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Hepatocellular carcinoma (HCC) is an aggressive cancer type with poor prognosis; thus, there is especially necessary and urgent to
screen potential prognostic biomarkers for early diagnosis and novel therapeutic targets. In this study, we downloaded target data
sets from the GEO database, and obtained codifferentially expressed genes using the limma R package and identified key genes
through the protein–protein interaction network and molecular modules, and performed GO and KEGG pathway analyses for
key genes via the clusterProfiler package and further determined their correlations with clinicopathological features using the
Oncomine database. Survival analysis was completed in the GEPIA and the Kaplan–Meier plotter database. Finally,
correlations between key genes, cell types infiltrated in the tumor microenvironment (TME), and hypoxic signatures were
explored based on the TIMER database. From the results, 11 key genes related to the cell cycle were determined, and high
levels of these key genes’ expression were focused on advanced and higher grade status HCC patients, as well as in samples of
TP53 mutation and vascular invasion. Besides, the 11 key genes were significantly associated with poor prognosis of HCC and
also were positively related to the infiltration level of MDSCs in the TME and the HIF1A and VEGFA of hypoxic signatures,
but a negative correlation was found with endothelial cells (ECs) and hematopoietic stem cells. The result determined that 11
key genes (RRM2, NDC80, ECT2, CCNB1, ASPM, CDK1, PRC1, KIF20A, DTL, TOP2A, and PBK) could play a vital role in
the pathogenesis of HCC, drive the communication between tumor cells and the TME, and act as probably promising
diagnostic, therapeutic, and prognostic biomarkers in HCC patients.

1. Introduction

Hepatocellular carcinoma (HCC), an aggressive cancer type
with poor prognosis, ranks fifth in cancer incidence world-
wide and is the second most frequent cause of cancer-
related mortality [1, 2]. In terms of pathophysiology, it is
widely considered that HCC is an inflammation-driven dis-

ease [3]. Chronic inflammation, long-term injury, and
regeneration processes perpetuate liver fibrosis and result
in distortion of lobular architecture, nodular formation,
and cirrhosis; the dysplastic cirrhotic nodules then continue
to evolve and eventually develop into early-stage and
advanced HCC [4, 5]. To reduce the risk of hepatocarcino-
genesis, adequate monitoring of symptoms, follow-up and
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evaluation of disease status, and improved early diagnosis
and targeted therapies are particularly important for
patients with chronic liver disease who are at high risk of
HCC. Unfortunately, few biomarkers have been incorpo-
rated for the evaluation and detection of the stage of pro-
gression from liver cirrhosis to liver cancer. In terms of
treatment, liver transplantation still remains the only cura-
tive option for patients with cirrhosis and HCC, but it is
limited to a selected group rather than all patients [6, 7].
While surgical resections can cure patients at early-stage of
HCC [8], the reality is, however, that most patients are
not suitable for potentially curative therapy due to the high
burden of liver disease, extra-hepatic spread, poor back-
ground liver function related to cirrhosis, or the advanced
stage at the time of diagnosis [9, 10]. Therefore, the identi-
fication of novel and effective markers for early warning
for HCC and the exploration of new therapeutic targets
for liver diseases are urgently needed.

From another perspective, serum alpha-fetoprotein
(AFP) is a biomarker for HCC patients that have been
widely used for several decades, but now, it has been found
to possess limited sensitivity [11–13]. Therefore, new bio-
markers for early diagnosis, prediction of recurrence, and
assessment of overall survival (OS) are urgently needed.
Tumor development is driven by complex patterns of
genetic and epigenetic abnormalities [14], and HCC is no
exception. Genetic alterations may be the potential “drivers”
during the process of hepatocarcinogenesis. Clearly, know-
ing which genes are related to hepatic cirrhosis and disrupt-
ing the persistent progression of cirrhosis can be helpful in
the inhibition of the progression of liver cirrhosis toward
end-stage liver disease. However, these initiatives are still a
significant clinical challenge. Therefore, it is necessary to
explore the genetic changes and potential molecular mecha-
nisms of the occurrence and development of hepatic cirrho-
sis to HCC. On one hand, it can help us to find more specific
biomarkers for diagnosis and assessment of prognosis. On
the other hand, it has a significant guiding role for us to bet-
ter design individualized regimens, especially targeting
therapies.

In this study, we selected data sets from the Gene
Expression Omnibus (GEO) database [15] and firstly
explored differentially expressed genes (DEGs) in tissues
with hepatic cirrhosis; we then integrated the DEGs with
the genes screened by comparing HCC and normal liver tis-
sues, obtaining coexpressed DEGs. Furthermore, through
the molecular modules of DEGs, we identified key genes that
were critical to the development of cirrhosis and HCC. To
further investigate the key genes in the diagnosis and prog-
nosis of HCC, we explored their relationships with clinical
pathological features of HCC patients using the Oncomine
database [16, 17] and evaluated their effects on HCC prog-
nosis. Finally, to clarify the key genes that drive communica-
tion between tumor cells and the tumor microenvironment
(TME), we also assessed their associations with the TME,
including immune and hypoxia microenvironments of
HCC. This work helped us to clearly understand the genetic
changes from hepatic cirrhosis toward HCC and provided
new evidence for these genes to be used as reliable bio-

markers for early diagnosis, prognosis assessment, recur-
rence monitoring, and therapeutic targets for patients with
HCC.

2. Materials and Methods

2.1. Microarray Data. We retrieved candidate datasets in the
GEO database (https://www.ncbi.nlm.nih.gov/geo/) with
“liver” and “GPL570” as the key words. Furthermore, three
datasets annotated by the “GPL570” platform were selected
for their inclusion in this study. The GSE84044 [18] data
set provides a characterization of the gene expression profile
from patients with varying degrees of hepatitis B virus-
related (HBV-related) liver fibrosis patients. GSE112790
[19] provides a comprehensive molecular characterization
of liver cancer. GSE107170 [20] provides a gene expression
profile of tissue specimens from livers with HBV-HCC and
hepatitis C virus-related (HCV-related) HCC. We down-
loaded the gene expression matrix files of these target data
sets, and data processing (extracting, standardizing, log2-
transforming) was performed using R software (Version R
3.6.1, https://cran.r-project.org/) and related packages
(http://www.bioconductor.org/).

2.2. Screening for DEGs. Differential analysis was performed
using the limma package [21], between each of the following
samples: samples with liver cirrhosis vs. samples with nonli-
ver cirrhosis, samples with HCC (no specific history of liver
disease) vs. samples with non-HCC, samples with HBV-
related HCC vs. samples with HBV-infection but nontumor,
and samples with HCV-related HCC vs. samples with HCV-
infection but nontumor. A volcano map was plotted to
assess the differential expression of all genes using the
ggplot2 package (https://cran.r-project.org/web/packages/
ggplot2/index.html). As a DEG, it was necessary to satisfy
both statistical P < 0:05 and ∣log fold change ðFCÞ ∣ >1 [22].
The coexpressed DEGs were obtained and then visualized
using the UpSetR package [23].

2.3. Construction of Protein–Protein Interaction (PPI)
Network and Molecular Modules. The PPI network of coex-
pressed DEGs was constructed in the STRING database
(https://string-db.org/), and the default settings recom-
mended by the database were used; furthermore, the mean-
ing of network edges was set as “confidence,” and, finally, the
display was to intended to hide disconnected nodes in the
network [24]. We downloaded the PPI–data and recon-
structed gene module network, containing functional gene
modules and their interactions using the MCODE plug-in
Cytoscape software (version 3.7.1, https://cytoscape.org/).
In MCODE, filters were based on the default parameters
“Degree Cutoff = 2,” “Node Score Cutoff = 0:2,”
“K − Core = 2,” and “Max:Depth = 100” [25]. Genes con-
tained in the most important molecular modules were iden-
tified as key genes.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Analyses. While the GO
annotation (biological process (BP), cellular component
(CC), and molecular function (MF)) are independent of each
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other, in essence, there remains significant crosstalk, which,
together with KEGG pathway enrichment analysis, is also
used to evaluate the biological effects of genes [26]. In this
study, we performed GO and KEGG pathway analyses for
key genes using the clusterProfiler package [27]. And the
results were visualized by bar plot. Adjusted P < 0:05 was
the selecting criterion.

2.5. Relationships between the Key Genes’ Expression and
Clinicopathologic Characteristics of HCC. Using the Onco-
mine database, we selected three publicly available data sets
to for our validation effort: Chiang Liver [28], Jia Liver
[29], and Wurmbach Liver [30]. With Chiang Liver, we eval-
uated the expression levels of key genes in TP53 status. With
Jia Liver, we explored the gene expression level in different
stage besides tumor size of HCC. In Wurmbach Liver, we
observed the gene expression level in varying states of liver
disease, tumor grade, tumor size, and vascular invasion. Sta-
tistical analysis was performed to determine differences
between groups, and the results were illustrated using box
and scatter plots prepared in R software.

2.6. Prognosis Analysis. Survival analysis was conducted
using the GEPIA (http://gepia.cancer-pku.cn/index.html)
[31] and the Kaplan–Meier plotter (http://kmplot.com/
analysis/) [32] databases so as to assess the impact of key
genes on the survival time (OS and disease-free survival
(DFS) were assessed in GEPIA, and recurrence-free survival
(RFS) and progress-free survival (PFS) were evaluated by the
Kaplan–Meier plotter database). The results were visualized
by survival curve and forest plot (https://cran.r-project.org/
web/packages/forestplot), respectively. Meanwhile, the haz-
ard ratio (HR), 95% confidence interval (95% CI), and log-
rank P value were calculated and described.

2.7. Analyses of Key Gene—Tumor Microenvironment (TME)
Interactions. As reported, hypoxia, genetic instability, and
immune evasion become key features of the liver microenvi-
ronment [33]. Hence, we evaluated not only the correlations
of key genes with infiltrated cells in the TME of HCC but
also association with hypoxic signatures. Based on the
TIMER database [34, 35], we first used the xCell method
to investigate the impact of immune cells (B cells, T cells,
neutrophils, dendritic cells, hematopoietic stem cells (HSCs),
and natural killer cells) and stromal cells (endothelial cells
(ECs)) in the TME on the OS of HCC patients and selected
the tumor immune dysfunction and exclusion (TIDE)
method to evaluate the impact of M2-type tumor-
associated macrophages (M2-TAM), myeloid-derived sup-
pressor cells (MDSCs), and cancer-associated fibroblasts
(CAFs) on the survival of HCC patients. We then obtained
the cell types correlated with poor prognosis in HCC patient,
which we called prognosis-related cells. Second, we investi-
gated the correlations between key genes and prognosis-
related cells. Third, from the GEPIA and TIMER databases,
we detected correlations between the key genes and bio-
markers of prognosis-related cells reported by previous
research (CD11B, CD33 for MDSCs, CD34, CD117 for
HSCs, CD31, CD105 for ECs) [36–38] and hypoxic

microenvironment-forming factors such as hypoxia-
inducible factor 1α (HIF1A) and VEGFA [39]. The results
were visualized using the corrplot R package.

2.8. Statistical Analysis. R 3.6.2 and GraphPad Prism were
used for statistical analysis. The D’Agostino-Pearson nor-
mality test was used to describe the distribution of the gene
expression. The F-test was used to evaluate the homogeneity
of variance. Student’s t-test, one-way ANOVA, and the
Mann–Whitney-Wilcoxon test were used to determine the
statistical significance between groups according to data dis-
tribution and numbers of compared groups. Kaplan–Meier
analysis and the log-rank test were applied to determine
the survival curves. Correlations between key genes, infiltrat-
ing cell types, and gene markers were established by Spear-
man’s correlation, and correlation strength was classified
according to the absolute value of the partial correlation
coefficient as follows: 0.00-0.19 “a negligible correlation”;
0.20-0.39 “a weak correlation”; 0.40-0.59 “a moderate corre-
lation”; 0.60-0.79 “a strong correlation”; and 0.80-1.0 “a very
strong correlation” [40, 41]. The results were considered to
have statistical significance when P < 0:05. Survival curves
were obtained from the GEPIA and the Kaplan–Meier plot-
ter databases and displayed with HR and P values from the
log-rank test.

3. Results

3.1. Microarray Data. From the GSE84044 data set, we
extracted gene expression data of patients with liver fibrosis
of grade 0 (no fibrosis, 43 samples) and grade 4 (early cir-
rhosis, 10 samples). Furthermore, from the GSE107170 data
set, we selected data from tumor (HBV- or HCV-related
HCC) and nontumor samples (HBV- or HCV-related hepa-
titis), and from the GSE112790 data set, we used the whole
data. Finally, four sets of data were obtained, and the details
of data preparation and processing are given in Figure 1. All
candidate data sets were normalized, and the results are
shown in Figure S1.

3.2. Identification of DEGs. The DEGs from four sets of data
are shown in Figures 2(a)–2(d). Forty-six coexpressed DEGs
were obtained by integrating bioinformatic analysis
(Figure 3), covering 19 upregulated expression genes and
26 downregulated expression genes. The details of the coex-
pressed DEGs are provided in supplementary Table S1.

3.3. PPI Network and Molecular Modules. The PPI network
for coexpressed DEGs was built through the STRING data-
base including 26 nodes and 89 edges, and the result are
shown in Figure 4(a). Two molecular modules were identi-
fied using MCODE, the most important of which contained
11 key genes (RRM2, NDC80, ECT2, CCNB1, ASPM,
CDK1, PRC1, KIF20A, DTL, TOP2A, and PBK), as visual-
ized in Figure 4(b), which also revealed that this molecular
module plays an important role in the process of
hepatocarcinogenesis.

3.4. Functional Enrichment and KEGG Pathway Analyses for
Key Genes. The results of GO function and KEGG pathway
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Figure 1: The data processing workflow. HBV: hepatitis B virus; HCV: hepatitis C virus; HCC: hepatocarcinoma; DEGs: differentially
expressed genes; PPI: protein-protein interaction; GO: gene oncology; KEGG: Kyoto Encyclopedia of Genes and Genomes; TME: tumor
microenvironment.
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Figure 2: Differential analyses of the gene expression profile data. (a)–(d) Volcano plot for differential expression genes in GSE84044 data
set (a), GSE112790 data set (b), HBV data from GSE107170 data set (c), and HCV data from GSE107170 data set (d). Red point represents a
gene with log fold change > 1 and P < 0:05, green point represents a gene with log fold change < −1 and P < 0:05, and black point represents
a gene with −1 < log fold change < 1 and P > 0:05. Dashed lines in y axis were for position of log fold change = 1 and -1, and dashed line in x
axis is for position of P = 0:05.
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analyses for 11 key genes were shown in Figure 5. It was evi-
dence that these genes were mainly involved in the BPs of
the cell cycle such as cell cycle checkpoint, chromosome seg-
regation, histone phosphorylation, and the CCs of the
cyclin-dependent protein kinase holoenzyme complex and
molecular functions of cyclin-dependent protein kinase
activity. Beyond that, KEGG pathway enrichment was
mainly focused on p53 and the cell cycle signaling pathway.
These results suggested that the key genes largely belong to
cell cycle-related genes, which also highlighted signaling of
the cell cycle that contributes to the tumor growth of HCC,
which may be a potential therapeutic target for HCC
patients.

3.5. Relationships between the Expression of Key Genes and
Clinicopathologic Characteristics of HCC. For three data sets
(Wurmbach Liver, Chiang Liver, and Jia Liver) from the
Oncomine database, the expression levels of 11 key genes
in the different states of liver diseases showed obvious differ-
ences in Wurmbach Liver data set (P < 0:05, Figure 6). And
the results indicated that all key genes had a low expression
level in nontumor liver tissues but a high level in HCC tis-
sues, which suggested that these key genes play a vital role
in hepatocarcinogenesis. Besides, in this data set, we also
observed a low expression level of the key genes in grade 1
but a high level in grades 2 and 3 and significant differences
among the three groups (P < 0:05, Figure 7(a)). For tumor
stage, significant differences among stage 1, stage 2, and
stage 3 were shown in NDC80, CCNB1, KIF20A, DTL, and
TOP2A of the key genes from Jia Liver data set (P < 0:05,
Figure 7(b)). In addition, significant differences (P < 0:05,
Figure 7(c)) between the TP53 mutation and wild type were
also observed in the partial key genes except CDK1, DTL,
TOP2A, and PBK in Chiang Liver data set. Interestingly, in
HCC samples with vascular invasion, especially macroscopic
ones, we found a high expression level of key genes, and
there was significant difference (P < 0:05, Figure 7(d)) com-
pared to samples without vascular invasion according to

Wurmbach Liver data set. However, the differences among
tumor size (diameter ≥ 3 cm vs. diameter < 3 cm; diameter
≥ 5 cm vs. diameter < 5 cm) did not reach statistical signifi-
cance (Figure S2). These results further enriched the
evidence that the key genes are involved in the initiation
and progression of HCC.

3.6. Prognosis Analysis. From the GEPIA database, it turned
out that the high level of 11 key gene expressions was both
associated with poor OS (Figure 8) and DFS (Figure 9) of
HCC patients, which was similar to the results from the
Kaplan–Meier plotter database (Figure 10). Furthermore,
we also found that the high expression of NDC80, CCNB1,
CDK1, PRC1, KIF20A, DTL, and TOP2A was significantly
associated with worse OS in advanced T-stage (T2–3)
patients (Figure 10). The outcomes of RFS and PFS also
showed that the high expression of these key genes had a sig-
nificant association with poor prognosis in the cohort of
HCC patients, as shown in Figure 11. Collectively, these data
showed that the high key gene expression promotes HCC
progression and indicates poor prognosis.

3.7. Key Gene—TME Interactions. From the TIMER data-
base, we analyzed the immune cell types in the TME of
HCC and found that the infiltrated levels of the T cell family
of T cell CD8+, CD8+ naive, CD8+ central memory, and
CD4+ effector memory were associated with good prognosis
of HCC. In addition, the infiltrated levels of HSC and EC
were found to significantly predict a better prognosis of
HCC patients. However, using the TIDE method, we found
that the high level of MDSC infiltration indicated a worse
prognosis in patients with HCC, and the details are shown
in Figure 12. Correlations with prognosis-related infiltrated
cells showed that there was a positive association of key
genes with MDSCs but negative regulation with HSCs and
ECs. However, no significant correlations were evident for
the T cell family (Table 1). Similar results were also seen
for the correlation analysis between key genes and
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biomarkers of MDSCs, ECs, HSCs, and hypoxia in the
TIMER database (Figure 13) and the GEPIA database
(Table 2).

4. Discussion

HCC is a highly complex heterogeneous tumor [42], which
gradually occurs on the basis of chronic liver disease through
the gathering of different genomic alterations, and its prog-
nosis is also closely related to the multistep process of under-
lying liver disease [43]. From a clinical perspective,

detection, characterization, and identification of appropriate
treatment strategies and improvement of HCC prognosis
have always been the major concerns clinically [44]. Thus,
to improve the early diagnostic rate, the identification of
sensitive and specific prognostic biomarkers is of great
importance.

In our study, with the differential analysis of microarray
data from the GEO database, 11 cell cycle-related key genes
(RRM2, NDC80, ECT2, CCNB1, ASPM, CDK1, PRC1,
KIF20A, DTL, TOP2A, and PBK) involved in the process
of the transition from liver cirrhosis to carcinoma were
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Figure 4: Protein-protein interaction (PPI) network for the coexpressed differential expression genes (DEGs) from the STRING database
and the most important molecular module constructed by Cytoscape software. (a) PPI network and lines represent interactions, and the
degree of thickness represents strength of evidences. (b) the most important molecular module and lines represent interactions, and the
red represents upregulated gene.
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identified. With the Oncomine database, we also found that
the key genes were presented at high levels in advanced HCC
samples and HCC with vascular invasion. Meanwhile, prog-
nostic analysis showed that the key genes were significantly

correlated with poor prognosis of HCC patients using the
Kaplan–Meier plotter and GEPIA databases. Subsequently,
we evaluated the effect of key genes on the TME of HCC.
The results demonstrated that the key genes were positively
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correlated with MDSCs that infiltrated in the TME of HCC
and led to poor prognosis, but negatively correlated with
ECs and HSCs that were associated with good prognosis.
Molecular oxygen plays a unique role in the cell cycle, cell
growth, and cell energy metabolism [45]. Hence, we further
evaluated the influence of key genes on the hypoxic signa-
tures (HIF1A and VEGFA) of HCC tissues, and the results
showed that there was a positive correlation between them.
In all, our findings demonstrated that the key genes might
promote liver cirrhosis and HCC progression and tended

to indicate a poor prognosis, which might be largely due to
the consequence of the key genes driving the communica-
tions between tumor cells and the TME and accelerating
the formation of a hypoxic and immunosuppressive
microenvironment.

Gene modules enable better understanding of molecu-
lar mechanisms of disease progression, as a module is usu-
ally defined as a group of coexpressed genes or genes with
a joint role [46]. In our study, we analyzed the differential
gene expression patterns in liver cirrhosis and HCC
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Figure 7: Different expression levels of key genes between various clinical characteristics of hepatocellular carcinoma (HCC) patients. (a)
Key genes’ expression in grades 1-3 of patients with HCC in Wurmbach Liver data set. (b) Key genes’ expression in stages I-III of
patients with HCC in Jia Liver data set. (c) Key genes’ expression in the different status of TP53 mutation of patients with HCC in
Chiang Liver data set. (d) Key genes’ expression in the different statuses of vascular invasion of patients with HCC in Wurmbach Liver
data set. TP53: tumor protein p53; VI: vascular invasion.
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Figure 8: Continued.
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Figure 8: Continued.
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caused by varying liver disease and found that the most
important molecular module consisted of 11 key genes,
which provided us with a new understanding of genes that
have a role both in the development of liver cirrhosis and
HCC. For gene functions, enrichment analysis showed that
the key genes are a highly cell cycle-related gene set, as the
GO annotation was enriched in cell cycle checkpoint,
chromosome segregation, positive regulation of cell cycle
process, and histone phosphorylation, and the KEGG
pathway was enriched in TP53 and cellular senescence sig-
naling. Moreover, we also identified that there is a high
level of expression of key genes in the HCC sample with
a TP53 mutation. As reported, TP53-regulated genes are

involved in diverse biological pathways including the cell
cycle, DNA damage response, apoptosis, and glucose
metabolism [47]. The cell cycle is mainly regulated by a
series of cyclins, cyclin-dependent kinases (CDKs), and
cyclin-dependent kinase inhibitors (CDKIs) [48]. Deregu-
lated cell cycle progression is a hallmark of human cancer,
and targeting CDKs to block cell proliferation has been
validated as an effective anticancer therapy [49]. Based
on this, our results presented potential targets for the
treatment of HCC patients. From a clinical perspective,
vascular invasion and metastasis are major challenge for
current HCC treatment, and macrovascular and microvas-
cular invasion are also indicators for poor prognosis in

Logrank p = 0.00038
HR (high) = 1.9

p (HR) = 0.00046
n (high) = 182
n (low) = 182

0 20

0.0

0.2

0.4

0.6

40 60
Months

Overall survival

Pe
rc

en
t s

ur
vi

va
l

80 100 120

0.8

1.0

Low PRC1 TPM
High PRC1 TPM

(i)

Logrank p = 0.00058
HR (high) = 1.9
p (HR) = 0.0069
n (high) = 182
n (low) = 182

0 20

0.0

0.2

0.4

0.6

40 60
Months

Overall survival

Pe
rc

en
t s

ur
vi

va
l

80 100 120

0.8

1.0

Low RRM2 TPM
High RRM2 TPM

(j)

Logrank p = 0.0028
HR (high) = 1.7
p (HR) = 0.003
n (high) = 182
n (low) = 182

0 20

0.0

0.2

0.4

0.6

40 60
Months

Overall survival

Pe
rc

en
t s

ur
vi

va
l

80 100 120

0.8

1.0

Low TOP2A TPM
High TOP2A TPM

(k)

Figure 8: Overall survival (OS) curves (a)–(k) comparing the high and low expression of key genes in patients with hepatocellular
carcinoma (HCC) from the GEPIA database. HR: hazard ratio.
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HCC patients [50]. In our analysis, the key genes were
found to be overexpressed in advanced HCC patients
and in those with a higher grade status of HCC, which
is particularly more apparent in the tissues of HCC with
vascular invasion. Furthermore, these observations pro-
vided valuable insights into the identification of potential
prognostic biomarkers for HCC patients.

Most of 11 key genes have been reported to be prog-
nostic biomarkers of HCC by previous research [4,

51–56]; however, there has been little discussion on the
relationship with the TME of HCC. In addition, through
cell cycle signaling, it is reasonable to explain how HCC
occurs, but explanations as to why key genes caused poor
prognosis in HCC patients have not been convincing.
Thus, we next turned our attention to the TME of HCC.
During cancer development, the TME, with infiltrating
immune and nonimmune cells, and the extracellular
matrix undergo substantial changes that can influence
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Figure 9: Disease-free survival (DFS) curves (a)–(k) comparing the high and low expression of key genes in patients with hepatocellular
carcinoma (HCC) from the GEPIA database. HR: hazard ratio.
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tumor progression [57, 58]. Furthermore, hypoxia is also a
hallmark of the TME [59], and it has been reported to
play an important role in the development of liver diseases
[60, 61]. Hence, to further survey the influence of the key
genes on the prognosis of HCC, we investigated their
interactions with tumor-infiltrating cells and hypoxic sig-
natures. For analysis methods, xCell, a compendium of
newly generated gene signatures for 64 cell types, is fre-
quently used to evaluate the infiltrated levels of immune
and stromal cells [62]. TIDE, an accurate gene signature
to model tumor immune escape, is generally used to iden-
tify the gene expression signature of T cell exclusion [63].
In our study, we examined the infiltration of three types
immune cells (CAFs, MDSCs, and M2-TAMs) using the
TIDE method, as it has been reported that these three

types of cells restrict cytotoxic T cell infiltration in tumors
[64]; we used the xCell method to evaluate other infiltrat-
ing cells. From the results, although we found that the T
cell family is associated with good prognosis of HCC,
there was no direct evidence confirming that the key genes
had significant correlation with them. Interestingly, we
found that ECs belonging to the stromal cell type infil-
trated in the TME were also associated with better prog-
nosis of HCC, and the 11 key genes had significantly
negative correlations with it. For HCC with specific tissue
characteristics and a special blood supply, high-infiltrating
ECs led to patients obtaining a better prognosis, which
might be theoretically explained by the presence of an
endothelial barrier. Given that Strilic et al. reported that
tumor cell-induced EC necroptosis promotes metastasis
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Figure 10: Forest plot for overall survival (OS) comparing the high and low expression of key genes in various stages based on the Kaplan
Meier-Plotter database. NO.: the number of patients with gastric cancer; 95% CI: 95% confidence interval; HR: hazard ratio.
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[65], the endothelial barrier formed by EC infiltration into
the TME may be critical for maintaining the stabilization
of the microenvironment. Abnormal expression of key
genes by tumor cells might lead to the destruction of the
endothelial barrier and attenuate the blocking effect of
ECs on tumor cells, which allows tumor cells to more eas-
ily invade adjacent blood vessels. This might be a potential
route of HCC-developed intrahepatic metastasis. However,
more evidence is needed to confirm this hypothesis.

For another, HSCs are involved in the proliferation
and repair of hepatocytes [66, 67], which is essential to
maintain the normal physiological characteristics of liver
cells. In our analysis, we found that the key genes had a
negative correlation with the infiltrated level of HSCs in
the HCC tissues, which indicated that when liver cancer
occurs, the abnormal expression of key genes significantly
reduces the number of HSCs in the microenvironment,
which weakens the ability of HSCs to repair damaged liver
cells, and, to some extent, turns the microenvironment
into a cancer-promoting state.

MDSCs rapidly expand during inflammation, infec-
tion, and cancer [68]; however, previous research

described that the increase of MDSCs was not correlated
with hepatic fibrosis or the disease activity of chronic
liver disease [69]. For HCC, not only did we find that
the infiltrated level of MDSCs correlated with poor prog-
nosis of HCC, which is in line with data reported in the
literature [70–72], but also that there was a significantly
positive correlation with key genes. As mentioned before,
MDSCs are unable to stimulate an allogeneic T cell
response and suppress T cell proliferation [3]. Therefore,
although we found that the T cell family had a good
prognosis for patients with HCC, this small advantage
would be negated by the MDSCs because tumor cells
with high expression of key genes could recruit more
MDSCs into the microenvironment and promote the for-
mation of a tumor immunosuppressive environment. Fur-
thermore, the role of hypoxia in the progression of liver
disease and even HCC has been confirmed [73–75].
Recent studies show that hypoxia-induced genes play an
important role in the diagnosis and treatment of liver
cancer [76–78] and are a factor that seriously influences
the efficacy of sorafenib [79–81]. In our study, we
explored the relationship between the key genes and the
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Figure 11: Forest plot for recurrence-free survival (RFS) and progress-free survival (PFS) comparing the high and low expression of key
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Figure 12: Continued.

18 BioMed Research International



HR = 1.2, p = 0.021
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Figure 12: Kaplan-Meier survival curves comparing various immune cells in the tumor microenvironment (TME) of hepatocarcinoma
based on the TIMER database. HR: hazard ratio.

Table 1: The correlations of key genes with the T cell family, hematopoietic stem cell (HSCs), endothelial cells (ECs), and myeloid-derived
suppressor cells (MDSCs). Cor: coefficient of partial correlation from the TIMER database.

Gene
T cell CD8+

T cell CD8+
naive

T cell CD8+
central memory

T cell CD4+
effector memory

HSCs ECs MDSCs

Cor P value Cor P value Cor P value Cor P value Cor P value Cor P value Cor P value

RRM2 0.108 4.47E-02 -0.079 1.44E-01 0.08 1.40E-01 -0.127 1.87E-02 -0.505 1.01E-23 -0.513 1.65E-24 0.638 8.42E-41

NDC80 0.066 2.21E-01 -0.072 1.83E-01 0.038 4.82E-01 -0.141 8.87E-03 -0.474 9.03E-21 -0.511 2.44E-24 0.692 1.85E-50

ECT2 0.001 9.84E-01 -0.206 1.15E-04 -0.017 7.57E-01 -0.098 6.82E-02 -0.423 1.93E-16 -0.496 7.70E-23 0.673 7.47E-47

CCNB1 0.041 4.52E-01 -0.124 2.09E-02 -0.011 8.43E-01 -0.148 6.03E-03 -0.515 8.65E-25 -0.527 5.16E-26 0.735 8.23E-60

ASPM 0.052 3.37E-01 -0.079 1.42E-01 0.012 8.26E-01 -0.149 5.67E-03 -0.393 3.28E-14 -0.433 3.12E-17 0.598 7.40E-35

CDK1 0.066 2.23E-01 -0.096 7.56E-02 0.014 7.93E-01 -0.153 4.50E-03 -0.463 9.37E-20 -0.508 4.68E-24 0.718 7.81E-56

PRC1 -0.01 8.56E-01 -0.155 3.99E-03 -0.029 5.95E-01 -0.159 3.01E-03 -0.420 3.70E-16 -0.483 1.44E-21 0.683 1.22E-48

KIF20A 0.045 4.01E-01 -0.106 4.91E-02 -0.024 6.62E-01 -0.186 5.22E-04 -0.477 5.72E-21 -0.489 3.56E-22 0.712 1.46E-54

DTL 0.026 6.25E-01 -0.104 5.27E-02 0.001 9.83E-01 -0.18 7.98E-04 -0.403 6.21E-15 -0.478 4.65E-21 0.65 1.01E-42

TOP2A 0.043 4.21E-01 -0.104 5.27E-02 0.006 9.06E-01 -0.157 3.43E-03 -0.434 2.82E-17 -0.486 7.36E-22 0.669 3.56E-46

PBK 0.045 4.06E-01 -0.094 8.23E-02 0.014 7.93E-01 -0.155 4.01E-03 -0.393 3.29E-14 -0.433 3.66E-17 0.625 9.40E-39
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HIF-1α (HIF1A) factor and its targeted gene (VEGFA),
and the results indicated that there was a positive corre-
lation between them. These pieces of evidence suggested
that the aberrant expression of key genes is largely
dependent on the hypoxia status of tumor cells, and that
the key genes may be hypoxia-inducible genes.

Based on the available evidence, we can attempt to
explain the underlying molecular mechanisms of key genes
involved in tumorigenesis and poor prognosis of HCC. Nor-
mal liver cells were repeatedly stimulated by undesirable
interfering factors (such as hepatitis virus, alcohol, etc.), they
interacted with hypoxia and other factors in the cell micro-
environment, and they gradually induced abnormal expres-
sion of key genes, which led to the cell cycle dysregulation
that is essential for cellular transformation [82]. Disorders
of the cell cycle allow liver cells to acquire the ability to
become cancerous. When liver cells become cancer cells,
the abnormal expression of the key genes further intensifies,
and moreover, induces the aggregation of MDSCs into the
TME. The infiltration of MDSCs prevents cytotoxic T cells
from entering tumor tissue and allows tumor cells to escape
the immune response. At the same time, the aberrant expres-
sion of the key genes by tumor cells negatively regulated the

ECs infiltrating in the TME, causing damage of ECs function,
destruction of the endothelial barrier, and homeostasis imbal-
ance of the microenvironment. Furthermore, one additional
point merits further concern, which is that the abnormal
expression of key genes impairs the ability of HSCs to repair
damaged liver cells, and, to a certain extent, also promotes
the cancerization of liver cells. These biological effects connect
with each other and are influenced by each other, and they
provide a suitable growth environment for cancer cell. How-
ever, they eventually allow liver cancer cells to make an
immune escape and gain the ability of sustained progression.

However, many questions remain. Does the EC barrier
really exist in the TME of HCC? How the relationship
between the EC barrier and VEGFA be verified? Based on
our study, key genes are negatively correlated with ECs but
positive correlation with VEGFA. Thus, for HCC, is there
a special relationship between VEGFA and ECs? Are the
abnormal expressions of key genes really the outcomes of
hypoxia induction? How do the key genes recruit MDSCs
to enter the TME and promote the formation of the immu-
nosuppressive microenvironment? Our findings provided
novel clues that now require indepth analysis of these prob-
lems by means of further experiments.
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Figure 13: The correlations between key genes and biomarkers of immune cells and hypoxic signature (CD11B and CD33 for MDSCs,
CD34 and CD117 for HSCs, CD31 and CD105 for ECs, and HIF1A and VEGFA for hypoxia). Dark red line represents the strength of
correlation greater than 0.6, light red line represents the strength of correlation between 0.3 and 0.6, purple line represents the strength
of correlation less than 0.3, and green line represents the strength of correlation between -0.3 and 0.

20 BioMed Research International



T
a
bl
e
2:
T
he

co
rr
el
at
io
ns

of
ke
y
ge
ne
s
w
it
h
bi
om

ar
ke
rs
of

im
m
un

e
ce
lls

an
d
hy
po

xi
c
si
gn
at
ur
e
(C
D
11
B
an
d
C
D
33

fo
r
M
D
SC

s,
C
D
34

an
d
C
D
11
7
fo
r
H
SC

s,
C
D
31

an
d
C
D
10
5
fo
r
E
C
s,
an
d

H
IF
1A

an
d
V
E
G
FA

fo
r
hy
po

xi
a)
.R

:S
pe
ar
m
an

co
rr
el
at
io
n
co
effi

ci
en
t
fr
om

th
e
G
E
P
IA

da
ta
ba
se
.

G
en
e

H
IF
1A

V
EG

FA
C
D
11
B

C
D
33

C
D
34

C
D
11
7

C
D
31

C
D
10
5

R
P
va
lu
e

R
P
va
lu
e

R
P
va
lu
e

R
P
va
lu
e

R
P
va
lu
e

R
P
va
lu
e

R
P
va
lu
e

R
P
va
lu
e

A
SP

M
0.
36

4.
60
E
-1
3

0.
43

2.
00
E
-1
8

0.
22

1.
40
E
-0
5

0.
16

2.
10
E
-0
3

0.
03
3

5.
20
E
-0
1

0.
2

7.
80
E
-0
5

0.
08

1.
20
E
-0
1

-0
.2
0

1.
30
E
-0
4

C
C
N
B
1

0.
30

3.
70
E
-0
9

0.
33

5.
60
E
-1
1

0.
27

8.
70
E
-0
8

0.
23

1.
10
E
-0
5

-0
.0
7

1.
80
E
-0
1

0.
12

2.
40
E
-0
2

-0
.0
2

6.
90
E
-0
1

-0
.2
8

4.
80
E
-0
8

C
D
K
1

0.
37

1.
40
E
-1
3

0.
44

1.
10
E
-1
8

0.
26

2.
40
E
-0
7

0.
18

6.
60
E
-0
4

-0
.0
1

8.
80
E
-0
1

0.
21

5.
40
E
-0
5

0.
05

3.
30
E
-0
1

-0
.2
3

5.
60
E
-0
6

D
T
L

0.
45

9.
00
E
-2
0

0.
50

2.
50
E
-2
4

0.
35

2.
10
E
-1
2

0.
15

4.
40
E
-0
3

0.
05

3.
10
E
-0
1

0.
22

1.
70
E
-0
5

0.
11

3.
20
E
-0
2

-0
.1
5

1.
10
E
-0
3

EC
T
2

0.
58

2.
90
E
-3
4

0.
57

3.
40
E
-3
3

0.
40

8.
20
E
-1
6

0.
22

1.
60
E
-0
5

0.
09

7.
40
E
-0
2

0.
34

2.
20
E
-1
1

0.
19

3.
00
E
-0
4

-0
.0
8

1.
10
E
-0
1

K
IF
20
A

0.
40

9.
00
E
-1
6

0.
46

6.
50
E
-2
1

0.
31

2.
00
E
-0
9

0.
17

1.
20
E
-0
3

0.
01

9.
10
E
-0
1

0.
24

2.
30
E
-0
6

0.
06

2.
10
E
-0
1

-0
.2
1

5.
40
E
-0
5

N
D
C
80

0.
33

4.
20
E
-1
1

0.
40

5.
60
E
-1
6

0.
30

2.
40
E
-0
9

0.
22

1.
70
E
-0
5

-0
.0
3

5.
60
E
-0
1

0.
14

6.
10
E
-0
3

0.
02

7.
10
E
-0
1

-0
.2
3

8.
00
E
-0
6

PB
K

0.
42

2.
60
E
-1
7

0.
42

2.
80
E
-1
7

0.
30

6.
80
E
-0
9

0.
16

1.
80
E
-0
3

0.
06

2.
50
E
-0
1

0.
23

1.
10
E
-0
5

0.
12

1.
90
E
-0
2

-0
.1
7

1.
40
E
-0
3

PR
C
1

0.
34

2.
10
E
-1
1

0.
46

4.
60
E
-2
1

0.
28

3.
50
E
-0
8

0.
16

1.
60
E
-0
3

-0
.0
3

5.
70
E
-0
1

0.
17

1.
00
E
-0
3

0.
01
7

7.
50
E
-0
1

-0
.2
2

1.
80
E
-0
5

R
R
M
2

0.
43

1.
20
E
-1
7

0.
45

1.
40
E
-1
9

0.
37

1.
10
E
-1
3

0.
24

4.
50
E
-0
6

0.
04

4.
90
E
-0
1

0.
22

2.
90
E
-0
5

0.
14

7.
10
E
-0
3

-0
.1
9

3.
10
E
-0
4

T
O
P2

A
0.
17

9.
40
E
-0
4

0.
29

1.
50
E
-0
8

0.
21

5.
80
E
-0
5

0.
19

3.
50
E
-0
4

-0
.1
5

3.
30
E
-0
3

0.
03

5.
70
E
-0
1

-0
.1
3

1.
10
E
-0
2

-0
.3
4

2.
20
E
-1
1

21BioMed Research International



5. Conclusions

In conclusion, we identified 11 key genes (RRM2, NDC80,
ECT2, CCNB1, ASPM, CDK1, PRC1, KIF20A, DTL,
TOP2A, and PBK) that may play a vital role in the patho-
genesis of HCC and drive the communication between
tumor cells and the TME and act as a promising diagnostic,
therapeutic, and prognostic biomarker in HCC patients.
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