limited within a small range. As a result, λ can be guaranteed to be a real
number. According to Equation (34), the simulation results of the gyroscopes responses are
displayed in Figure 5.
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Figure 5. Simulation results of the disk MEMS gyroscope’s subharmonic responses when it has
quadratic nonlinearity.

Obviously, when λ < 0, the time-varying term will decrease quickly, and the final
expression of the response is an approximate double frequency signal; while when λ > 0,
the response is a mixing wave of the fundamental frequency and the double frequency
signal, whose amplitude will show an exponential increase with time as shown in Figure 5.

5. Experimental Results

To carry out parametric excitation experiments, a lock-in amplifier is used to generate
the excitation signals and tune the phase difference between the driving signal and the
parametric pump. The diagram of the closed-loop non-differential parametric excitation
experiment settings is demonstrated in Figure 6. The diagram for triple frequency paramet-
ric excitation is similar to Figure 6, except that its pump signals and driving signals pass
through the inverter at the same time.
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Figure 6. Schematic diagram of the closed-loop non-differential parametric amplification.

The key parameters of the DRG are shown in Table 1.

Table 1. Parameters of the DRG.

Parameter Value

Radius of the outermost ring r 4 mm ± 1 µm
Height of the ring h 150 µm ± 1 µm

Gap between ring and outer electrodes d0 12 µm ± 0.5 µm
Effective (modal) mass m 1.8 mg ± 0.1 mg

Frequency of drive mode f 1 4222.2 Hz
Frequency of sense mode f 2 4220.1 Hz

Quality factor of drive mode Q1 292,995
Quality factor of sense mode Q2 286,489

5.1. The Reduction of the Driving Voltage

In order to verify the methods proposed in Section 3.2, we keep the gyroscope vibrating
at a certain amplitude and compare the required magnitude of the driving voltage Vd
under different parametric excitation methods. For the same vibration amplitude and
parametric voltage Vp, the higher the efficiency of parameter amplification, the smaller the
driving voltage Vd should be required to be. The experimental results shown in Figure 7
demonstrate that both the triple-frequency method and the non-differential method are
effective for parametric amplification, and the non-differential method reduces the 1ω
driving voltage by a larger magnitude for the same value of the parametric voltage. For
example, eighty millivolts are required for a 50% reduction of driving voltage in Figure 7a
while more than 1600 mV are required in Figure 7b, which means the higher potential for
the non-differential parametric excitation method.
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5.2. The Stability Boundary and Threshold Voltage

In order to evaluate the parametric gain and to find the stability boundary experi-
mentally, different parametric pump voltages are applied on the driven electrodes while
keeping the fundamental frequency driving voltage at a constant level (10 mV). The gyro-
scope’s response amplitudes at different pump voltages are recorded and compared with
the theoretical results as shown in Figure 8.
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It is apparent that the vibration amplitude increases with the increment of the paramet-
ric voltage Vp, and the reciprocal of the parametric gain factor 1/G has an approximately
linear relationship with the parametric voltage Vp, which is consistent with the theory.
However, the parametric gain increases sharply especially when the parametric voltage
exceeds 90 mV. This is because the terms of higher orders (j ≥ 2) in Equation (4) play an
important role in the electrostatic driving force when the gyroscope is working on large
displacement, which causes the increment of the electrostatic driving force. Under these
circumstances, the steady-state vibration of the gyroscope is broken, and there is no longer
a linear relationship between the reciprocal of G1 and parametric excitation voltage Vp;
thus, the parametric gain factor will not satisfy Equation (28).

Furthermore, it can be obtained from Figure 8 that the threshold voltage is about
145 mV by linear extrapolation. When the amplitude of the pump voltage is equal to
or exceeds this threshold, the gyroscope will enter a parametric resonance state, and the
traditional steady-state amplification condition will be broken.

5.3. The Improvement of the “Effective Q”

In order to display a more intuitive picture of parametric amplification in the non-
differential excitation method, a frequency sweep was carried out, as shown in Figure 9.
The excitation signal can be expressed by V(t) = Vdc + Vdsinωdt + Vpsin2ωdt, where
Vdc = 6 V and Vd = 2.5 mV. As we can see from Figure 9, the oscillation amplitude is ever-
increasing with the increment of Vp. The amplitude reaches 573 mV when Vp = 140 mV,
while it is only 24.5 mV when not parametrically amplified, which improved by 23.4 times.

However, it is difficult to measure the Q factor directly from the frequency response,
and the ring-down technique is commonly used in our work for Q factor measurement [1].
As a result, to experimentally evaluate the effect of parametric amplification on the “effec-
tive Q”, the gyroscope’s attenuation curves at the different parametric pump voltages were
recorded, as shown in Figure 10. During these experiments, the gyroscope’s oscillation
amplitude was maintained at 500 mV, and then, the 1ω driving signal was remove, but the
parametric pump signal retained. The gyroscope’s oscillation attenuation with different
parametric excitation voltages from 0 to 140 mV is shown in Figure 10.
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It can be seen from Figure 10 that the “effective Q” increases with the increment of the
parametric voltage, and the equivalent decaying time is lengthened at the same time. It is
obvious that the mechanical sensitivity of the DRG is proportional to its intrinsic quality
factor, and it is an inherent attribute of the DRG that cannot be changed by the external
signals. However, the output of the DRG will increase with the improvement of “effective
Q”, which means the improvement of the total sensitivity. Moreover, it should be noted that
parametric excitation must be applied in the sense mode for the improvement of sensitivity.

Besides, we found that the gyroscope will keep vibrating all the time even though
the 1ω driving signal was removed as long as the parametric voltage reaches 145 mV
in the experiment, where the DRG enters the parametric resonance condition. In this
case, the gyroscope is vibrating under the sole operation of a double resonant frequency
signal without the driving energy of the fundamental frequency signal. As a result, this
special parametric excitation condition can be used to improve the gyroscope’s response,
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which reveals a great potential to enhance the sensing capabilities and eliminate crosstalk
signals [33].

5.4. The Subharmonic Resonance

In the case of subharmonic excitation, the time-varying term is affected by the am-
plitude of the excitation force as shown in Equation (36). As a result, different changes
in the gyroscope’s response under subharmonic excitation can be explored by changing
the amplitude of the excitation force. In these series of experiments, the subharmonic AC
voltage was set as 0.3 V and 0.7 V, corresponding to the cases of λ < 0 and λ > 0, respectively.

In the first case, the amplitude of the AC excitation signal is lower than the threshold,
resulting in the amplitude of the fundamental frequency response being an attenuation
term without oscillation, as shown in Figure 11a. In the initial stage of the gyroscope’s
response, the amplitude of the fundamental frequency response is strong, so the response
presents a typically mixed signal of the fundamental frequency and the double frequency
as shown in Figure 11b. With the passage of time, the fundamental frequency response
gradually becomes weaker as in Figure 11c, and the proportion of the double frequency
signal in the mixed-signal increases until it finally shows an approximate double frequency
response, as in Figure 11d.
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When it comes to the second case, the amplitude of the AC excitation signal is higher
than the threshold, resulting in the amplitude of the fundamental frequency response
being a rising term without oscillation, as shown in Figure 12a. Compared with the first
case, the gyroscope’s response displays an opposite rising trend. In the initial stage of
the gyroscope’s response, the fundamental frequency response and the double frequency
response are at a comparable level, as shown in Figure 12b. With the passage of time,
the fundamental frequency response gradually becomes stronger as in Figure 12c, and its
proportion in the mixed-signal increases until it finally shows an approximate fundamental
frequency response in Figure 12d.
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Obviously, due to the existence of the quadratic nonlinearity, when subharmonic
(double frequency) excitation signals are applied on electrodes, the gyroscope’s response
converts to a mixed signal of the fundamental frequency and double frequency. Compared
with the primary excitation, the subharmonic response proves to have an additional time-
varying response in addition to a steady-state response, indicating that it is a combination
of different signals and depends on the oscillation time. The evolution of the periodic
solution is closely related to the strength of subharmonic excitation signal, which also
determines the final manifestation of the gyroscope’s response.

6. Conclusions

The parametric and subharmonic excitations in a push-pull driven disk gyroscope are
analyzed in this paper. Due to the differential characteristics of push-pull driving method,
the traditional parametric excitation method is no longer applicable. Therefore, two novel
methods are proposed to take full advantage of both push-pull driving and parametric
excitation in this paper.

The first method is to use the triple resonant frequency signal as the parametric pump
instead of the traditional double one. In this case, despite the differential effect of the
push-pull driven method, the term for double frequency dynamic stiffness modulation
generated by the parametric pump signal will still exist and amplify the gyroscope’s
response. This method provides an approach to achieve parametric amplification that has
never been carried out before.

The second method is to apply the non-differential parametric pump signals to the
push-pull driving circuit, making a 7.6 times improvement of the “effective Q”. In this
method, the pump signals applied to the differential electrodes will not be eliminated,
leaving an effective term for double frequency stiffness modulation. The efficiency of
this method has improved greatly because the effective term is much bigger than the first
method. It is worth noting that whether these two methods are used for amplification or
suppression is determined by the phase difference between the fundamental frequency
signal and the parametric pump signal.

Moreover, the stability boundary of parametric amplification is analyzed in this paper.
The steady-state of the gyroscope will be broken when the parametric voltage reaches
the threshold, and it will enter the parametric resonance, where subharmonic excitation
plays the key role. In this case, the gyroscope will keep vibrating under the sole action of
the parametric pump signals even if the fundamental frequency driven signal has been
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removed. This is particularly helpful for the gyroscopes where the detection signal is
disturbed by the crosstalk signal from drive mode to sense mode generated by the parasitic
capacitive. Besides, parametric excitation in sense mode amplifies the Coriolis response
directly, which is beneficial for the improvement of sensitivity. This occurs before the
addition of the noise of the first electronic stage, which contributes to the noise squeezing.
However, this approach is far more demanding on the control system, and future work
should address carrying out parametric excitation in the full closed-loop system that
includes both drive mode and sense mode.
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