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Abstract: In eukaryotes, mRNAs translation is mainly mediated in a cap-dependent or cap-independent
manner. The latter is primarily initiated at the internal ribosome entry site (IRES) in the 5′-UTR
of mRNAs. It has been reported that the G-quadruplex structure (G4) in the IRES elements could
regulate the IRES activity. We previously confirmed RBM4 (also known as LARK) as a G4-binding
protein in human. In this study, to investigate whether RBM4 is involved in the regulation of the
IRES activity by binding with the G4 structure within the IRES element, the IRES-A element in the
5′-UTR of vascular endothelial growth factor A (VEGFA) was constructed into a dicistronic reporter
vector, psiCHECK2, and the effect of RBM4 on the IRES activity was tested in 293T cells. The results
showed that the IRES insertion significantly increased the FLuc expression activity, indicating that
this G4-containing IRES was active in 293T cells. When the G4 structure in the IRES was disrupted by
base mutation, the IRES activity was significantly decreased. The IRES activity was notably increased
when the cells were treated with G4 stabilizer PDS. EMSA results showed that RBM4 specifically
bound the G4 structure in the IRES element. The knockdown of RBM4 substantially reduced the
IRES activity, whereas over-expressing RBM4 increased the IRES activity. Taking all results together,
we demonstrated that RBM4 promoted the mRNA translation of VEGFA gene by binding to the G4
structure in the IRES.

Keywords: G-quadruplex; VEGFA; IRES; mRNA translation

1. Introduction

In protein synthesis, the genetic information in mRNA is translated into an amino
acid sequence with the help of ribosomes and transfer RNAs (tRNAs) [1]. The mRNA
translation is mediated in either a cap-dependent or cap-independent manner [2,3]. The
former is a main regulation mode of mRNA translation in eukaryotes. However, when
cells are suffering environmental stress, such as heat shock, hypoxia, amino acid deficiency,
and viral infection, the cellular responses immediately lead to global repression of cap-
dependent protein synthesis. Meanwhile, alternative mechanisms are activated to support
the translation of specific mRNAs [4,5].

The mRNA translation can be subjectively separated into three stages: initiation, exten-
sion, and termination. The main difference between cap-dependent and cap-independent
translation lies in the initiation stage. The initial step of cap-dependent translation initiation
involves the binding of ribosomes, together with tRNAMet, to the 7-methylguanosine
(m7-GpppG) 5′-cap of an mRNA. However, some viral and cellular mRNAs contain an
internal ribosome entry site (IRES) that attracts ribosomes directly to the interior of the RNA
to initiate cap-independent translation, which is also known as IRES mediated translation.
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IRES-mediated translation was first found in the RNAs of the virus [6,7]. Virus mRNA are
uncapped and translated in a cap-independent manner. Eukaryotic cellular IRES elements
were also identified, especially in the 5′-UTR of mRNA of some proto-oncogenes [8–10].
When global translation is blocked in response to stress to save energy, these genes were
translated in the IRES dependent way to synthesize necessary proteins [3,11]. The mRNA
IRES sequence can form a variety of RNA structures, such as stem loop, hairpin, G4 struc-
tures, and other secondary or tertiary structures. These advanced RNA structures can
replace the 5′-cap of mRNA and recruit ribosomes to initiate the translation process [12,13].
The G4 structure is a special secondary structure of DNA and RNA. When nucleic acid
sequences enrich in guanine (G), these sequences are favorable to form G planes, which
consist of four Gs linked together through Hoogsteen hydrogen bond, and two or more G
planes are stacked to form the G4 structure [14–17]. The G4 structure in the IRES sequence
was found to directly bind with the 40S small subunit of ribosome, implying its regulatory
role in the IRES-mediated translation [18].

The human vascular endothelial growth factor (VEGF) is a homodimeric glyco protein
which plays critical roles in vasculogenesis and angiogenesis. The VEGF family consists
VEGF-A (hereafter called VEGFA), VEGF-B, VEGF-C, VEGF-D, VEGF-E (viral VEGF),
VEGF-F (snake venom VEGF), placenta growth factor (PlGF), and the endocrine gland-
derived vascular endothelial growth factor (EG-VEGF). More attention was focused on the
VEGFA due to its key roles in tumor growth and metastasis and eye disease [19]. The 5′UTR
of VEGFA is G-rich and harbors two separate IRES sites (IRES-A at 749–1038 nt and IRES-B
at 91–554 nt) that facilitate VEGFA translation initiation in a cap-independent manner to
respond to various cellular stresses [20,21]. It has been reported that IRES-A could initiate
VEGFA translation at AUG and synthesize a secreted form of VEGFA, which is crucial for
the tumor angiogenesis [22]. Moreover, a G4 structure was identified in IRES-A region
and the G4 structure is needed for VEGFA IRES mediated translation [23]. Consequently,
the IRES-A of VEGFA was used to investigate the specific mechanism of G4 structures in
regulating mRNA translation.

Human RNA-binding motif protein 4 (RBM4), a homologue of LARK in Bombyx mori,
is ubiquitously expressed in human tissues [24]. We previously demonstrated that LARK
or RBM4 is a G4-binding protein in silkworms, mice, and human [25]. Studies have shown
that RBM4 is mainly involved in biological processes, such as selective RNA splicing and
RNA translation [26,27]. RBM4 has been reported to inhibit cap-dependent translation but
promote the IRES-mediated translation under cellular stress [24,26]. However, how RBM4,
as a G4-binding protein, participates in IRES-mediated translation remains to be elucidated.

This study takes IRES-A of VEGFA as a target gene to explore whether RBM4 can pro-
mote the IRES-mediated mRNA translation by binding the G4 structure in the IRES element.
The results revealed that RBM4 favors IRES-mediated translation as a G4 binding protein.

2. Results
2.1. IRES-A Promoted the VEGFA mRNA Translation in 293T Cells

To investigate whether the IRES-A element of VEGFA 5′-UTR mediates mRNA transla-
tion, the dual luciferase reporter psiCHECK2 was applied to detect its function in mRNA
translation. The HSV-TK promoter upstream of the firefly luciferase (FLuc) marker gene
was replaced by the VEGFA IRES-A sequence to generate a pR-IRES-F vector. The control
pRF was the empty vector without the HSV-TK promoter (Figure 1A). The pR-IRES-F
plasmid was used to transfect the 293T cells, followed by a luciferase activity assay after
24 h. The results showed that VEGFA IRES-A activity (FLuc/RLuc) was significantly in-
creased, as compared to the control plasmid pRF (Figure 1B). Further analysis showed
that the RLuc activity was not significantly changed, while FLuc activity was significantly
increased (Figure 1C). These results suggest that the VEGFA IRES-A could promote either
the transcription or translation of FLuc in the 293T cells.
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Figure 1. Dual luciferase assay for the functional analysis of VEGFA IRES-A (vIRES). (A) Sche-
matic illustration of the dicistronic reporter gene vector constructs used in this study. (B,C) Influ-
ence of vIRES positioned upstream the firefly and renilla luciferases. The IRES activity are repre-
sented as ratios of firefly to renilla luciferase. The individual luciferase activity was normalized to 

Figure 1. Dual luciferase assay for the functional analysis of VEGFA IRES-A (vIRES). (A) Schematic
illustration of the dicistronic reporter gene vector constructs used in this study. (B,C) Influence of
vIRES positioned upstream the firefly and renilla luciferases. The IRES activity are represented as
ratios of firefly to renilla luciferase. The individual luciferase activity was normalized to that of the
control vector pRF. (D) RT-PCR and (E) qRT-PCR verification of the influence of vIRES on the mRNA
splicing and transcription. (F) Activity of the individual luciferases in the bicistronic vectors in the
absence or presence of a hairpin upstream of renilla luciferase. *** indicates significant difference at
p < 0.001.

Various mechanisms could account for the increase of Fluc translation downstream of
the dicistronic mRNA. The dicistronic mRNA may be spliced into monocistronic mRNAs.
The inserted IRES sequence may contain an element that promotes the read-through past
the RLuc cistron and causes reinitiation of Fluc cistron. Finally, the inserted sequence
may act as an IRES site mediating cap-independent translation. In order to determine
whether the effect of the VEGFA IRES-A on the increase of the FLuc activity occurs at
the mRNA translation level or transcriptional level, and to further verify that RLuc and
FLuc are translated from the same mRNA, the upstream primer and downstream primer
within the RLuc and FLuc genes respectively were specifically designed to detect whether
the mRNA was spliced and the mRNA level of individual genes was examined. Total
RNA were extracted from the 293T cells transfected with pRF and PR-IRES-F plasmids
and reverse transcribed into cDNA. PCR was then performed to detect whether mRNA
is spliced between the RLuc and FLuc mRNA. The results showed that the resultant PCR
band was a single one, the size was expected, and there was no cleavage between RLuc
and FLuc mRNAs in both the pRF and PR-IRES-F cases (Figure 1D). In addition, the qPCR
results showed that there was no difference in mRNA expression between RLuc and FLuc
in both the pRF and PR-IRES-F vectors (Figure 1E). These results indicated that the protein
expression (as indicated by luciferase activity) of RLuc and FLuc was the result of the
translation of the same mRNA without splicing.

Besides, to verify that the FLuc translation was not caused by mRNA read-through
during RLuc translation, we added a hairpin structure upstream of the RLuc sequence
(Figure 1A). This hairpin structure significantly inhibited the RLuc activity, whereas the
FLuc activity was not impacted (Figure 1F). If the insertion could enhance ribosomal
read-through, the Fluc activity should be reduced by an equivalent amount. Thus, given
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that the promoter (SV40) of the two vector constructs was the same, the significant in-
crease in the FLuc enzyme activity was considered to be the result of the increased IRES
mediated translation.

2.2. IRES Activity Was Affected by G4 Structure

It has been demonstrated by DNAase I footprinting that the 774~90 nt region of the
IRES-A sequence in the VEGFA 5′-UTR could form a G4 structure and this G4 structure had
a regulatory effect on the IRES activity [23]. In this study, the CD experiments revealed that
the oligonucleotide of this mRNA region had a maximum absorption peak at 264 nm, and
the peak was increased when 100 mM K+ was added (Figure 2A), presenting a classical peak
type of parallel G4 structure [28,29]. When the G4 sequence was mutated, the maximum
absorption peak shifted to 275 nm, and the K+-dependent increase of the absorption peak
disappeared (Figure 2A), indicating that the mutant RNA could not form G4 structures any
more consistent than previously reported [28,29]. The G4 mutation resulted in a significant
decrease in the FLuc activity, but not in the RLuc activity (Figure 2B). Moreover, when
the cells were treated with 2.5 µM PDS, a small molecular compound known to bind and
stabilize the G4 structure, the FLuc activity was significantly increased, as compared to the
control (DMSO), while the Rluc activity was not significantly changed (Figure 2C). When
the G4 sequence was mutated, the FLuc activity did not respond to the PDS treatment
(Figure 2D). These results suggested that the IRES-A element could form a G4 structure
that facilitated the IRES-mediated FLuc mRNA translation.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 12 
 

 

that of the control vector pRF. (D) RT-PCR and (E) qRT-PCR verification of the influence of vIRES 
on the mRNA splicing and transcription. (F) Activity of the individual luciferases in the bicistronic 
vectors in the absence or presence of a hairpin upstream of renilla luciferase. *** indicates signifi-
cant difference at p < 0.001. 

2.2. IRES Activity Was Affected by G4 Structure 
It has been demonstrated by DNAase I footprinting that the 774~90 nt region of the 

IRES-A sequence in the VEGFA 5′-UTR could form a G4 structure and this G4 structure 
had a regulatory effect on the IRES activity [23]. In this study, the CD experiments re-
vealed that the oligonucleotide of this mRNA region had a maximum absorption peak at 
264 nm, and the peak was increased when 100 mM K+ was added (Figure 2A), presenting 
a classical peak type of parallel G4 structure [28,29]. When the G4 sequence was mutated, 
the maximum absorption peak shifted to 275 nm, and the K+-dependent increase of the 
absorption peak disappeared (Figure 2A), indicating that the mutant RNA could not form 
G4 structures any more consistent than previously reported [28,29]. The G4 mutation re-
sulted in a significant decrease in the FLuc activity, but not in the RLuc activity (Figure 
2B). Moreover, when the cells were treated with 2.5 μM PDS, a small molecular compound 
known to bind and stabilize the G4 structure, the FLuc activity was significantly increased, 
as compared to the control (DMSO), while the Rluc activity was not significantly changed 
(Figure 2C). When the G4 sequence was mutated, the FLuc activity did not respond to the 
PDS treatment (Figure 2D). These results suggested that the IRES-A element could form a 
G4 structure that facilitated the IRES-mediated FLuc mRNA translation. 

 
Figure 2. Effect of G4 structure on the individual luciferase activity. (A) CD analysis of the wild 
type and mutant G4 sequence in the vIRES vector in the absence or presence of 100 mM K+. (B) 
The influence of the G4 mutation on the FLuc luciferase activity. PDS treatment significantly en-
hanced the FLuc luciferase activity of the wild type G4 (C), but not the mutant G4 (D). * indicates 
significant difference at p < 0.05; *** indicates significant difference at p < 0.001. 

  

Figure 2. Effect of G4 structure on the individual luciferase activity. (A) CD analysis of the wild
type and mutant G4 sequence in the vIRES vector in the absence or presence of 100 mM K+. (B) The
influence of the G4 mutation on the FLuc luciferase activity. PDS treatment significantly enhanced
the FLuc luciferase activity of the wild type G4 (C), but not the mutant G4 (D). * indicates significant
difference at p < 0.05; *** indicates significant difference at p < 0.001.
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2.3. RBM4 Specifically Bound the G4 Structure in IRES Element

To verify whether RBM4 binds the G4 structure in the VEGFA IRES-A, RNA G4
oligonucleotides were synthesized in vitro and annealed to allow the formation of the G4
structure, followed by EMSA with purified RBM4 protein. The result showed that RBM4
could specifically bind the G4 structure (Figure 3A, lane 2) and this specific binding could
be competed off gradually by the unlabeled probe (Figure 3A, lane 3 and 4). It is noted that
there were four binding bands, implying that various G4 structure isforms or formats of
the interaction between the G4 structure and the protein might be present in the binding
system. The mutated RNA G4 probe could not bind the RBM4 protein (Figure 3A, lane 5).
When the protein content of RBM4 was increased gradually, the binding intensity was
strengthened (Figure 3B). These results indicated that RBM4 could specifically bind the G4
structure in the VEGFA IRES-A element.
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Figure 3. RBM4 specifically bound to the G4 structure in vIRES. (A) EMSA analysis of the binding
between RBM4 and the G4 structure in the vIRES. (B) The binding between RBM4 and G4 was
gradually enhanced with the increase of RBM4 protein level.

2.4. RBM4 Promoted the VEGFA IRES-A Activity

To investigate the effect of RBM4 on the IRES-A translation activity, we conducted
RBM4 RNAi and over-expression in the 293T cells. The FLuc enzyme activity was signifi-
cantly decreased when the RBM4 was down-regulated, as compared to that of the control
(Figure 4A,B). The RBM4 RNAi did not affect the FLuc activity when the G4 sequence
was mutated (Figure 4B). Contrarily, the FLuc activity was notably increased when RBM4
protein was over-expressed (Figure 4C,D). Similarly, the FLuc enzyme activity did not
change when the G4 sequence was mutated (Figure 4D). Taken together, these results
suggest that RBM4 could specifically bind the G4 structure in the VEGFA IRES-A and
enhance the IRES-mediated translation of VEGFA mRNA.
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Figure 4. Effect of RBM4 on the expression of luciferases. (A) Western blot analysis of RBM4 protein
after RNAi. (B) Knockdown of RBM4 inhibited the FLuc luciferase activity. (C) Western blot analysis
of RBM4 protein after over-expression. (D) Over-expression of RBM4 resulted in the increase in the
FLuc luciferase activity in the wild type IRES-A element, but not in the mutated element. * indicates
significant difference at p < 0.05; ** indicates significant difference at p < 0.01.

3. Discussion

IRES sequences were firstly found in viral genomes and subsequently identified
in eukaryotic cells [30]. When cells suffer cellular stress, such as heat shock, hypoxia,
and viral infection, the classic cap-dependent translation is inhibited, blocking protein
synthesis. However, the stress-induced attenuation of global translation is complementarily
accompanied by selective translation of mRNAs that possess IRES [26]. The IRES translation
activity has been detected in different types of cells. For example, the IRESes of c-MYC
and FGF-2 genes were active in developing embryos [31,32]. The IRES of Apaf-1 gene
showed higher IRES activity in neurogenic cell lines than in HEK293, MCF7, MRC5 and
Cos7 cell lines [33]. In this study, we demonstrated that the VEGFA IRES-A element was
active in the regulation of mRNA translation in the 293T cell line (Figure 1B). Although vast
numbers of translational regulating IRESes were identified in viral and cellular genes, the
mechanism of IRES mediated translation remains unclear. There was no similarity among
the reported IRES sequences. Interestingly, IRES sequences can form various types of
secondary structures, such as stem loop, hairpin, and G4 structures, which could promote
the corresponding mRNA translation by recruiting translation initiation factors [13]. The
ribosome 40S small subunit can bind the G4 structure in mRNA to promote IRES-mediated
translation [18]. Here, we demonstrated that the G4 structure within IRES of VEGFA 5′UTR
was needed to activate the cap-independent translation (Figure 5).
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Figure 5. Diagram of proposed regulation mechanism of RBM4 and G4 structure on the translation
of VEGFA. In normal conditions, VEGFA mRNA translates in a cap-dependent way (A). While, when
cells are response to stress, VEGFA mRNA translates through IRES dependent way which needs the
binding of RBM4 and G4 structure in the IRES-A element (B).

The G4 structure is a four-stranded secondary structure of nucleic acid. About 700,000
G4 structures have been predicted in the human genome, and most of these G4 structures
are distributed in the promoter and UTR regions of genes [34]. G4 has been reported to
be involved in a variety of biological processes, such as gene transcription, DNA repli-
cation, telomere protection, RNA splicing, and translation [35]. Compared to DNA G4,
RNA G4 structures are more stable, diverse, and most of them could form a parallel G4
structure [36]. RNA G4s can act as either an obstacle impeding ribosome scanning to inhibit
translation or a recognition site for ribosomes or splicing factors to promote translation and
splicing [36]. A G4 formation sequence in the IRES-A of VEGFA 5′UTR was identified and
revealed to be benefit IRES-mediated translation [23]. In this study, CD analysis verified
the formation of a parallel G4 structure, which is consistent with the usual characteristics
of RNA G4s. The treatment with small molecule G4-binding compound PDS resulted in an
increase in the IRES translation activity (Figure 2C), suggesting that a stable G4 structure
facilitates the IRES translation activity. In addition, G4 sequences in 5′UTR of VEGFA were
conserved among 10 mammal species (Figure S1), implying that the translational regulation
mechanism of VEGFA may be evolutionarily conserved in mammals.

RBM4 protein is an RNA binding protein that contains two classical RNA recognization
motifs (RRM) and one zinc finger domain. RBM4, a homolog of silkworm LARK, was first
identified in Drosophila melanogaster, and the LARK mutant resulted in early eclosion [37].
We previously found that LARK can bind the G4 structure in the promoter region of a
variety of genes, as well as the RNA G4 structure [24]. Human RBM4 protein is highly
homologous to the LARK protein of silkworm and Drosophila [25], implying RBM4 may
also be a G4 stabilizer or inducer. RBM4 protein can bind to the G4 structure in the
promoters of MYC and KIT gene [25]. In this study, we found that RBM4 can specifically
bind the VEGFA mRNA G4 structure promoting the translation activity of the mRNA.
RBM4 is phosphorylated in cytoplasm when cells encounter cellular stress, and then
interacts with translation initiation factor eIF4A to promote the translation activity of the
IRES [26]. Our study demonstrated that RBM4 action in promoting the IRES-mediated
mRNA translation was achieved by binding with and stabilizing the G4 structure in the
IRES, emphasizing the critical role of the G4 structure in mRNA translation. We hypothesize
that G4 structures formed in the IRES element recruit its binding protein RBM4 and interact
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with 40S ribosome subunit. Then, RBM4 interacts with translation initiation factor eIF4A,
forming the translation initiation complex, enhancing the cap-independent translation in
stress condition (Figure 5).

VEGFA is a key mediator of angiogenesis in cancer. VEGFA is overexpressed in tumor
cells, and VEGFA protein secreted by tumor cells and surrounding stroma induces the
formation of new blood vessels, leading to tumor outgrowth, metastasis, and progno-
sis [38,39]. Given the critical role of VEGFA in tumor angiogenesis and a perfect anticancer
target, the translational regulation of VEGFA has received growing attention. In tumor
tissues, fast-growing cells encounter hypoxic environment. Hypoxia represses most mRNA
translation, while VEGFA could be translated in a IRES dependent way, promoting the
angiogenesis. If the translation of VEGFA could be affected, tumor growth and metastasis
could be inhibited to some extent. Here, we demonstrated that the G4 structure at VEGFA
IRES-A facilitated its cap-independent translation through binding with RBM4, elaborating
the mechanism whereby the G4 structure in the IRES element affects the IRES-mediated
translation. Compounds which could specifically target the G4 structure in VEGFA IRES,
affecting its folding or unfolding, and then affecting VEGFA expression, would be novel
potential therapeutic applications. As a matter of fact, a quinazoline-based compound
that targets G4 structures has been revealed to inhibit DNA replication, DNA damage
checkpoint activation, and promote apoptosis [40]. Moreover, RBM4, known as an RNA
binding protein here, was verified to be involved in cap-independent translation as G4
binding protein, broadening our understanding of RBM4 and guiding us to investigate the
function of RBM4 on carcinogenesis.

4. Materials and Methods
4.1. Vector Construction

The 306 bp VEGFA (Gene ID: 7422) IRES-A sequence (with Xho I and Mlu I restric-
tion enzyme sites at 5′ and 3′ respectively) obtained from IRESbase, available online:
http://reprod.njmu.edu.cn/cgi-bin/iresbase/index.php website (accessed on 5 January
2022) was synthesized and inserted into pMD18T vector (Qingke, Beijing, China). The
dual luciferase reporter vector psiCHECK2 was used to study the IRES activity. The
HSV-TK promoter region was excised with unique Xho I and Mlu I restriction sites, and
replaced with the VEGFA IRES-A fragment, generating a pR-IRES-F vector. The con-
trol vector pRF was obtained by self-ligation of the blunted liner psiCHECK2 vector
digested by Xho I and Mlu I. To exclude ribosomal read-through, a 60 bp oligonucleotides
encoding a stable hairpin was cloned into the unique Nhe I site upstream of the Re-
nilla luciferase, resulting in a p-hp-R-IRES-F vector. The sequence of the hairpin was
as follows: 5′-AGCCATGGTGCTAGAGAGATCTGGTACCGAGCTCCCCGGGCTGCAG
GATATCCTGCAGCCCGGGGAGCTCGGTACCAGATCTAGCCTATAGTGAG-3′.

To construct the RBM4 eukaryotic expression vector, the open reading frame (ORF)
sequence of RBM4 was cloned with cDNAs of 293T cells as template. Specific primers for
cloning RBM4 ORF were as follows: Forward primer: 5′-GGTACCGCCACCATGGTGAAG
CTGTTCATCGGAA-3′; Reverse primer: 5′-GGATCCAAAGGCTGAGTACCGCGC-3′. The
RBM4 ORF fragment was cloned into the EGFP-N1 vector with Kpn I and BamH I, generat-
ing a RBM4-GFP vector.

4.2. Cell Culture and Transfection

The 293T cell line was purchased from ATCC. The cells were cultured at 37 ◦C in an
incubator containing 5% CO2 with DEME medium supplemented with 10% fetal bovine
serum (FBS). The cells were passaged every 2–3 days.

The 293T cells were inoculated in 12-well cell culture plates prior to transfection.
Transfection was conducted when the cells grew to 80–90% density the next day. A 50 µL
mixture containing 1 µg plasmid DNA (pRF or PR-IRES-F), 3 µL Fugene liposome, and
Opti-MEM medium was added to the medium after 15 min incubation at room temperature.
Then, 24 h later, the cells were collected, and the enzyme activity was determined. For the
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over-expression of RBM4, 1 µg PR-IRES-F vector DNA and 1 µg RBM4-GFP over-expression
vector DNA (control EGFP-N1 vector) were transfected into the cells. For RNA interference
(RNAi), 1 µg PR-IRES-F vector DNA and 40 pmol RBM4 siRNA (non-specific siRNA as
control) were co-transfected into the cells. The cells were collected at 24 h post transfection
and the enzyme activity was measured.

4.3. Dual Luciferase Assay

Luciferase activity was measured using the Dual Luciferase Kit (Yishengbio, Shanghai,
China). The treated cells were washed once with PBS and then lysed with 300 µL lysis
buffer at 4 ◦C for 5 min. The supernatant was collected to determine the enzyme activity
after centrifugation at 14,000 rpm for 1 min at 4 ◦C.

4.4. Circular Dichroism (CD)

IRES RNA oligonucleotides were dissolved in 50 mM Tris buffer (with or without
100 mM K+, pH 7.5) at a final concentration of 5 µM, heated at 95 ◦C for 10 min, and
slowly cooled to room temperature. CD was detected with a J-815 CD spectrometer
(Jasco International, Tokyo, Japan). The wavelength range of the spectrum collected was
220~350 nm, the step length of the light wave was 1 nm, and the response time was 1 s.

4.5. Polymerase Chain Reaction (PCR) and Quantitative Real Time PCR (qRT-PCR)

To test whether the insertion of IRES sequence led to mRNA splicing between RLuc
and FLuc, PCR was used for sequencing the insertion detection. The upstream primer
5′-GCTAAGAAGTTCCCTAACACCGA-4′ was designed inside the RLuc gene region. The
downstream primer 5′-GCGCTCGTTGTAAATGTCGTTAG-3′ was designed in the FLuc
gene region.

In order to verify whether the insertion of IRES sequence affects the transcription of
RLuc and FLuc mRNA, qRT-PCR was conducted. After the 293T cells were transfected with
PR-IRES-F plasmid DNA for 24 h, the total RNA was extracted and reverse transcribed
into cDNA. Then, qRT-PCR was performed for detection. Primers for RLuc were qF
5′-GATCACTACAAGTACCTCACCGC-3′, qR 5′-TGGTGCTCGTAGGAGTAGTGAAA-3′,
for FLuc were qF 5′-TGGACATCACCTATGCCGAGT-3′, qR 5′-GTAAATGTCGTTAGCAGG
GGC-3′. GAPDH was used as a referenced gene.

4.6. Western Blotting

To obtain the total protein, the treated cells were washed twice with PBS, lysed with
RIPA (Beibo, Beijing, China) on ice for 30 min, and centrifuged for 10 min at 4 ◦C. The
supernatant was collected to conduct Western blot analysis. The protein concentration was
determined with a BCA Kit (Beibo, Beijing, China). Hence, 30 µg protein was separated
by SDS-PAGE and transferred to the PVDF membrane. Incubation took place with anti-
RBM4 antibody (1:2000, Proteintech, Wuhan, China) or anti-GAPDH antibody (1:5000)
and the horseradish peroxidase (HRP) labeled secondary antibodies (1:10,000). Enhanced
chemiluminescence (ECL) kit (Invitrogen, Carlsbad, CA, USA) was used to observe and
record the experimental results.

4.7. Expression and Purification of Recombinant RBM4 Protein

RBM4 ORF was constructed into a pET-28a vector between the Nco I and Xho I
restriction sites. The recombinant plasmid DNA was transformed into Escherichia coli
BL21 cells for protein expression. One mM IPTG (isopropyl-beta-D-thiogalactopyranoside)
was used to induce the protein expression. The cells were collected after 4 h induction
and re-suspended in 10 mL pre-cooled 20 mmol/L Tris-HCl buffer (containing 1 mol/L
NaCl, 5 mmol/L β-Me, pH 8.0). After sonication and centrifugation, the supernatant
was passed through a Ni-NTA nickel column (Thermo Scientific, Waltham, MA, USA) for
purification. The nonspecific binding proteins were eluted with a gradient solution of
imidazole prepared with buffer solution. The gradients of imidazole solution were 0, 20, 50,
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and 400 mmol/L, respectively. The elution of the target recombinant protein was validated
by SDS-PAGE.

4.8. Electrophoretic Mobility Shift Assay (EMSA)

EMSA was conducted using LightShift® Chemiluminescent EMSA Kit (Thermo Sci-
entific, Waltham, MA, USA) according to the instruction. RNA probes (including 5′-FAM
labeled sequences, 5′-FAM labeled mutated sequences and unlabeled sequences) were
annealed to allow the formation of G4 structures (annealing method was based on CD ex-
periment). The purified recombinant RBM4 protein (1 µg) was incubated with the annealed
RNA G4 probes at room temperature for 20 min, and the reaction mixture was separated
by 4% native PAGE electrophoresis. After electrophoresis, a gel imaging system was used
to record the results.

4.9. Data Statistics

All data were statistically analyzed by GraphPad Prism8, shown as mean ± standard
deviation, and pairwise comparison was performed with T test, where * p < 0.05, ** p < 0.01,
*** p < 0.001 indicate statistically significant differences. All experiments were conducted
for three repeats.
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