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Abstract. Iron is essential for cellular development and maintenance of multiple physiological processes in the central ner-
vous system. The disturbance of its homeostasis leads to abnormal iron deposition in the brain and causes neurotoxicity via
generation of free radicals and oxidative stress. Iron toxicity has been established in the pathogenesis of Parkinson’s disease;
however, its contribution to multiple system atrophy (MSA) remains elusive. MSA is characterized by cytoplasmic inclusions
of misfolded �-synuclein (�-SYN) in oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). Remarkably, the
oligodendrocytes possess high amounts of iron, which together with GCI pathology make a contribution toward MSA patho-
genesis likely. Consistent with this observation, the GCI density is associated with neurodegeneration in central autonomic
networks as well as olivopontocerebellar and striatonigral pathways. Iron converts native �-SYN into a �-sheet conforma-
tion and promotes its aggregation either directly or via increasing levels of oxidative stress. Interestingly, �-SYN possesses
ferrireductase activity and �-SYN expression underlies iron mediated translational control via RNA stem loop structures.
Despite a correlation between progressive putaminal atrophy and iron accumulation as well as clinical decline, it remains
unclear whether pathologic iron accumulation in MSA is a secondary event in the cascade of neuronal degeneration rather
than a primary cause. This review summarizes the current knowledge of iron in MSA and gives evidence for perturbed iron
homeostasis as a potential pathogenic factor in MSA-associated neurodegeneration.
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INTRODUCTION

Multiple system atrophy (MSA) is a severe,
fast progressing neurodegenerative disease char-
acterized by parkinsonism, cerebellar ataxia, and
autonomic failure. According to the predominant
motor presentation, patients are categorized as
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MSA-Parkinson variant (MSA-P) or MSA-cerebellar
variant (MSA-C). Neuronal loss consistent with
pronounced striatonigral degeneration or olivopon-
tocerebellar atrophy reflects the predominant motor
phenotype [1]. Additionally, affected brain areas
responsible for autonomic or non-motor features
are found in the brain stem and spinal cord
[2]. Neuroinflammation, oxidative stress (OS), and
iron accumulation are increasingly recognized as
pathological features of MSA inducing neuronal
loss [3, 4].
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The diagnostic cellular hallmark of MSA are oligo-
dendroglial cytoplasmic protein aggregates mainly
composed of misfolded, hyperphosphorylated, and
nitrated �-synuclein (�-SYN) referred to as glial
cytoplasmic inclusions (GCIs) [5]. MSA, together
with idiopathic Parkinson’s disease (IPD) and demen-
tia with Lewy bodies (DLB), belongs to the group of
�-synucleinopathies, which are all characterized by
intracellular aggregations of �-SYN. However, the
distribution of �-SYN deposits is different among this
group of pathologically linked diseases; in IPD and
DLB �-SYN deposits are found in neurons referred to
as Lewy bodies and Lewy neurites, whereas in MSA
oligodendrocytes are the main cells of attack. The
density of GCIs is correlated with neuronal loss in
affected brain regions and with disease duration [1,
6]. Thus, GCIs are believed to play a major role in
the pathogenesis of MSA. However, the underlying
etiology and pathogenesis of �-SYN aggregates and
neurodegeneration are still elusive.

Dyshomeostasis in transitional metals has been
proposed to be involved in neurodegenerative disor-
ders, whereupon iron has received special attention:
Increased iron levels and consecutive high levels of
OS were proposed to contribute to neuronal loss
in Parkinson’s disease, multiple sclerosis and AD
[7–11]. Interestingly, a meta-analysis on transitional
metals in AD brought up controversies as to which
extend iron levels are elevated and that a bias toward
reporting increased iron content in AD in review arti-
cles might play a role [12].

High iron content in degenerating brain regions
as well as regulatory interactions between iron and
�-SYN biology, via ferrireductase activity of �-
SYN and iron mediated translational regulation of
�-SYN involving iron responsive elements (IREs)
within the 5’ untranslated region of �-SYN mRNA,
have resulted in the idea that iron may contribute to
the pathophysiology of MSA [9, 13–19]. However,
the relationship between iron accumulation and �-
SYN aggregation has poorly been investigated and
the mechanisms of iron dyshomeostasis in respec-
tive brain regions remain elusive. Additionally, it is
unclear whether increased iron levels are the cause
of neurodegeneration or rather an epiphenomenon
of such. In this review, we have collected data on
iron accumulation/dysmetabolism in the brain and its
association with OS and neuroinflammation found in
MSA. Moreover, the putative functional interactions
of �-SYN and iron are highlighted. Before discussing
brain iron metabolism in healthy people and MSA
patients we highlight excellent reviews that provide

a comprehensive understanding on the topic of iron
metabolism and toxicity [20–30].

BRAIN IRON IN HEALTHY PEOPLE

In the central nervous system (CNS), iron is
essential for synthesis of neurotransmitters includ-
ing dopamine, serotonin, and gamma-aminobutyric
acid, and it is involved in the differentiation of
oligodendrocytes and myelination [31–33]. Tran-
sit of iron to the CNS via the blood-brain barrier
and the blood-cerebrospinal fluid (CSF) barrier is
coordinated and mostly accomplished by transferrin
receptor (TfR)-mediated endocytosis [34]. However,
additional uptake mechanisms have been suggested
including cellular uptake of ferritin favoring H-
Ferritin over L-Ferritin [35] and by the divalent metal
transporter (DMT1) [36]. Regarding iron export from
the intracellular endosome and the capillary endothe-
lial cells controversies exist to whether DMT1 and
ferroportin (FPN) are involved [7, 37–41]. In the
interstitial fluid of the brain, iron is bound to transfer-
rin (Tf) which is produced by oligodendrocytes and
circulates to target cells within the CNS [8, 20].

Inside the brain there seems to exist cell specific
expression profiles determining iron uptake, utiliza-
tion and storage mechanisms [20, 42, 43]. Neurons
possess TfR, DMT1, ferritin, FPN, ceruloplasmin,
and hephaestin. Astrocytes express DMT1, ferritin,
FPN, and ceruloplasmin. Much less is known about
transport mechanisms of microglia cells, although
they have capacities to acquire, store and release iron
[44, 45].

Ferritin serves as the dominant iron storage protein
in the CNS and highest levels are detected in oligo-
dendrocytes, followed by microglia and neurons.
The smallest amount is found within astrocytes [44].
Hence, under normal conditions oligodendrocytes are
the iron richest cells among brain cells and are there-
fore regarded the iron regulatory cells in the CNS
[44, 46–48]. Nevertheless, the function of the high
iron content held within ferritin in oligodendrocytes is
insufficiently understood so far. Both isoforms of fer-
ritin are found in oligodendrocytes, albeit H-Ferritin
seems to be the major source of iron in oligoden-
drocytes [49]. Oligodendrocytes acquire iron by TfR
uptake and H-Ferritin by receptor induced endo-
cytosis during their maturing process (progenitor
cells). Since mature oligodendrocytes do not express
TfR alternative iron uptake mechanisms must exist
and the more recently reported ferritin (Tim-2)



C. Kaindlstorfer et al. / The Relevance of Iron in the Pathogenesis of Multiple System Atrophy 1255

receptor pathway (uptake of H-Ferritin) appears to
be a likely candidate [48–52]. Among neurons and
microglia, a unique distribution of H- and L-ferritin
is observed in association with utilization require-
ments where H-Ferritin is predominantly found in
neurons and L-Ferritin in microglial cells [33]. Fur-
ther, CNS distinct storage arrangements are found in
neuromelanin (NM) containing cells of the substan-
tia nigra (SN), and the locus coeruleus (LC) [53].
Similar to systemic iron homeostasis, brain cellular
iron metabolism is also operated by IREs and iron
responsive proteins (IRPs) and mutations/deletions
of IRP2 have been demonstrated to result in neuronal
damage [28, 54].

It is important to note, that in the CNS iron
distribution is distinct among different brain regions
and cell populations and that iron accumulation
in the CNS is a phenomenon of the aging brain
[28, 55]. Not only the levels of iron but also the
degree of iron accumulation vary in different brain
regions. Physiological distribution of iron has
been extensively studied by different histological,
chemical and spectro-analytical procedures using
Prussian blue/Perls’ stain, atomic absorption spec-
troscopy, inductively coupled plasma spectroscopy,
instrumental neutron activation, and colorimetry
as well as magnetic resonance imaging (MRI)
based techniques. There are multiple contributors
to MRI signals, particularly at iron concentrations
in the range of white matter and cortical grey
matter. In the areas of the brain with higher iron
concentration, like the basal ganglia, the bulk of
the signal on these iron-sensitive MR sequences
is thought to originate from iron, although there
certainly remains the possibility of other elements
contributing. Highest levels of iron are found in
the extrapyramidal system: globus pallidus (GP)
(lateral > medial part) > SN > putamen > caudate nu-
cleus (NC) > hippocampus > amygdala > grey > white
matter of cerebral cortex = cerebellum [56–63].
Advanced MRI techniques offer in vivo brain iron
estimations and confirmed postmortem biochemical
studies [64–69]. Additional changes of cellular
storage capacities among neurons and glial cells and
their different storage modalities including ferritin,
NM, and hemosiderin are not fully understood
[44]. Unlike microglia, astrocytes, and neurons,
oligodendrocytes do not physiologically accumulate
iron upon aging [44]. The cause of cell specific iron
accumulation upon aging is unclear. However, the
fact that extrapyramidal brain regions tend to contain
more iron than non-motor linked regions [70] has

led to the association of iron accumulation and
movement disorders. In the context of IPD in which
severe neuronal loss is found in SN, detailed studies
on iron, storage proteins ferritin and NM have been
performed and indicated that physiologically the
SN is more prone to iron induced damage due to
accumulation of iron, ferritin and NM in contrast to
LC [44, 71–74].

BRAIN IRON IN MSA

MSA has been proposed to be a primary oligo-
dendrogliopathy due to the pathological hallmark of
cellular inclusion bodies mainly composed of �-SYN
predominating in oligodendroglial cells [75]. Oligo-
dendrocytes are the iron richest cell population in
the CNS and there is compelling evidence that iron
plays a decisive role in the pathogenesis of MSA
being associated with regions of neurodegeneration
and �-SYN aggregation in the context of OS and
neuroinflammation.

We here review histopathological and imaging data
on the potential implications of iron dyshomeostasis
in MSA pathology. Postmortem studies determin-
ing tissue iron, mainly used histochemical methods
including Prussian blue/Perls’ stain as well as
immunohistochemistry targeting iron related proteins
(i.e., ferritin). In vivo estimations of brain iron can be
obtained by MRI (see below).

Histopathological findings in MSA

Histopathological studies in MSA are scarce, but
they all clearly demonstrate that iron deposition in
the putamen of MSA patients is a hallmark of the
disease [76]. To this end, several postmortem anal-
yses revealed increased iron content and associated
neuronal loss particularly in the putamen, while some
authors also made these observations in the SN, GP,
and NC of MSA patients [59, 77–81]. In MSA, iron
accumulation in putamen is accompanied by elevated
levels of ferritin [59, 82]. Less pronounced increase
of ferritin immunoreactivity is also found in SN in
MSA [59].

Regarding the actual amount of iron in basal gan-
glia of MSA patients, varying data exist possibly due
to different methodologies applied to measure tissue
iron. Nevertheless, there is evidence that iron con-
tent in putamen, GP, and SN is higher in MSA than
in IPD, DLB, and controls, being similar to the lev-
els found in progressive supranuclear palsy (PSP)
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as assessed by qualitative measurements of Jellinger
in 2003 [59, 81]. The higher iron levels in SN of
PSP and MSA >IPD were suggested to be associated
with shorter disease duration and pronounced vul-
nerability to iron induced cellular damage. Hence,
it was proposed that disease duration might be cor-
related inversely to brain iron accumulation [83].
Aside from basal ganglia, diffuse ferritin deposition
was observed in the dentate nucleus of cerebellum
of MSA brains [84]. Interestingly, alterations in iron
concentrations have not been documented in LC,
albeit severe neuronal loss was described in MSA
neuropathology [81]. The source of increased fer-
ritin levels in GP and SN of MSA is not known;
evaluation of ferritin levels in the CSF of 15 MSA
patients revealed no significant change compared to
healthy individuals [85] making the CSF as source
very unlikely.

In contrast, increased total iron levels have been
linked to decreased ferritin and copper content, and
increased zinc levels in the SN of IPD suggesting that
free bioavailable iron and altered iron handling con-
tribute to neurodegeneration in this area [86]. There
are conflicting reports about the stage of disease pro-
gression at which nigral iron changes occur, which
concurs with the notion that IPD represents different
subgroups with different potential pathogenic path-
ways [83, 87]. Very recently, it has been suggested,
that autophagy dysfunction and, less, OS are critical
in the iron-induced pathogenesis and iron-induced �-
SYN pathology of IPD. Maintaining proper activity
of the autophagy pathway is essential for eliminat-
ing aberrant protein aggregates like �-SYN [88].
Whether this mechanism of iron induced �-SYN
pathology by causing autophagy dysfunction plays
a role in MSA remains to be investigated.

Ceruloplasmin acts as a ferroxidase and is essen-
tial for the functionality of FPN mediated cellular
iron efflux. In two autopsy-proven MSA cases
with hypoceruloplasminemia and two MSA con-
trols increased iron deposition in SN and putamen
was found, but neither in pons, cerebellum nor in
the inferior olive [80, 89]. Although hypocerulo-
plasminemia and mutant ceruloplasmin have been
demonstrated in MSA patients, the role of cerulo-
plasmin in the pathogenesis of MSA is still elusive
[80, 90].

Further analyses of iron and its storage and uti-
lization proteins support the idea of a reduction in
bioavailable iron occurring in MSA [91]. Visanji and
colleagues performed a detailed postmortem analy-
sis of human brain tissue (MSA, IPD, and control)

assessing iron, ferritin, TfR, and FPN distribution in
pons, putamen, and SN of MSA tissue and detected
region-specific differences: Increased tissue iron,
increased ferritin, and decreased FPN were found in
pons of MSA tissue and was regarded disease spe-
cific. A dysregulation of iron export coupled with
an increase in ferritin iron was detected to a lesser
extent also in putamen in MSA. A limiting factor
of this study may be the small number of only 3
MSA and 3 control subjects [91]. It remains unclear
whether neuroinflammation induced elevation of fer-
ritin and consecutively increased intracellular iron
levels occur because inflammatory signals and stim-
uli raise ferritin and decrease FPN expression or
whether elevated iron accumulations induce ferritin
production and activates microglia via OS [91, 92].
Moreover, it has been speculated that the expres-
sion pattern of iron proteins in pons of MSA (with
increased tissue iron, increased ferritin and decreased
FPN indicating reduction of bioavailable iron) may
reflect neuroinflammation with associated induction
of hepcidin. Hepcidin originating from the liver
acts as a systemic hormone or hepcidin can be
produced locally following inflammation-driven gen-
eration in macrophage like cells such as microglia
then acting in a paracrine fashion resulting in tissue
iron retention via FPN downregulation and con-
sequently reduced extracellular iron bioavailability
[93, 94].

In summary, histopathological data on iron
metabolism in MSA are very limited and number of
MSA cases in postmortem studies is rather small. The
only truly quantitative assessment of iron concentra-
tion in MSA was done by Dexter and colleagues in
1991 and that quantitative iron levels in the puta-
men in MSA is known from only 8 cases [59].
Additionally, variable histochemical methods make
comparisons among studies difficult. More work is
needed to corroborate the postulated increase of iron
levels in the basal ganglia of MSA patients with
putamen possessing highest amounts accompanied
by increased ferritin content. Considering that iron
bound to ferritin is non-reactive, the findings of
increased iron content linked to elevated ferritin lev-
els found in the putamen and SN of MSA patients
suggest that a reduction of free – bioavailable iron
may occur in these areas. However, the mechanism
how iron dyshomeostasis contributes to neurode-
generation and neuroinflammation in MSA remains
elusive.

Table 1 gives an overview of histopathological
studies investigating iron in MSA.
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Table 1
Summarizes histopathological studies investigating iron metabolism/dysregulation in MSA

Methods Major findings Population Strength (+)/Weakness Reference
(–) of the study

Perls’ stain Variable amounts of
putaminal iron content

4 MSA (–) sample size Spokes et al. [77]
(–) lack of controls

Inductively coupled plasma
spectroscopy,
radio-immunoassay
technique, IHC targeting
ferritin

Increase in total iron levels
in SN (59%), medial
putamen (67%) and NC
(42%) in MSA versus HC

8 MSA
27 IPD
11 PSP
10 HD
13 HC

(+) iron quantification,
detailed determination of
total copper, manganese,
zinc levels and ferritin
immunoreactivity

Dexter et al. [59]

Increase in iron levels (44
%) in lateral putamen (ns) (+) comparison groups

Ferritin immunoreactivity
was increased in putamen
(59–73%) and differed
significantly from
controls; in SN (34%) it
did not reach significance
in MSA

(–) sample size (MSA
group)

No change in total iron
levels and ferritin
immunoreactivity in
cerebral cortex, NC, GP
and cerebellum in MSA

Ferritin in CSF was
measured with the
“Enzymun Ferritin coated
tube assay”

CSF ferritin of MSA and
IPD patients did not differ
significantly from HC

15 MSA
72 IPD
15 PDD
11 AD
20 HC

(+) sample size and
comparison groups

Kuiper et al. [85]

(–) no tissue iron analyses
performed

(–) MSA group formed a
heterogeneous group
including also 3 PSP
patients

Berlin blue stain Iron depositions in SN and
putamen of MSA with
hypoceruloplasmin and in
MSA controls

2 MSA patients with
a-/hypo-
ceruloplasminemia and 2
MSA

(–) sample size Kurisaki et al. [80]

Perls’ stain Iron depositions in
putamen, SNc and GP in
MSA were similar to PSP
and more pronounced
than in IPD/HC

12 MSA
14 IPD
8 DLB
5 PSP
6 HC

(+) sample size and
comparison groups

Jellinger [81]

Severe neuronal loss in LC
without alterations in iron
levels

GFAAS, IRM, IHC
targeting ferritin, FPN,
TfR

Increase in tissue iron and
ferritin along with
decrease in FPN in
pons>putamen indicating
a reduction of
bioavailable iron in MSA

3 MSA
3 IPD
3 HC

(+) detailed analyses of iron
and related proteins using
IHC, western blot,
GFAAS, IRM

Visanji et al. [91]

No change in iron and
ferritin levels in SN in
MSA versus HC

(–) sample size

AD, Alzheimer’s disease; FPN, ferroportin; CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; GP, globus pallidus; HC, healthy con-
trols; HD, Huntington’s disease; LC, locus coeruleus; MSA, multiple system atrophy; NC, caudate nucleus; ns, not significant; IPD, idiopathic
Parkinson’s disease; PDD, Parkinson’s disease with dementia; PSP, progressive supranuclear palsy; SN, substantia nigra; SNc, substantia
nigra pars compact; TfR, transferrin receptor; IHC, immunohistochemistry; GFAAS, Graphite Furnace Atomic Absorption Spectroscopy;
IRM, isothermal remanent magnetization.
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Iron imaging findings in MSA

Brain iron can be visualized in vivo using MRI [95].
Iron sensitive imaging sequences include T2/T2*,
susceptibility-weighted imaging (SWI), and R2*
( = 1/T2) [65, 96]. However, these imaging sequences
cannot distinguish between different forms of iron
(heme-bound iron; ferritin-bound, Tf-bound, free
iron) [65, 97]. Nonetheless, it could be demonstrated
that higher magnetic field MRI (3T) is able to more
precisely localize iron accumulation within the puta-
men in MSA [98]. Iron deposits selectively reduce T2
signals (spin echo sequence) appearing as hypointen-
sity in T2 weighted images [79]; whereas gliosis
results in hyperintense MRI signal. Superior to T2
imaging in terms of iron detection is T2*-weighted
(gradient echo) sequence analysis due to its higher
sensitivity for magnetic susceptibility changes [99]
similar to R2* and SWI sequences. More recently,
development of quantitative susceptibility mapping
(QSM) has been introduced in order to quantify brain
iron in vivo. However, to our knowledge QSM stud-
ies have not been published in MSA so far. Several
authors have demonstrated that hypointense T2 sig-
nal on MRI in the basal ganglia in MSA correlates
with postmortem determined iron accumulation in
respective brain regions (see Table 3) [79, 82, 84].

In MSA, the hypointensity of the posterolat-
eral region of putamen received particular attention
being associated with highest iron concentrations
[100–106]. Therefore, low intensity of putamen of
T2/T2*-weighted/SWI modalities of mostly 1.5T
MRI has been suggested to be a specific feature
of MSA in contrast to IPD and has attracted inter-
est for the differential diagnosis between IPD and
MSA-P [79, 106–113]. However, on visual rating
of routine MRI images this discrimination between
MSA and IPD proved unreliable [101, 103, 114].
Nevertheless, it could be shown that putaminal T2
hypointensity relative to GP is more specific for MSA
[101, 103, 104].

The source of iron that causes hypointensity on
MRI has been poorly investigated. There are only
very few studies combining imaging and histochem-
istry in MSA [79, 82, 84] and little evidence shows
that MRI signal change in putamen might reflect
greater levels of ferritin-bound iron, accumulation of
hemosiderin and NM in patients with MSA, but not in
patients with IPD/healthy individuals [82, 108, 115].

Matsusue and colleagues compared postmortem
T2-weighted imaging (1.5T) of MSA-P with histo-
logical findings of putamen and found that putaminal

hypointensity reflects diffuse ferritin and iron depo-
sition. In MSA-C hypointensity in dentate nuclei was
associated with diffuse ferritin depositions [82, 84].

The attempt to quantify brain iron accumulation
led to the introduction of a visual grading scale
for hypointensity of putamen and subregional exam-
ination of putamen by some authors [100, 106,
116–118]. As a result, the inner region of the puta-
men was proposed to be the most valuable region
in differentiating MSA-P from IPD [106]. Grad-
ing of putaminal hypointensity among MSA patients
revealed that even early stage MSA-P is associ-
ated with putaminal hypointensity grade ≥2 (like in
advanced disease) indicating that iron accumulation
might occur early in the disease process [117]. How-
ever, no correlation of disease duration and putaminal
hypointensity could be demonstrated [110, 117]. Fur-
ther MRI studies demonstrated that MSA-P could
be differentiated from IPD by grade 3 hypointensity
of posterior putamen [118]. The results of post-
mortem analyses revealing higher iron concentration
of the posterior putamen in MSA-P compared to IPD
complement the MRI based grading of putaminal
hypointensity and also allowed differentiation of PSP
and MSA/IPD [81, 116].

The topography of iron distribution in putamen of
MSA was further studied [117, 119, 120]: There is an
ascending T2 signal intensity from lateral to medial
putamen, even in very early stages of disease with-
out clinical symptoms – and therefore, this pattern
was proposed MSA specific [117, 119]. Different iron
deposition pattern in MSA-P and PSP were evaluated
using R2* values and more severe iron accumula-
tion in posterior/dorsal parts of putamen and GP in
MSA-P was shown [120]. MSA-P could be differ-
entiated from PSP by significantly lower R2* values
of NC in MSA-P. Furthermore, higher R2* values
were determined in the putamen of MSA-P com-
pared to IPD/controls. In a subsequent study, Lee
and colleagues evaluated 3T T2*-weighted gradient
echo sequences in MSA, PSP, IPD, and controls and
found that T2* is superior in detecting iron deposi-
tion compared to T2 and demonstrated its usefulness
in differentiating patients with MSA from IPD and
healthy controls [121].

Interestingly, the highest iron content as assessed
by histochemistry and imaging studies in putamen
colocalizes with highest GCI density and �-SYN
aggregation in MSA brains [79, 122]. In addition to
high iron levels in putamen in MSA, hypointensity on
MRI is associated with high iron content in NC, SN,
the adjacent lateral aspect of GP and in the pulvinar
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thalami as estimated by T2/T2* imaging analyses
[106, 108–110, 116, 118, 119].

Since contradictory findings regarding hypointen-
sity associated with iron accumulation using different
MRI field strengths arose, Watanabe and colleagues
investigated the influence of different MRI field
strengths (0.35/1.5/3T) on the putaminal signal in
patients with MSA. Beside severity of gliosis and
iron accumulation determining the MRI signal, the
field strengths have profound influence on MRI find-
ings with further implications for the diagnostic
value. It has been demonstrated that an increasing
field strength was associated with a lower frequency
of putaminal hyperintensity (considering putami-
nal body and margin). In contrast, the occurrence
of putaminal hypointensity increased concomitantly
with the field strength [98].

Among the predominant motor presentations of
MSA it could be demonstrated that putaminal
hypointensity is more pronounced in MSA-P com-
pared to MSA-C [79]. Additionally, a longitudinal
MRI study by Lee and coworkers revealed a faster
progression of putaminal pathology (atrophy and
hypointensity) in MSA-P than MSA-C correlating to
faster symptom progression in MSA-P [121].

The “putaminal rim sign” is a T2-hyperintense
MRI sign at the dorsolateral border of the puta-
men which is believed to result from gliosis and can
help to differentiate MSA-P from IPD [82, 111, 121,
123–126]. This is, however, a non-specific sign and,
therefore, not included in the revised consensus cri-
teria [127], while putaminal atrophy shows 92.3%
specificity but low sensitivity (44.4%) for distinguish-
ing MSA-P from IPD [128]. It can be speculated that
iron deposition at the putaminal rim might be masked
by predominant gliosis in this region [129].

Taken together, increased putaminal iron [108,
119, 120] is the most consistent finding in MRI stud-
ies and its visualization may be helpful in making the
differential diagnosis between IPD and MSA or PSP
[106, 108, 116]. Correlating the severity of atrophy
and iron accumulation suggests that iron accumula-
tion is a secondary effect of neurodegeneration as
significantly increased iron in the putamen is asso-
ciated with advanced atrophy compared to moderate
iron accumulation in GP along with less severe atro-
phy [120]. Nevertheless, MRI studies need to be
interpreted with great caution due to heterogeneous
study populations, variation in stage of disease, lack-
ing discrimination of MSA subtypes, different MRI
protocols including slice thickness, fast versus con-
ventional spin echo, T2*, R2*, SWI, quantitative

and qualitative assessment, and field strengths (see
Table 2).

An overview about iron on MRI is given in Table 2.
Studies combining MRI with histology are given

in Table 3.

Iron, α-synuclein, oxidative stress, and
neuroinflammation

Collectively, histopathological and imaging data
clearly demonstrate that iron levels are elevated
in specific MSA brain regions with highest lev-
els in the putamen. However, the mechanisms and
consequences of iron accumulation have not been elu-
cidated in MSA so far. In the following part potential
interactions and mechanisms of iron dyshomeostasis
in the pathogenic cascade are highlighted.

Figure 1 illustrates the vicious circle how iron may
contribute to �-SYN pathology: iron accumulation
results in high levels of OS/microglial activation lead-
ing to iron induced OS/neuroinflammation promoting
�-SYN aggregation.

�-SYN consists of 140 amino acids and physio-
logically it is a soluble �-helical protein reversibly
attached to the cell membrane in the cyto-
plasm of brain cells. As part of the soluble
N-ethylmaleimide-sensitive-factor attachment recep-
tor (SNARE) complex it is believed to interact with
the plasma/vesicular membrane in the process of
neurotransmission. �-SYN has been implicated in
the pathogenesis of IPD, MSA, and DLB [81, 130],
which are all characterized by cellular aggregation
and fibrillation of the protein. While �-SYN inclu-
sions are mainly found in neurons in IPD and DLB,
MSA is characterized by oligodendroglial �-SYN
aggregation. As mature oligodendroglial cells do not
express �-SYN physiologically, the origin of intra-
cellular �-SYN aggregates as well as the trigger of
�-SYN aggregation in MSA remain unknown [131].
It has been speculated that oligodendrocytes actively
take up �-SYN that is released by neighboring neu-
rons resulting in accumulation in oligodendrocytes
[132]. This hypothesis is further supported by in
vitro evidence pointing toward a neuron-to oligoden-
droglia cell to cell prion-like transmission of �-SYN
[133–135]. Furthermore, a link between cell to cell
propagation and neuroinflammation has been pro-
posed for IPD [136] which might be translated to
MSA. Disease progression and neurodegeneration
appear to reflect increased levels of OS and proin-
flammatory cytokines released by activated microglia
in mouse models of MSA and IPD [3, 137–139].
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Table 2
Summarizes MRI studies looking at brain iron content in MSA

Methods Major findings Population Strength (+)/Weakness (–)
of the study

Reference

1.5T MRI Putaminal T2 hypointensity
in MSA-P >MSA-C

32 MSA (11 MSA-P
and 21 MSA-C)

(+) sample size Schulz et al. [100]
(+) discrimination between

MSA subtypesPutaminal hypointensity
grade 0–3 [114] (+) quantitative and

qualitative assessment
(–) lack of postmortem

confirmation
(–) half of the patients were

studied retrospectively
(–) no comparison groups

except either MSA
variant

0.5T/1.5T MRI Exclusive finding of
hyperintense putaminal
rim in 30% (0.5T) – 41%
(1.5T) of MSA patients

44 MSA (28 MSA-P
and 16 MSA-C)

(+) sample size and
comparison groups

Schrag et al. [101]

Putaminal signal intensity
was rated in relation to
GP/cortical signal Relative putaminal T2

hypointensity in
MSA >IPD/HC (ns, 1.5T)

47 IPD (–) lack of postmortem
confirmation45 HC

(–) no discrimination
between MSA subtypes
in terms of signal
intensity

(–) retrospective study
design

(–) limited to visual rating
1.5T MRI Combination of relative

hypointense putamen and
hyperintense rim on T2 is
highly specific of MSA-P

15 MSA-P (+) sample size and
comparison groups

Kraft et al. [103]

Putaminal signal intensity
was rated in relation to
GP

65 IPD
(–) limited to visual rating10 PSP
(–) lack of postmortem

confirmation
(–) lack of HC group

1.5T MRI T1 and T2 shortening in GP
consistent with reported
increases in
ferritin-bound iron

8 MSA (–) lack of postmortem
confirmation

Vymazal et al. [108]

Changes in putamen
consistent with reported
accumulation of
hemosiderin in the
posterior portion and
remaining NM in MSA

23 IPD

18 HC (–) sample size
(–) no differentiation of

MSA subtypes
(–) imaging features were

compared to historically
reported
ferritin/hemosiderin
levels

0.5T/1.5T MRI Differentiation between
MSA and PSP by signal
decrease in GP (mainly
on 1.5-T scans) and a
hyperintense rim or
hyperintensity of the
whole putamen (the latter
only on 0.5-T scans) by
T2 sequence imaging

54 MSA (30 MSA-P
and 24 MSA-C)

(+) sample size and
comparison groups

Schrag et al. [102]

Putaminal signal intensity
was rated in relation to
GP/cortical signal

35 PSP (–) lack of postmortem
confirmation in most
cases

5 CBD

(–) no discrimination
between MSA subtypes

44 HC

(–) retrospective study
design

(–) limited to visual rating
(with exception of
midbrain diameter)

1.5T MRI Relative hypointense
putaminal signal changes
can differentiate MSA
from IPD using T2*, not
T2

15 MSA
40 IPD
17 HC

(+) sample size and
comparison groups

Kraft et al. [109]

Putaminal signal intensity
was rated in relation to
GP

(Continued)
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Table 2
(Continued)

Methods Major findings Population Strength (+)/Weakness (–)
of the study

Reference

T2* weighted GE
sequences are of
diagnostic value for
patients with
parkinsonism

(–) lack of postmortem
confirmation

(–) retrospective study
design

(–) limited to visual rating
(–) no differentiation of

MSA subtypes
1.0T MRI Combination of T2* signal

loss of dorsolateral
putamen and
hyperintense lateral rim
on FLAIR is helpful in
differentiating MSA from
IPD

52 MSA (47 MSA-P
and 5 MSA-C)

(+) sample size except
MSA-C

Von Lewinski et al. [110]

Diagnostic accuracy of ROI
analyses to differentiate
MSA from IPD >0.82

88 IPD (+) qualitative and
quantitative assessment

No difference between
MSA-P and MSA-C
detected

29 HC
(–) lack of postmortem

confirmation
(–) comparability of 1.0 T

MRI versus 1.5/3 T MRI

1.5T MRI Putaminal SWI
hypointensity PSP >IPD,
but no difference between
PSP and MSA-P or PSP
and IPD

12 MSA-P (+) advanced MRI
technique (SWI)

Gupta et al. [116]

Hypointensity grade 0–3
[116]

Hypointensity of SN and
red nucleus
PSP >MSA-P/IPD/HC

11 IPD
(–) lack of postmortem

confirmation
12 PSP

(–) lack of age-matched
controls in consideration
of PSP and IPD

11 HC

(–) sample size (IPD, HC)
(–) late stage of disease
(–) limited to visual rating
(–) SWI is influenced by

other minerals
0.35T/1.5T/3.0T MRI Magnetic field strengths

affect the diagnostic
value - higher magnetic
field strength improves
signal-to-noise ratio and
enhances the magnetic
susceptibility effect

15 MSA (8 MSA-P
and 7 MSA-C)

(+) evaluation and
comparison of various
magnetic field strengths

Watanabe et al. [98]

3.0T MRI: higher
sensitivity in detection of
putaminal hypointensity
than 0.35T or 1.5T

60 IPD
(+) discrimination between

MSA subtypes

Putaminal hyperintensity
was more frequent in
MSA-P than in MSA-C

(–) lack of postmortem
confirmation

(–) lack of HC group
(–) limited to visual rating

3.0T MRI Hemi-/bilateral putaminal
SWI hypointensity
(≥grade 2) plus
hyperintense lateral rim
in 82% and 55% of
MSA-P

11 MSA-P (+) advanced MRI
technique (SWI, 3.0T)

Lee and Baik [117]

Putaminal hypointensity
grade 0–3 [116]

Scores of putaminal
hypointensity were
significantly higher in
MSA than in IPD/HC and
a score ≥2 differentiated
MSA-P from IPD/HC
even in early stage of
disease (duration <1 year)

30 IPD
(+) early stage of disease30 HC

(–) lack of postmortem
confirmation

(–) retrospective study
design

(–) limited to visual rating
(–) SWI is influenced by

other minerals

(Continued)
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Table 2
(Continued)

Methods Major findings Population Strength (+)/Weakness (–)
of the study

Reference

1.5T MRI High iron content in
putamen >PT
differentiates MSA-P
from IPD (evaluated by
SWI phase shift)

8 MSA-P (+) advanced MRI
technique (SWI)

Wang et al. [106]

Putamen was divided in 4
sub-regions

The lower inner region of
the putamen presents the
most valuable region in
differentiating MSA-P
from IPD

16 IPD
(+) early stage of disease44 HC
(+) quantitative evaluation
(–) lack of postmortem

confirmation
(–) sample size
(–) MR rating performed by

only one rater
(–) SWI is influenced by

other minerals

3.0T MRI MSA-P and PSP showed
higher SWI phase shift
values ( = levels of iron
depositions) than IPD/HC

12 MSA-P (+) advanced MRI
technique (SWI, 3.0T)

Han et al. [119]

MSA-P had lower iron
levels in SN than
PSP/IPD and in RN, GP
and TH than PSP

11 PSP
(+) early stage of disease

MSA-P revealed higher
iron levels in putamen
than PSP/IPD/HC -
especially the
posterolateral putamen
and lateral aspect of GP
are characterized by
iron-related hypointense
signal on VBA of SWI in
MSA

15 IPD

(+) quantitative evaluation20 HC

(–) lack of postmortem
confirmation

(–) SWI is influenced by
other minerals

3.0T MRI Significantly higher R2*
values in putamen in
MSA-P versus IPD/HC

15 MSA-P (+) advanced MRI
technique (R2*, 3.0T)

Lee et al. [120]

Transverse relaxation rate
R2* as surrogate of iron
in brain tissue

Higher R2* values in GP in
PSP than IPD/HC, higher
R2* values in NC in
PSP >MSA-P/IPD/HC

13 PSP
(+) early stage of disease

In MSA-P GP and in PSP
putamen showed higher
R2* values than IPD/HC
(ns)

29 IPD
(+) automated region-based

analysis

MSA-P could be
differentiated from PSP
by significantly lower
R2* values of NC in
MSA-P

21 HC

(–) lack of postmortem
confirmation

Subregion analyses:
different iron deposition
pattern in MSA-P and
PSP with more iron
accumulation in
posterior/dorsal parts of
putamen and GP in
MSA-P

(–) R2* is influenced by
other factors and minerals

(–) SN and RN were not
included in the analyses

3.0T MRI Baseline MRI: R2* values
in putamen significantly
higher in MSA-P
compared to IPD

17 MSA (8 MSA-P
and 9 MSA-C)

(+) advanced MRI
technique (R2*, 3.0T)

Lee et al. [121]

15 IPD (+) discrimination between
MSA subtypes

(Continued)
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Table 2
(Continued)

Methods Major findings Population Strength (+)/Weakness (–)
of the study

Reference

Longitudinal study
follow-up ∼ 18–24 M

Follow up MRI: R2* value
in putamen significantly
higher in MSA-P than in
IPD/MSA-C.

Significant progression in
putaminal R2* values and
atrophy in MSA-
P >MSA-C >IPD.

(+) automated region-based
analysis

Putamen as most significant
area to distinguish
MSA-P versus MSA-C

(+) longitudinal study
design

(+) early stage of disease
(–) lack of postmortem

confirmation
(–) lack of HC group

(–) no evaluation of
volumes and R2* values
in brainstem and
cerebellar structures

1.5T MRI Putaminal abnormalities:
T2*-weighted GE
sequences are superior in
detecting iron deposition

15 MSA (9 MSA-P
and 6 MSA-C)

(–) lack of postmortem
confirmation

Sugiyama et al. [111]

MSA could be
differentiated from IPD,
PSP, HC

16 IPD (–) conventional MRI
applied only

Diagnostic accuracy: higher
in T2*L than in T2L

9 PSP
(–) sample size (HC)

T2*L for differentiation
MSA versus IPD/PSP
and HC

10 HC
(–) no discrimination

between MSA subtypes

3.0T MRI SWI improves diagnostic
accuracy of putaminal
hypointensity in MSA in
comparison to T2

12 MSA-P (+) advanced MRI
technique (SWI, 3.0T)

Meijer et al. [118]

Putaminal hypointensity
grade 0–3 [116]

Posterior part of putamen
was most valuable in
differentiating MSA-P
from IPD

38 IPD
(+) early stage of disease

Mean putaminal SWI signal
intensity was
significantly lower in
MSA-P versus IPD/HC

3 PSP
(–) lack of postmortem

confirmation

Severe putaminal
hypointensity (grade 3) is
indicative of MSA

3 DLB

(–) sample size (PSP, DLB)

Lower SWI in NC in
MSA-P than in IPD

13 HC

(–) SWI is influenced by
other minerals

3 T MRI Putaminal SWI
hypointensity in
MSA >IPD/controls

39 MSA (18 MSA-P
and 21 MSA-C)

(+) advanced MRI
technique (SWI, 3.0T)

Wang et al. [113]

“Swallow-tail” evaluation
(nigrosome 1) of SN and
putaminal hypointensity
grade 0–3 [116]

The combination of
bilateral “swallow-tail”
sign and putaminal
hypointensity (≥grade 2)
on SWI differentiates
MSA from IPD

18 IPD (+) sample size and
comparison groups
except IPD population

Lateral to medial gradient
of putaminal
hypointensity in MSA

31 HC

(–) lack of postmortem
confirmation

(–) retrospective study
design

(–) limited to visual rating
(–) no discrimination

between MSA subtypes

GE, gradient echo; GP, globus pallidus; HC, healthy controls; MRI, magnetic resonance imaging; MSA, multiple system atrophy; MSA-
P, multiple system atrophy Parkinson variant; MSA-C, multiple system atrophy cerebellar variant; CBD, corticobasal degeneration; NM,
neuromelanin; IPD, idiopathic Parkinson’s disease; PSP, progressive supranuclear palsy; PT, pulvinar thalamus; RN, red nucleus; SN,
substantia nigra; TH, thalamus; NC, caudate nucleus; FLAIR, fluid attenuated inversion recovery sequences; R2*, tissue relaxation time of
MRI (1/T2); SWI, susceptibility weighted imaging; T, Tesla; T2, tissue relaxation of MRI investigation; T2L/T2*L, low-intensity signal
within the putamen on T2/T2*-weighted images; ns, not significant; ROI, region of interest; VBA, voxel-based analyses.
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Table 3
Summarizes studies correlating MRI features with postmortem tissue analyses

Methods Results Population Strength (+)/Weakness (–)
of the study

Reference

Clinicopathological study Correlation of putaminal
T2 hypointense changes
with post mortem
analyses of increased
iron

3 MSA-P (–) sample size Lang et al. [79]

1.5T MRI-T2, Perls’ stain
for iron evaluation in
putamen A lateral to medial

gradient of putaminal
changes in all three
patients

(–) lack of HC

Most prominent
changes/damage in
posterolateral part of
putamen

(–) no standardized MRI
protocol as based on
retrospective analysis of
MRI

Postmortem study Putaminal iso- or
hypointensity reflected
diffuse ferritin and
Fe3+ deposition

7 autopsy-proven MSA
cases

(+) detailed description of
clinical, pathologic and
imaging findings

Matsusue et al. [82]

1.5T MRI-T2 Hyperintensity reflects
tissue rarefaction

(+) several staining
methods applied

histology study (HE;
Klüver-Barrera,
Bielschowsky, Berlin
blue, ferritin IHC)

Hyperintensive putaminal
rim reflects
degeneration of the
putaminal lateral
margin and/or external
capsule

(–) evaluation of
postmortem MR images

(–) lack of HC

Postmortem study Hypointensities in the
dentate nucleus reflect
diffuse ferritin
deposition in preserved
dentate nuclei and
white matter around
and within the nuclei

7 autopsy-proven MSA
cases

(+) several staining
methods applied

Matsusue et al. [84]

1.5T MRI-T2 (–) evaluation of
postmortem MR images

histology study (HE;
Klüver-Barrera,
Bielschowsky, Berlin
blue, GFAP and ferritin
IHC)

(–) lack of HC

GE, gradient echo; HC, healthy controls; MRI, magnetic resonance imaging; MSA, multiple system atrophy; MSA-P, multiple system
atrophy Parkinson variant; T2, tissue relaxation of MRI investigation; T, Tesla; HE, hematoxylin eosin; GFAP, glial fibrillary acidic protein;
IHC, immunohistochemistry.

Post-translational modifications have been impli-
cated in the pathogenesis of proteinopathies. In
healthy humans phosphorylated �-SYN accounts for
only 5% in contrast to synucleinopathies with the
majority of �-SYN being phosphorylated [140] char-
acteristically at position serin-129. OS seems to play
a major role in these modifications as several in vivo
and in vitro experiments demonstrated that increased
OS leads to conformational changes of �-SYN struc-
ture, phosphorylation, oxidation and nitration and
further accelerates oligomer formation, aggregation
and increased production of reactive oxygen species
(ROS) [19, 140–147].

As we have learned from in vitro experi-
ments excess iron can promote �-SYN aggregation
[143, 148] in a dose-dependent manner and dopamine

exposure can further stimulate this process [19].
The exact mechanism remains unknown, although
increased iron levels as well as iron catalyzed OS
have been shown to promote the conversion of
the �-helical conformation into �-sheet or spheri-
cal oligomer structure resulting in further �-SYN
aggregation [17, 143] similar to that emerging
upon incubation of (misfolded) �-SYN alone [149].
Whether a direct interaction of iron and �-SYN
is involved is not known, although an iron bind-
ing site has been identified on �-SYN among other
metal binding sites, resulting in conformational and
solubility changes of the protein [17, 150–152].
Both ferric and ferrous iron were shown to bind to
�-SYN [153], and it has been demonstrated that
ferrous iron promotes �-SYN aggregation [154].
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Fig. 1. The role of iron in the pathogenesis of MSA. Iron dyshome-
ostasis is associated with increased levels of oxidative stress and
microglial activation. The consecutive formation of a synergis-
tic self-feeding cycle promotes �-SYN aggregation and secondary
neurodegeneration. Fe2+, ferrous form of iron, Fe3+, ferric form of
iron, GCIs, glial cytoplasmic inclusions; H2O2, hydrogen perox-
ide; O2−, superoxide anion; OH−, hydroxyl radical; ROS, reactive
oxygen species.

Interestingly, phosphorylation of �-SYN, occurring
during OS, results in increased affinity to the metal
binding site for iron [155].

Where OS arises, the oxidation of iron to its fer-
ric form leads to aggravation of �-SYN pathology.
To this end, the in vitro identification of an enzy-
matic activity, namely ferric-reductase activity within
�-SYN by Davies and coworkers may explain the
contrasting relative distribution of ferrous and ferric
iron in SN: ferrous >ferric iron = 2:1 in healthy con-
trols versus 1:1 in IPD [61, 156–158]. Consequently,
an increased abundance of ferric iron and the consec-
utive propagation of OS via the Fenton reaction [159]
may further accelerate �-SYN aggregation [13].

Another putative mechanism of iron induced �-
synucleinopathy may be proposed by the discovery
of a functional IRE within the 5-untranslated region
of human �-SYN mRNA underlying iron mediated
stimulation of �-SYN expression via translational
regulation [160]. In vitro experiments demonstrated
that in the presence of iron �-SYN mRNA is
upregulated by IRP-knockdown resulting in pro-
nounced cellular �-SYN aggregation [13, 161]. MSA
is associated with disruption of long intervening
non-coding RNAs (lincRNAs) along with protein-
coding genes related to iron metabolism and immune
response [162].

Generally, the crucial role of oligodendrocytes in
MSA becomes clear by its intracellular aggregation

profile of �-SYN. Their high intracellular iron lev-
els along with low concentrations of anti-oxidative
agents (glutathione) in combination with their high
metabolic rate make them particularly vulnerable to
oxidative damage [163, 164]. Plus, cytokines released
by activated microglia in the context of inflammatory
response have been shown to induce oligodendroglial
cell death [165, 166]. Furthermore, oligodendroglial
cytoplasmic aggregation of �-synuclein itself leads
to increased susceptibility to OS and tumor necrosis
factor alpha (TNF-�) [167, 168] building a self-
sustaining damaging system.

Several cell culture investigations, animal models
and PET imaging in MSA patients have demonstrated
that neuroinflammation parallels �-SYN pathol-
ogy [169–173]. Hence, neuroinflammation has been
accepted as a prominent finding contributing to neu-
rodegeneration and �-SYN mediated toxicity mainly
originating from activated microglia cells [3, 167,
169, 174]. Microglial activation in MSA was reported
in regions of neuronal loss including putamen, GP,
pons, SN, and the dorsolateral prefrontal cortex using
[C11]-(R)-PK11195 PET imaging [170] and it has
been demonstrated that microglia activation results
in morphological and functional changes, plus they
release pro- and/or anti-inflammatory cytokines, neu-
rotrophic factors, and cleavage damaged or dead
cells [175–177]. However, albeit their indispensable
mechanism of host defense and maintenance of neu-
ronal viability, microglial cells can be over-activated
leading to chronic inflammation and microgliosis
which is found in several neurodegenerative dis-
eases including MSA. As a result, neurotoxic factors
including TNF-� and interleukin-1 beta as well as
superoxide radicals including ROS and nitric oxide
are released, which further provoke neuroinflam-
mation and protein aggregation, creating a positive
feedback loop facilitating neuronal damage and cell
death [178–184]. Variable forms of �-SYN including
native, misfolded �-SYN as well as nitrated �-SYN
can trigger neuroinflammation by microglia activa-
tion in a dose and conformation dependent manner
[3, 137, 138, 173, 175, 185–193]. Although the exact
mechanisms of microglia uptake of �-SYN are not
fully understood and an �-SYN specific receptor of
microglia has not been identified yet, it has been
demonstrated that an uptake mechanism must exist
[194, 195] that in turn triggers the release of solu-
ble immune modulators. One possible �-SYN uptake
strategy includes the toll-like receptor 4 (TLR4)
which is a pattern-recognition receptor that has been
identified to play an essential role in microglial
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activation mediating phagocytic activity, release of
proinflammatory cytokine and production of ROS
after binding to �-SYN. Following, a modulatory role
of TLR4 in neuroinflammation was suggested.

In summary, �-SYN aggregation is associated
with GCI density in MSA specific areas and acti-
vated microglial cells [174]. Thus, the upregulation
of inflammatory mediators and microglia-mediated
neuroinflammation are associated with the patho-
genesis of MSA [179, 186, 196, 197]. Since
neuroinflammation and �-SYN are observed in early
MSA neuropathology it remains unclear whether
�-SYN induces neuroinflammation or neuroinflam-
mation incudes protein aggregation.

Overall, the role of iron should no longer be
questioned in the process of �-SYN related neu-
rodegeneration as iron accumulates in degenerating
brain regions, under inflammatory conditions and can
aggravate cytokine induced oxidative and nitrosative
stress responses along with distinct effects of iron on
immune effector pathways [198]. Even though it is
still unknown whether neuroinflammation is an initial
or downstream effect [122] of synuclein and/or iron
accumulation, it has been demonstrated that on the
one hand, nitrated �-SYN resulting from OS activates
microglia [138, 199] and elevates proinflammatory
mediators [200, 201] and on the other hand that
iron accumulation activates microglial cells leading
to release of proinflammatory cytokines [202–205].
Consequently, concomitant iron accumulation, OS,
and neuroinflammation can be particularly damag-
ing in the brain by sustaining a self-promoting vicious
circle.

CONCLUSION AND OUTLOOK

This review summarizes the currently available
evidence of the putative functional association of iron
dysregulation in MSA and points out possible targets
for disease modification. Although iron is essential
to maintain physiological functions, iron overload
is linked to cellular damage and neurodegeneration.
An elevation of brain tissue iron levels in MSA has
been determined by histopathological analyses and
conventional imaging studies using T2/T2* and SWI
techniques of MRI. In MSA, highest levels of iron
are detected in putamen. Histopathological investi-
gations complement imaging findings in determining
increased iron levels in basal ganglia, but implicate
perturbation of iron homeostasis even leading to
reduction of bioavailable iron in pons and putamen in

MSA. Mechanistic analyses of iron and �-SYN point
to several potential regulatory interactions includ-
ing iron induced OS promoting neuroinflammation
and �-SYN aggregation. Whether dysregulation of
brain iron homeostasis acts as an inductor of neu-
rodegeneration or is an epiphenomenon of cellular
death remains to be elucidated. Imaging technolo-
gies and consecutive examinations can address this
question and, indeed, increased iron levels in puta-
men have been shown in early disease stages in
MSA. Unfortunately, MRI features and correspond-
ing histopathological measurements are scarce and
postmortem tissues are usually obtained from patients
with advanced disease. Further limitations constitute
the inability of MRI to detect low molecular forms
of iron, the varying biochemical/histopathological
methods used to determine iron in MSA and of course
the small sample sizes.

In conclusion, iron seems to play a yet poorly
understood role in the dynamic pathogenesis of MSA
in the context of neuroinflammation and OS, and
clearly has been an undervalued component in the
past. Considering no currently available treatment
options in MSA, the goal is to identify treat-
able targets to establish disease-modifying therapies.
The complexity and multifactorial nature of MSA
requires multiple strategies. Iron chelators which may
either reduce brain tissue iron content or modify
pathological iron accumulation in specific cells [206]
may be promising in this respect for MSA treatment
[207]. Indeed, treatment with the oral iron chelator
Deferiprone in IPD resulted in significant decrease
of iron deposition in SN using MRI-based measure-
ments and motor scales [208, 209]. To access this
question systematically, we need good animal mod-
els to study MSA and to understand the contributing
role of iron in this process. This may also help to
evaluate the potential of iron targeting strategies by
iron chelators or other iron trafficking modifiers such
as calcium antagonists or anti-hepcidin treatments
[210–212].
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