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ABSTRACT

DNA double-strand breaks (DSBs) induced in the
genome of higher eukaryotes by ionizing radiation
(IR) are predominantly removed by two pathways
of non-homologous end-joining (NHEJ) termed
D-NHEJ and B-NHEJ. While D-NHEJ depends on
the activities of the DNA-dependent protein kinase
(DNA-PK) and DNA ligase IV/XRCC4/XLF, B-NHEJ
utilizes, at least partly, DNA ligase IlI/XRCC1 and
PARP-1. Using in vitro end-joining assays and
protein fractionation protocols similar to those
previously applied for the characterization of DNA
ligase Ill as an end-joining factor, we identify here
histone H1 as an additional putative NHEJ factor.
H1 strongly enhances DNA-end joining and shifts
the product spectrum from circles to multimers.
While H1 enhances the DNA-end-joining activities
of both DNA Ligase IV and DNA Ligase lll, the effect
on ligase Ill is significantly stronger. Histone H1
also enhances the activity of PARP-1. Since histone
H1 has been shown to counteract D-NHEJ, these
observations and the known functions of the protein
identify it as a putative alignment factor operating
preferentially within B-NHEJ.

INTRODUCTION

Endogenous cellular processes and exogenous factors
such as ionizing radiation (IR) generate in the DNA
highly cytotoxic double-strand breaks (DSBs) that under-
mine genomic integrity. Higher eukaryotes utilize for
the majority of DSBs a pathway of non-homologous
end-joining (NHEJ) that employs the products of
DNA-PKes, KU70, KUSO, LIG4, XRCC4 and Artemis

(1,2), as well as the recently characterized factor
XLF/Cernunnos (3,4). We will refer here to this pathway
as D-NHE]J to indicate its dependence on DNA-PK.
Deficiency in proteins of D-NHEJ compromises rejoin-
ing of DSBs in irradiated cells (5-7) and increases DSB
misjoining (8), as well as the frequency of chromosomal
translocations (9,10). In mice, deficiency of several
proteins of D-NHEJ leads to the development of cancer
on a p53~/~ background (11-13). Chromosomal translo-
cations linking an amplified c-myc oncogene with the
IgH locus sequences are frequently observed in these
tumors, and the underlying end-joining event makes
frequent use of microhomologies (14-16). Defects in
components of D-NHEJ have been also implicated in
genomic instability (11,17,18), in the formation of soft
tissue sarcomas (19), and in the aberrant coding and
signal joints formed during V(D)J recombination (20-23).
These observations in aggregate, point strongly to an error
prone DNA-end-joining pathway that handles DSBs
when D-NHEJ is compromised. Because this repair
pathway does not show dependence on genes of HRR
(7), we proposed that it reflects an alternative form of end
joining that functions as backup (B-NHEJ) to D-NHEJ.
The operation of alternative pathways of NHEJ has
also been suggested by experiments evaluating joining
of ends generated in naked DNA in vitro and transfected
into cells for processing. Mammalian cells demonstrate
an extraordinary ability to join such transfected DNA,
either by direct ligation or by utilizing microhomologies
(16,24). Notably, cells deficient in DNA-PKcs (15,25,26),
Ku (15,27), XRCC4 (15,27) or DNA ligase IV (15) show
high potential of end joining with preferential use of
microhomologies (15,27). This microhomology-dependent
end joining may overlap partly or completely with
B-NHEJ and has been recently shown to be involved
in the repair of DNA breaks created during assembly of
antigen-receptor genes (28-31). These developments
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provide solid evidence for the acute biological significance
of the backup pathway of DSB repair and implicate it in
the chromosomal translocations of lymphoid cancers.

Despite the potential consequences of B-NHEJ func-
tion, little is known about the underlying mechanism,
its regulation, as well as its integration into the cellular
DNA DSB-processing apparatus. Recent work identifies
DNA ligase III as a candidate factor in B-NHEJ
(32,33) and points to PARP-1 as an additional potential
contributor (33,34). Here, we present experiments demon-
strating that H1 may be an additional factor contributing
to DSB repair as a component of B-NHEJ.

MATERIALS AND METHODS
Cell lines and extract preparation

HeLa cells were grown either as suspension or as
monolayer cultures in Joklik’s modified MEM (S-MEM)
supplemented with 5% bovine calf serum. Experiments
were performed either with HeLa nuclear extracts (NE) or
with recombinant human DNA ligase III or recombinant
human DNA ligase IV/XRCC4 purified from Sf9 cells
(see later). For preparation of cell extracts a 1-30 L HeLa
cell suspension was grown in spinner flasks to 0.5-1 x 10°
cells/ml and collected by centrifugation. Cells were washed
in ice-cold PBS and subsequently in five-packed cell
volumes of cold hypotonic buffer (10 mM Hepes, pH 7.5,
SmM KCI, 1.5mM MgCl,, 0.2 mM phenylmethylsulfonyl
fluoride, PMSF and 0.5mM DTT). The cell pellet was
resuspended in one volume of hypotonic buffer and, after
10 min in ice, disrupted in a Dounce homogenizer.

For NE preparation 3M KCI was slowly added to
the homogenized cells to a final concentration of 50 mM.
The extract was incubated for 10min on ice and
centrifuged for 30min at 3300g at 4°C. Supernatant
was collected as Cytoplasmic Extract (CE). Nuclear pellet
was resuspended in two-packed nuclear volumes (pnv) of
low salt buffer (20mM Hepes, pH 7.9, 20mM KCI,
I.5mM MgCl,, 0.2mM EDTA, 02mM PMSF and
0.5mM DTT) and 1 pnv of high salt buffer (10mM
Hepes, pH 7.9, 1.6 M KCI, 1.5mM MgCl,) was slowly
added to a final concentration of 400 mM KCI. Extract
was incubated for 30min at 4°C under gentle rotation
and centrifuged for 30min, 50000g at 4°C. The super-
natant was collected as NE. NE was dialyzed overnight
in dialysis buffer (20 mM Hepes, pH 7.9, 10-20% glycerol,
400mM KCI, 0.2mM EDTA, 02mM PMSF and
0.5mM DTT) before aliquoting, snap freezing and storing
at —80°C.

Extract fractionation

Fractionation of DNA-end-joining factors was carried
out over a dsDNA-cellulose (Sigma) followed by a Mono-
S (Amersham Biosciences) column. Details on these
fractionations have been published elsewhere (32).
Briefly, fractionation over dsDNA-cellulose was initiated
by diluting NE to 300mM KCI using buffer A (20 mM
Hepes pH 7.9, 20% glycerol, 0.2mM EDTA, 0.2mM
PMSEF, 0.5mM DTT) and loading after equilibration at
the same salt concentration. The flow through fraction
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was designated peak I/II to maintain previous nomencla-
ture. DNA-end-joining activity was eluted at 750 mM
KCI (peak III). Active fractions of peak III were pooled,
dialyzed against buffer A containing 100mM KCI and
loaded, at a flow rate of 0.5ml/min onto an 1ml Mono
S HR 5/5 column equilibrated in the same buffer. A linear
gradient over 10 column volumes was applied up
to 300mM KClI, followed by three stepwise increases to
500, 750 and 1000mM KCI, each over 5-10 column
volumes. Fractions obtained from all fractionation
steps were tested for protein concentration using the
Bradford assay, and in vitro DNA-end-joining activity
(see later).

Proteins and antibodies

Recombinant human histone H1.2 was purchased from
Calbiochem (Darmstadt, Germany). Histone H1 (mixture
of different isoforms from calf thymus) was from Alexis
Biochemical (San Diego, USA). A mouse monoclonal
antibody against histone H1 clone AE-4 was from Acris
Antibodies GmbH (Hiddenhausen, Germany). Recombi-
nant human DNA ligase ITI and DNA ligase [V/XRCC4
complex was purified from baculovirus infected Sf9 cells
as previously described (32,35,36).

Western blot analysis

For Western blotting, proteins were electrophoresed on
12% SDS—polyacrylamide gels, transferred to a nitrocel-
lulose (PVDF membranes were not working well for H1)
membrane (Schleicher and Schuell, Dassel, Germany)
and probed by the ECL-Plus kit as recommended by
the manufacturer (Amersham Biosciences). Signal was
detected using the ‘Typhoon’ (GE Healthcare, Freiburg,
Germany), or the VersaDoc (Biorad, Munique,
Germany).

Mass spectrometry analysis

We used mass spectrometry analysis to identify peptides
present in an active fraction of MonoS IIID. For this
purpose, proteins were fractionated in a 10% SDS-PAGE
gel and stained with Coomassie. Prominent bands were
excised and processed for MS analysis at the Medical
Proteome Center of Ruhr-University of Bochum,
Germany.

DNA-end joining

Supercoiled plasmid pSP65 (3005bp; Promega) was
prepared using CsCl,/EtBr gradients. It was used as a
substrate in DNA-end-joining reactions following diges-
tion with Sa/l to generate linearized DNA. In some
experiments, pSP65 was linearized using other restriction
endonucleases as indicated. End-joining reactions were
performed in 20mM Hepes-KOH (pH 7.5), 10mM
MgCl,, 80mM KCI, I mM ATP, ImM DTT, 25-250ng
of DNA (as indicated) and 0-20 pg of HeLa NE, fractions,
purified DNA ligase 3B or purified DNA ligase
IV/XRCC4 in a final volume of 20 ul at 25°C for 30 min.
Reactions were terminated by adding 2 ul of 0.5% SDS,
2ul of 0.5M EDTA and 1l of proteinase E (10 mg/ml),
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then incubated for 1h at 37°C. DNA from the reaction
was loaded on a 0.7% agarose gel and run at 45V
(2V/ecm) for 5h. Gels were stained in SYBR Gold
(Molecular Probes) and scanned in a Fluorlmager
(Typhoon, Molecular Dynamics). For quantification of
rejoining the ImageQuant software (Molecular Dynamics)
was used to calculate the percent of input plasmid
found in dimers and other higher order polymers.
The values obtained are included in the figures below
the corresponding gels.

For analysis of reaction products by gel-filtration
chromatography DNA-end-joining reactions were per-
formed with a 943-bp fragment of pUCI9 as substrate.
Digestion (500 ul) for 1h of pUCI9 (25pug) with 50 U
Alw4dl/Apal.1 (MBI Fermentas) generates three frag-
ments (497, 943 and 1246 bp), which were separated in
preparative agarose gels after staining with ethidium
bromide and collected by electro elution (Biorad,
Munique, Germany). Electroeluates were ethanol precipi-
tated, pellets dissolved in TE buffer and the DNA con-
centration measured in a spectrophotometer (NanoDrop
Technologies, Inc., Rockland, USA). Typically, 40ng
of the 943-bp fragment were used in 20 pul end-joining
reactions (1h, 25°C) and products of 25 such reactions
were pooled and analyzed by gel filtration. When H1 was
present, the reaction mixture was incubated for 10 min at
25°C before adding ATP and ligase IIIf (20ng per
reaction). As a control one reaction was stopped with
2ul of 0.5% SDS, 2ul of 0.5M EDTA and 1pl of
proteinase E (10mg/ml) and incubated for 1h at 37°C
while the test reaction was stopped simply by adding
DNA-loading buffer.

Gel filtration using a Sephacryl S1000-SF column

Sephacryl S1000-SF (GE Healthcare, Freiburg, Germany)
was packed in a HR 10/30 column (GE Healthcare,
Freiburg, Germany) giving 290-mm height and 10-mm
diameter (~23ml packed volume). Chromatography
was carried out with 1.5 column volumes of TE buffer
containing 80mM NaCl in an AKTA FPLC (GE
Healthcare, Freiburg, Germany) and a flow rate of
0.5ml/min. To calibrate the column pUC19 was digested
with Pyull to generate a 322 and a 2364 bp fragment.
In addition, A DNA (48 kb) (Fermentas) was also used.

PARP-1 purification and assays

Recombinant PARP-1 was produced in Sf9 cells using
the Baculovirus Constructs, pFastBacl-PARP-1 (kindly
provided by Dr Matthew Knight) (37). Small-scale stocks
of baculovirus were prepared from monolayer cultures
and large-scale stocks from suspension cultures. Sf9 cells
were grown as spinner cultures at 27°C in Grace’s insect
medium (pH 6.1) supplemented with 10% foetal
calf serum, Lactalbumin hydrosylate (Sigma), Yeastolate
ultrafiltrate(Gibco) and penicillin/Streptomycin. Cells
were infected in suspension at multiplicity of infection
(MOI) of 2.5 and incubated for 48h before collection.
PARP-1 expression was determined by SDS-PAGE
(8%) and Western blotting.

For purification of PARP-1 (38) ~700 x 10° infected
cells were lysed at 4°C with ice-cold homogenization
buffer 25mM Tris—HCI, pH 8.0, 50 mM glucose,10 mM
EDTA, ImM B-mercaptoethanol, 1mM PMSF, 0.2%
Tween-20, 0.2% Nonidet P-40 (Igepal), 0.5M NaCl, 2 pg/
ml Aprotinin, ] mM Benzamidine-HCI, 1 pg/ml Pepstatin)
and centrifuged. Endogenous DNA was removed by
addition of 1 mg/ml salmon sperm protamine sulphate
(Biomedicals) followed by centrifugation (20 min,
40000 rpm, 4°C). Supernatant was precipitated by two
steps (0-30% and 30-70%) of ammonium sulphate. The
precipitated protein of the second step was dissolved in
ice-cold chromatography extraction buffer A (50 mM
TrissHCI, pH 8.0, 1mM EDTA, 25mM Na,S,0s,
10mM 2-mercaptoethanol, I mM DTT, 0.1 mM PMSF,
10% glycerol) and dialysed overnight in a buffer contain-
ing 50mM Tris-HCI, pH 8.0, I1mM EDTA, 25mM
Na»S,03, 10mM B-mercaptoethanol, 1mM DTT,
0.1mM PMSF, 10% glycerol, 0.25M NacCl). Protein
was loaded on a DNA single-strand cellulose column
equilibrated with chromatography buffer A and eluted by
a step gradient of 250, 750 and 1000 mM NaCl. PARP-1
eluted at 750 mM NacCl. Purified fractions were used for
analysis by SDS-PAGE, protein concentration determi-
nation (Bradford) and the measurement of enzymatic
activity.

PARP-1 activity was measured with a Western blot
assay (39) based on quantification of PARP-1 auto-poly-
ADP-ribosylation using an anti-poly-(ADP-ribose) anti-
body. The reaction mix (20 pl) contains 10x NHEJ buffer
(described earlier), 1mM ATP, 50ng of Sal-1 digested
pSP65, 4mM NAD™' and the indicated amounts of
PARP-1, H1.2 or Ligase-3B. The total incubation time
was 30min at 37°C, but Ligase III and ATP were added
after a 10min pre-incubation. Reactions were stopped
by adding 2x SDS loading buffer and sonicated for 15 min
at 80°C before running SDS-PAGE (6%) PAGE
and Dblotting onto HyBond-P PVDF membranes
(GE Healthcare). For immunodetection, an anti-poly-
(ADP-ribose) antibody PAR(m-MAb 10H), Alexis was
used and detected by ECL (GE healthcare).

For dot blot analysis 6l aliquots from the above
reactions were diluted with SDS and sonicated for 15 min
at 80°C. Nitrocellulose membrane (Protran BA 85,
0.45 um, Schleicher & Schuell, Germany) was activated
and 1l sample was loaded. The membrane was then
incubated in blocking buffer, incubated with the anti-
poly(ADP-ribose) antibody and immunodetected as
described earlier. Quantification of Western- and Dot-
blots was carried out using the ImageQuant (Amersham
Biosciences).

RESULTS

Fractionation of nuclear extract identifies
a DN A-end-joining-enhancing factor

We have previously shown (32) that the DNA-end-joining
activity of HeLa nuclear extract can be fractionated
according to the scheme outlined in Figure 1A. First,
ds-DNA cellulose effectively separates the majority of
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Figure 1. Identification of H1 as a DNA-end-joining factor. (A) Outline of the nuclear extract fractionation scheme utilized. Extracts were first
fractionated over a double-stranded DNA cellulose column followed by further fractionation of active fractions over a Mono S column. Shown are
the general fractionation schemes, typical chromatograms for each column, as well as SDS-PAGE gels of peak fractions. (B) Effect of fraction IIID
on DNA-end joining catalyzed by purified DNA Ligase I1IB. Reactions were assembled with the indicated amounts of protein. Shown as control are
reactions assembled without extract, or with crude nuclear extract. (C) Coomassie blue-stained SDS-PAGE gel (12%) of fractions 86 and 87 (IIID,
20 ul) from a fractionation over a Mono S column. The two prominent bands detected were excised and subjected to mass spectrometry analysis.
(D) Sequest search of peptides characterized by LC/MS-MS from the bands shown in C led to the identification of histone HI variants H1.4 and
H1.5 in the upper band and histone H1.2, H1.4 and H1.5 (74) in the lower band (derived by Flicka sequence analysis). The graph shows
the corresponding isoforms and the coverage achieved through the peptides analyzed (grey boxes; lines indicate the size of the covered area and the
size of the protein isoform itself). (E) Western blot analysis of the indicated fractions with an anti-histone HI antibody. Ten micrograms of HeLa
nuclear extract (NE) and each 10 pl of fractions I/II and III, IIIB1 and IIIB2 as well as 2 pl of fraction IIID2 were separated on a 12% SDS-PAGE
gel and blotted onto a nitrocellulose membrane.

end-joining activity in the 750 mM NaCl fraction (fraction combination with other fractions [Figure 1A and (32)].
I1T). Further fractionation on Mono S generates fraction Factors implicated in D-NHEJ, such as DNA ligase 1V,
I1IB2, which contains the majority of DNA-end-joining DNA-PKcs and Ku are mainly found in I1IB1, whereas
activity (Figure 1A). Fraction IIIB1 has only limited DNA Ligase III, PARP-1 and XRCC1 are mainly found
activity and fraction IIIC is inactive—either by itself or in in I1IIB2 (32). Fraction IIID is inactive by itself, but
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increases significantly the end-joining activity of IIIB2
suggesting an important role in the reaction (32). Yet,
the active factor in 111D remained uncharacterized.

To characterize IIID, we assembled reactions with
different amounts of purified recombinant DNA ligase
IT1B in the presence or absence of 111D (Figure 1B). Under
the reaction conditions employed the ligase by itself
rejoins the plasmid substrate to generate a major
band containing open circular plasmid, a minor band
with supercoiled plasmid, and several bands containing
substrate dimers and multimers. From the percent end-
joining results shown in the bottom of Figure 1B it can
be seen that fraction IIID at 0.5 pl enhances significantly
end joining, particularly at low ligase concentrations,
by preferentially enhancing intermolecular joining.

Mass spectrometry analysis identifies histone
H1 as the active factor in ITID

SDS-PAGE of IIID shows two prominent bands in close
proximity migrating with an apparent molecular weight
of 30-32kDa (Figure 1C). For further characterization,
bands were excised, digested, subjected to LC-MS/MS
followed by sequential mass spectroscopy (MS/MS
spectra) and the results were analyzed with the
SEQUEST software. In this way, isoforms of the linker
histone H1 could be identified as the major constituents
of the bands. Figure 1D graphically shows the coverage
achieved by the peptides analyzed. The relatively low
peptide sequence coverage at the C-terminus of the
HI1 isoforms is due to their high lysine and arginine
content that leads to the generation of small peptides
during trypsin digestion; these small peptides are fre-
quently lost during reverse phase HPLC. Despite this
limitation, the content of the two SDS-gel bands could
be identified with a high level of confidence. Both gel
bands contain the two H1 isoforms, H1.4 and H1.5, while
the lower band also contains H1.2. Western blot analysis
of IIID using a mouse monoclonal antibody against
histone H1 shows bands corresponding to those of SDS—
PAGE, in agreement with the mass spectrometry analysis
(Figure 1E).

Purified histone H1.2 can fully substitute for fraction IIID

We compared the end-joining activity of fraction IIID
with the activity of purified human recombinant H1.2, the
most abundant isoform in many cell types (40,41).
Recombinant human H1.2 strongly stimulates DNA-end
joining when added to reactions assembled with fraction
IIIB2 generating an effect practically identical to that
of MID (Figure 2A). Similar results are obtained
when fraction IIIB2 is replaced by DNA Ligase IIIB
(Figure 2B), with 50-100ng H1.2 generating a maximum
effect. A mixture of H1 isoforms purified from calf thymus
gives similar results (results not shown).

Enhancement of DNA-end joining strongly
depends on histone concentration

To investigate further the function of histone HI in
DNA-end joining, we studied its concentration depen-
dence in reactions assembled with DNA ligase

IR (Figure 2C). Increasing amounts of H1.2 stimulate
DNA-end joining and cause a shift in the products from
dimers and open circles to multimers. This stimulation
reaches a maximum at 80ng H1.2, but higher concentra-
tions strongly inhibit DNA-end joining with only few
dimers forming above 120 ng.

To investigate the ligase specificity of Hl-mediated
stimulation of end-joining we assembled reactions with
purified recombinant DNA ligase IV/XRCC4. Because
this ligase shows only a low activity under the conditions
optimized for DNA Ligase III, we searched for alternative
conditions and noted that omission of KCI from
the reaction buffer significantly enhances its activity (42).
Reactions assembled in KCl-free buffer show significant
end joining that is only slightly stimulated by HI1.2 up
to 40ng (Figure 2D). At higher H1.2 concentrations
DNA-end joining is rapidly inhibited. This result suggests
that the potentiation of end joining by HI is more
pronounced for DNA Ligase III.

Effect of H1.2 on the joining of different DNA ends

All above-described experiments use the pSP65 plasmid
linearized with Sall to generate DNA ends with 4nt 5
overhangs. To examine the dependence of the H1 effect on
the type of DNA ends, pSP65 was linearized with Pstl
or Smal to generate 4nt 3’ overhangs and blunt ends,
respectively, and end joining was tested. Reactions
assembled with DNA Ligase III and Pst/-linearized
substrate show an abrupt stimulation of end joining and
the formation of multimers at H1.2 concentrations above
40ng followed by a strong inhibition above 120ng
(Figure 2E). End joining is not detectable in reactions
assembled with Smal-linearized substrate in the absence of
H1.2 (Figure 2G). Yet, reactions assembled with 20ng
H1.2 show robust end joining that increases rapidly at
40ng and reaches a maximum between 80 and 120 ng.
At higher H1.2 concentrations an abrupt decrease in
DNA-end joining is observed again.

When similar reactions are assembled with DNA ligase
IV/XRCC4 and Pstl-linearized substrate, only a modest
stimulation of end joining occurs up to 40ng HI1.2
(Figure 2F) that is similar to that observed with Sall-
linearized substrate (Figure 2D). Smal-linearized substrate
shows no end joining by DNA Ligase IV in the absence
of H1.2 (Figure 2H), a marginal stimulation up to 40 ng
followed by a clear inhibition at higher concentrations.

The above results in aggregate demonstrate a narrow
concentration optimum for stimulation by histone H1 of
joining of different types of DNA ends. This stimulation
is significantly more pronounced in reactions assembled
with DNA Ligase III and may derive from a function of
H1 as an alignment factor (43) in end-joining reactions
catalyzed by this enzyme.

H1 concentration optimum depends
on the amount of substrate DNA

The dramatic increase in multimers among the products
of the reactions assembled with H1.2 suggests protein—
DNA interactions that fundamentally alter substrate
topology. Therefore, we investigated in greater detail the
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Figure 2. Characterization of H1 function in DNA-end joining. (A) Comparison of end joining between purified histone H1.2 and MonoS fraction
IIID. Reactions were assembled with the indicated amount of protein and end-joining activity evaluated. Note that MonoS IIID, when used alone,
does not show detectable DNA-end joining activity. (B) MonoS fraction IIID and histone H1.2 enhance DNA-end joining in reactions assembled
with 10ng purified recombinant DNA ligase IIIP. Ligase alone has only limited and H1.2 alone (50ng) shows no detectable DNA-end-joining
activity. (C) Histone H1.2 titering in DNA-end-joining reactions assembled with 10ng DNA ligase IIIf. The DNA substrate, 50 ng pSP65, was
linearized with Sa/ 1 to generate ends with 4nt 5 overhangs and was incubated with histone H1.2 for 10 min at 25° before adding DNA ligase IIIf
and ATP to start end joining, which was carried out at 25°C for 30 min. (D) Titering of Histone H1.2 in DNA-end-joining reactions assembled with
100ng DNA ligase IV/XRCC4. Other details as in (C). Reactions were assembled without KCI to increase DNA-end-joining activity (see text).
(E) DNA-end joining in reactions assembled with 10ng DNA ligase IIIp and different amounts of histone H1.2 using pSP65 plasmid digested with
Pst 1 to generate 4nt 3’ overhangs. (F) As in (E) but for reactions assembled with 100 ng DNA ligase IV/XRCC4. (G) DNA-end joining in reactions
assembled with 10 ng DNA ligase I1IB and different amounts of histone H1.2 using pSP65 plasmid digested with Sma 1 to generate blunt ends. Other
conditions as in (C). (H) As in (G) but for reactions assembled with 100ng DNA ligase IV/XRCC4.

stoichiometry of H1.2 with reference to the substrate While the end-joining maximum is achieved at 40ng H1.2
DNA. Figure 3A shows the effect of H1.2 on end-joining when using 25 ng substrate, 80 ng is required in reactions
reactions assembled with 10ng purified ligase III and assembled with 50ng substrate. Further increase of

different amounts of Sa/ I-linearized substrate DNA. substrate amount to 100ng does not shift the maximum
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Figure 3. The effect of histone H1 on DNA-end joining depends upon the amount and the length of the DNA substrate. (A) Titration of the effect of
histone HI on DNA-end joining for reactions assembled with 10ng DNA Ligase IIIf and different amounts of Sa/ I digested substrate DNA as
indicated. Other conditions as in Figure 2C. (B) DNA-end joining in reactions assembled with 20ng DNA Ligase IIIf and 30 ng substrate DNA of
different lengths as indicated. DNA fragments of 497 and 943 bp were prepared by digesting pUC19 with A/w441. Other conditions as in Figure 2C.
Alw441 recognizes the sequence 5'-G|TGCAC-3’ and generates ends with 3’ 4-bp extensions. (C) The choice of solvent modulates the activity of H1.2
in DNA-end joining. The experiments described earlier were carried out with H1.2 dissolved in reaction buffer (see ‘Materials and methods’).
Titration of end-joining reactions with H1.2 dissolved in water or reaction buffer and tested in the presence of 10 ng DNA Ligase IIIB. Other details
as in Figure 2C. Note the shift in the maximum of DNA-end joining from 80 to 20 ng.

of end joining but reduces the inhibition typically
observed at higher HI1.2 concentrations. Assuming an
even binding of H1 throughout the DNA molecule and
considering the relative abundance in the reaction of
substrate DNA and H1.2 protein, we estimate that at the
end joining maximum there will be one H1 molecule
bound for every 13 bp, if all supplied protein is active to
bind DNA.

We also carried out reactions using substrates of
different sizes generated by digesting pUCI9 with
Alw44l (Apall) and purifying the 497- and 943-bp
fragments. The results summarized in Figure 3B indicate
that when reactions are assembled with 30ng substrate

and 20 ng of DNA ligase IIIP, the optimum in DNA-end
joining is always achieved with 80ng H1.2 regardless of
substrate size. Since the abundance of DNA ends is
proportionally larger in reactions assembled with small as
compared to large substrate molecules, the dependence
of the HI effect on the number of base pairs, rather than
the number of DNA ends available is suggested. At 80 ng
H1.2, 37, 71 and 226 molecules will be bound on the
497, 943 and 3005bp (pSP65) DNA molecules, respec-
tively, which is again equivalent to one HI molecule for
every 13 bp.

In the course of our investigations we noticed that
the effect of HI depended strongly on the method of



preparation of the working H1 solution. In the above-
described experiments, histone H1 was diluted in reaction
buffer just before distribution in individual reactions.
Notably, when histone HI1 was instead diluted in HO,
the end-joining optimum shifted to 10-20 ng (Figure 3C).
Other aspects of the H1 effect on end joining remained
qualitatively unchanged. Because this preparation proto-
col increased the apparent activity of the protein for our
assays, it was adopted in further experiments.

H1-mediated enhancement of end joining
is not due to DNA aggregation

Histones and other DNA-binding factors are known to
act as DNA-condensing agents. Such condensation gen-
erates molecular crowding that can cause the potentiation
of DNA-end joining observed in reactions assembled
with H1.2 (44). To examine this possibility we used gel
filtration to check the fractionation characteristics of
DNA substrate and the products of end-joining reactions
carried out in the presence or absence H1.2. We reasoned
that high molecular weight aggregates, if forming,
they will be unable to enter the column. Therefore, if
end joining only occurred in aggregated DNA, high
molecular weight products would not pass through the
column. The resin used, Sephacryl S-1000, has a separa-
tion range between 5 x 10° to 10° Da with an exclusion
limit of 20 kb DNA. To accommodate this exclusion limit,
end-joining reactions were carried out with the 943-bp
fragment of pUCI19 (Figure 3B) using 20ng DNA
ligase I1IJ.

We tested the separation characteristics of the column
with a mixture of A DNA, linearized pSP65 (3005 bp)
and the 943- and 322-bp fragments. Figure 4A shows
a typical chromatogram and Figure 4B the detection of
the DNA fragments in the different fractions. High
molecular weight 1 DNA is found in the early fractions
14-16, pSP65 substrate size DNA in fractions 14-26,
and low molecular weight DNA in fractions 22-34,
as expected.

For a test of the products of DNA-end joining, 25 20-ul
reactions were allowed to go to completion in the presence
of 0, 20 and 120ng HI1.2, were pooled, loaded on the
column without adding stop solution and fractionated.
Figure 4C, D and E show DNA substrate and product
fractionation of reactions assembled with different
amounts of histone HI when 80 mM NaCl were present
in the running buffer. Figure 4F, G and H summarize
results of identical reactions fractionated in a buffer
containing 600 mM NaCl. In reactions carried out in the
absence of H1.2 (Figure 4C and F), unrejoined substrate
fractionates as expected from the results shown in
Figure 4B. The presence of high salt in the running
buffer has no effect on the fractionation characteristics
(compare Figure 4C with F). In both cases, and in line
with their larger size, the products of end joining are
found in slightly lower fractions. In reactions carried
out in the presence of 20ng H1.2, substrate is found in
the late fractions, as expected and high molecular
weight products in fractions 14-18, independently
of the presence of high salt in the running buffer
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(compare 4D with 4G). The unchanged fractionation
characteristics of unrejoined DNA substrate and products
in reactions assembled with an amount of histone HI1
resulting in maximum potentiation of end joining, argue
against DNA aggregation. However, histone H1 at higher
concentrations does indeed induce substrate aggregation
as indicated by the results of reactions assembled with
120ng H1.2. Under these conditions, aggregation results
in extensive loss of substrate DNA and products, which is
similar in magnitude in fractionations carried out using
either low or high salt buffer (Figure 4E and H). Even low
molecular weight material entering the column fraction-
ates aberrantly suggesting gradual release from the
aggregate during fractionation. Thus, extensive DNA
aggregation can indeed be caused by histone HI, but
this effect is not detectable at concentrations stimulating
DNA-end joining.

Histone H1 activates PARP-1

The results presented above implicate histone H1 as an
accessory factor of DNA Ligase III and thus as a putative
component of B-NHEJ. We inquired, therefore, whether
the activity of other candidate components of this path-
way is modified by histone HI1. End-joining reactions
were assembled as described earlier but in the presence of
NAD" and different amounts of PARP-1, and PARP-1
activity measured using an antibody against poly(ADP-
ribose). The results in Figure SA and B show a marked
increase in PARP-1 activity with increasing concentra-
tion of histone H1, measured either by Western blot
(Figure 5A) or by dot blot (Figure 5B), although the
increase is of larger magnitude in the dot blot. Thus,
a marked stimulation is observed at low concentrations
of H1 reaching a maximum at about 10-20ng and a
decline at higher concentrations. The fluctuations in
PARP-1 activity observed parallels the fluctuations in
DNA-end-joining activity implying a common molecular
base (Figure 5C, lanes with 0ng PARP-1). The effect is
PARP-1 concentration dependent and saturates above
100 ng protein (results not shown). These observations
point to cooperative interactions between PARP-1 and
histone H1, which are compatible with a function in the
same repair pathway.

The enhanced activity of PARP-1 in the presence of
histone H1 1is not directly reflected by an overall
enhancement in end-joining activity (Figure 5C). This is
not surprising as the end-joining assay employed here
does respond to the presence of PARP-1 (compare 0ng
HI1 lanes in Figure 5C). However, other forms of assays
have clearly demonstrated an essential role of PARP-1
in B-NHEJ (33). Nevertheless, an enhancement in
end joining is notable with increasing PARP-1 concentra-
tion in reactions assembled with 20ng histone HI,
which lies beyond the optimum. This suggests that
PARP-1 can help to overcome the inhibition mediated
by an oversupply of histone H1 and is again com-
patible with a cooperative function between these two
proteins.
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Figure 4. The effect of histone H1 on DNA-end joining cannot be attributed to Hl-induced DNA aggregation. Products of DNA-end joining
reactions, carried out as described under ‘Materials and methods’ section in the presence of purified DNA Ligase IIIf and histone H1.2, were
analyzed for possible aggregation by gel filtration (Sephacryl S-1000 SF in HR 10/30, void volume 9.7ml). (A, B) Calibration of the column with
pUCI19 fragments, pSP65 and A DNA. (A) shows a typical chromatogram, whereas (B) the DNA fragments found in the different fractions by
agarose gel electrophoresis. The DNA mixture contained 0.45pug 2 DNA, 1 pg linearized pSP65 (3005 bp), 0.72 ug 943 bp and 0.4 pg 322bp DNA
fragments. High molecular weight 1 DNA is found in early fractions 14-16, pSP65 substrate size DNA in fractions 14-26, and low molecular weight
DNA in fractions 22-34, validating thus the separation potential of the column. (C, D, E) Analysis by gel filtration of substrate and products of
DNA-end-joining reactions assembled with 20 ng DNA Ligase I1I and the indicated amounts of histone H1. Gel filtration was carried out in a buffer
containing 80 mM NaCl. (F, G, H) Reactions similar to those shown in C, D and E were analyzed by gel filtration in a buffer containing 600 mM

NaCl. Other reaction details as in Figure 2C.

DISCUSSION
Histone H1 is an essential component of chromatin

Histone HI1 proteins are major structural components
of the chromatin fiber with important functions in
many chromatin-related activities including DNA repair,
although the underlying mechanisms remain largely
uncharacterized (45-48). The group of HI1 proteins
represents the most variable class of the otherwise highly
conserved histone proteins, and shows highly dynamic
binding to DNA (45-48). Analysis of mice lacking
various combinations of histone H1 isoforms suggests

a high degree of functional redundancy among them and
indicates that the correct overall amount, rather than the
correct relative amounts of the various subtypes, is
essential for development and survival. Thus, a 2-fold
reduction in HI content is not compatible with normal
development, and mutant embryos die in midgestation
with multiple defects (49,50).

Histone H1 may inhibit HRR and D-NHEJ

Several reports suggest inhibitory interactions between
histone H1 and pathways of DNA DSB repair.
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Figure 5. Histone H1 activates PARP-1. (A) End-joining reactions as described in Figure 2C were assembled with 20ng DNA Ligase IIIf,
in the presence of NAD ", and with different amounts of histone Hl and PARP-1, as indicated. PARP-1 activity was measured as autopoly(ADP-
ribosylation) by Western blotting using an antibody against poly(ADP-ribose). The lower panel shows the quantification of the results shown in the
blot. (B) Results from the same reactions used in the Western blot shown in (A) but analyzed by dot blotting. The lower panel shows
the quantification of the results shown in the blot. (C) DNA-end-joining activity measured in the reactions used in A and B to measure PARP-1
activity. Reactions were assembled as described in Figure 2C with different amounts of histone H1 and PARP-1 as indicated. (D) The two pathways
of NHEJ. D-NHEJ requires DNA-PK and carries out the final ligation step utilizing the LiglV/XRCC4/XLF complex, whereas B-NHEJ uses
histone HI as an alignment factor and carries out end ligation utilizing LigIII/XRCC1 with some contribution from PARP-I.

Disruption of the Saccharomyces cerevisiae histone HI
homolog, HHOI, has no obvious effect on examined
chromatin structure-associated phenotypes, but causes
alterations in DNA damage response that are compatible
with an inhibitory effect of Hhol on homologous recom-
bination (51). Despite the beneficial effect on HRR,
disruption of HHOI causes increase in radiosensitivity
suggesting disturbances in the balance among DNA repair
pathways that reduce the fitness of the organism and its
potential to respond to DNA damage (51).

Results in line with an inhibitory role of histone
H1 in DNA DSB repair have also been reported in

experiments investigating DNA Ligase IV/XRCC4-
dependent DNA-end joining in vitro (42). A marked
inhibition in DNA-end joining is observed under these
conditions, which is partially rescued by H1 phosphoryla-
tion through DNA-PK. Since phosphorylation reduces
the affinity of histone H1 for DNA binding, the authors
propose (42) that phosphorylation by DNA-PK is a
mechanism for removing histone H1 from the DNA (52)
in preparation for Ku binding and initiation of D-NHEJ.
Although Ku has a high enough DNA-end-binding
affinity to displace histone H1 from DNA ends (53),
DNA-PK-dependent phosphorylation is likely to facilitate
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this process, but the initial phosphorylation event will
need to be catalyzed in-trans by a nearby DSB that already
harbors an activated DNA-PK molecule. Overall, these
results are in line with the results in Figure 2 that show
only a modest increase in DNA Ligase-IV-dependent end
joining at low histone HI concentrations, followed by a
strong inhibition at higher concentration. It is likely that
the initial small increase in DNA Ligase IV activity
observed in our experiments was not seen in the latter
study (42) due to the conditions used and the range of
histone HI concentrations studied.

Apparently different results regarding the role of
histone H1 in DNA repair have been recently reported
in DT40 cells (54). In this model system, only knock-out
of HIR, one of the six avian HI isoforms, increases
considerably the sensitivity of cells to the alkylating agent
MMS and modestly to IR (54). Since the H/R mutant is
not further sensitized to MMS by inactivation of Rad54
and shows a reduction in gene-targeting efficiency and in
sister chromatid exchanges, the authors propose that HIR
supports HRR. Although this interpretation appears
plausible, alternative interpretations not invoking a
positive effect of histone Hl on HRR are also possible
and are discussed in the following section.

Histone H1 supports DSB repair
by backup pathways of NHEJ

As evident from the results presented in the previous
section, several observations support the view that histone
HI1 is a putative component of B-NHEJ. Thus, extract
fractionation studies combined with proteomics analy-
sis identify histone Hl as a DNA-end-joining factor
(Figure 1). Because the in vitro DNA-end-joining assay
used to identify the protein reflects mainly B-NHEJ, the
results implicate histone H1 in this pathway of DNA-end
joining. This interpretation finds further support by the
observation that the DNA-end-ligation activity of ligase
IIT is strongly and relatively specifically enhanced by
histone HI1, albeit in a narrow range of histone HI
concentrations, which also explains reports of inhibitory
action (55,56). Earlier studies also report an enhancement
by histone H1 of inter-molecular ligation mediated by
either DNA Ligase III, or DNA Ligase IV (57). The
results of the latter study are also compatible with a
preferential effect on DNA Ligase III, as reflected by a
pronounced  activation at lower  histone  HI
concentrations.

How is histone H1 supporting end joining by B-NHEJ?
One of the most critical steps in all forms of NHEJ is
the alignment of the DNA ends in preparation for the
DNA-end-ligation step. Indeed, alignment factors have
been considered an important component of NHEJ (43).
In D-NHEJ, the Ku/DNA-PKcs complex is thought
to play this important role. We propose that histone HI
assumes this function in B-NHEJ. The structured globular
domains of the linker histones are known to bind to
naked DNA molecules co-operatively by constraining
two double helices next to each other and stacking linker
histones between them (58,59). Other studies show
that histone H1 molecules juxtapose to form end to end

polymers (60), and analysis by electron microscopy
demonstrates that HI is capable of assembling DNA in
tandem arrangements (57). All these observations are
compatible with a function of histone H1 as an alignment
factor (43).

Notable is also the observation that in the presence of
histone HI1, intermolecular ligation is favored over
intramolecular ligation, suggesting that histone H1 alters
the topology of the DNA substrate. Binding of histone H1
on a linear, naked DNA molecule will force it from a
random coil to a more or less-stretched conformation
that will take the ends of the molecule apart (47,60,61),
thus reducing the probability of intramolecular end
joining in an in vitro assay. At the same time, inter-
molecular interaction between HI1 molecules bound
to different DNA molecules (see earlier) will facilitate
DNA-end alignment and ligation, thus explaining the
great increase in intermolecular end joining.

Inhibition of B-NHEJ through a reduction in histone
H1 concentration provides an alternative explanation
for the results of DT40 presented above (54). Notably,
the IR sensitivity of the HIR mutant is further enhanced
in a Ku70~'~ background. Although the authors attribute
this synergistic effect to an involvement of HIR to HRR
(see earlier), the expected abrogation of D-NHEJ in
the Ku70~/~ mutant will also facilitate the function of
B-NHEJ. Therefore, compromising B-NHEJ by removing
one of its factors, HIR, will lead to radiosensitization.
This interpretation is also in line with the observation
that abrogation of HIR has no effect on the repair by
HRR of I-Sce-I-induced DSBs, and that there is no
difference in the response of Rad51 or y-H2AX after IR
(54). Assuming that this alternative interpretation holds,
the DT40 system offers genetic evidence for the involve-
ment of histone H1 in B-NHEJ and suggests that different
subtypes may have different functions in this process—an
effect the in vitro assays employed here or even the mice
knockout models cannot reproduce. A separate line of
investigation implicates histone H1 in DNA damage
response by virtue of its ability to modify chromatin
compaction (62).

In line with a role of histone H1 in B-NHEIJ are also
its effects on PARP-1 activity (63). Thus, an inhibition of
DNA ligation has been reported by histone H1 that is
mitigated by PARP-1 (64,65). This effect is also observed
in our experiments, particularly for inhibitory concentra-
tions of histone H1, suggesting that PARP-1 may have a
role in relieving local inhibition of DSB repair by histone
H1 (Figure 5C).

Is the observed stimulation of DNA-end-joining specific
for the linker histone H1 or can it also be induced by core
histones? Experiments along these lines show that a
mixture of core histones transiently stimulates DNA-end
joining when supplied to reactions similar to those shown
in Figure 2. However, the stimulation (results not shown)
is only about 30% of that measured for histone HI1
and requires slightly higher protein concentrations.
This observation together with the fact that in the cell
core histones are organized in nucleosomes while the
linker histone H1 is available as a monomer that shows
highly dynamic binding to chromatin (46) (see earlier),



suggests a preferential contribution of the Ilatter to
B-NHEJ. On the other hand, the stimulatory activity
of core histones may be exploited by the cell to facilitate
the joining by B-NHEJ of DSBs induced in DNA directly
interacting with the core histone octamer.

Histone H1-induced DNA aggregation

It is well-established that histone H1 binds cooperatively
to DNA at the salt concentrations used in the present
study. It has also been shown that, together with other
nucleoproteins, histone H1 can mediate the generation
of large protein—-DNA aggregates that separate from
aqueous solution (66). Within these aggregates, the DNA-
end-joining activity is significantly enhanced (67) raising
the question whether the observations in Figures 1-3
reflect such aggregation effects. The gel-filtration experi-
ments carried out to address this question indicate that
massive aggregation is only seen at high H1 concentra-
tions and that it is actually associated with inhibition
rather than with potentiation of the DNA-end-joining
activity. At lower histone H1 concentrations, close to
the maximum of the DNA-end-joining activity, such
aggregation is not observed and both substrate and
products move through the column as expected by their
monomeric size. This is in line with results suggesting
that at low concentrations histone H1 binds cooperatively
to DNA-bridging molecules together, whereas at high
concentrations massive aggregates are formed (59-61).
The former condition, which is equivalent to intermole-
cular alignment, is expected to enhance, whereas aggrega-
tion will inhibit DNA-end joining.

Interplay of different pathways of NHEJ

Taken together the results presented here identify histone
H1 as a putative component of an alternative pathway
of NHEJ that operates as a backup to D-NHEIJ.
Previously published data provide biochemical and genetic
evidence for an engagement of DNA ligase III and PARP-
1 in this pathway of DSB repair (32,33). Thus, the repair
module PARP-1/DNA ligase III/XRCC1 (PLX), hitherto
regarded as central in SSB repair (68,69), is implicated
in the repair of DSBs and as the results here suggest,
it utilizes histone H1 as an alignment factor.

A model for the handling of DSBs by NHEJ is outlined
in Figure 5D. When a DSB is induced in the DNA of a
repair-proficient cell, the most likely scenario is that
Ku will bind the ends replacing bound histone HI and
possibly also other components of chromatin to prepare
for the recruitment of DNA-PKcs. DNA-PKcs-dependent
phosphorylation events will regulate and coordinate the
end-joining process and will culminate with the end
ligation catalyzed by the LiglV/XRCC4/XLF complex.
Activation of DNA-PKcs is expected to facilitate the
removal of histone H1 from chromatin and thus to
facilitate the productive functions of Ku at the DNA ends.

If this DNA-PK-dependent pathway of NHEJ is
compromised as a result of a defect in one of its
components, histone H1 will remain bound and will
act as an alignment factor to mediate end joining
by Liglll/XRCCI, possibly with the contribution of
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PARP-1. This pathway operates with slow kinetics
and is normally suppressed by D-NHEJ (70). It appears
therefore more appropriate to designate this repair
pathway as a backup, rather than as an alternative
repair pathway. The term alternative implies equal
ranking and free choice, both of which do not hold for
B-NHE]J.

Several reports implicate inferior backup pathways of
DNA-end joining in the phenotypes of mutants of
the classical NHEJ pathway. Thus, non-classical pathways
of end joining bring together the c-myc and Igh locus
and cause B-cell lymphomas in mice with defects in Ku,
LIG4 or XRCC4 (11-14,17,18,71). Functionally equiva-
lent pathways may generate the aberrant junctions
manifesting chromosome instability in the same mutants.
Non-classical pathways of end joining generate the
few V(D)J junctions observed in cells with defects in
NHEJ (20,21,23) and are implicated in antibody class
switching occurring under the same conditions (71).
Furthermore, the substantial DNA-end joining observed
after exposure to IR of cells with defects in DNA ligase
IV, Ku and DNA-PK directly implicates alternative forms
of DNA-end joining.

PARP-1/DNA Ligase I1I-dependent end joining, when
utilized, helps the cell to restore its genome and thus
presumably to avert cell death. However, its error prone
nature causes genomic instability and cancer in the
affected organism. The adverse consequences of this
repair pathway may derive from inefficient synapsis of
the DNA ends, which is probably supported only by
histone H1 and microhomologies (15,16) and is therefore
inefficient and slow (6,72,73) when compared to the
DNA-PK-mediated synapsis. The resulting persistence of
DNA ends in the cell can lead to incorrect rejoining and
thus to translocations. In addition, it may facilitate DNA-
end degradation and thus loss of genetic information.
Both phenomena have been described in mutants of the
classical pathway of DNA-end joining (see earlier). This
microhomology-dependent end joining may overlap partly
or completely with B-NHEJ and has been recently shown
to be involved in the repair of DNA breaks created during
assembly of antigen-receptor genes (28-31). These deve-
lopments provide solid evidence for the acute biological
significance of the backup pathway of DSB repair and
implicate it in the chromosomal translocations of lym-
phoid cancers in systems with compromised D-NHEJ.
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