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In recent years, generative machine learning approaches have attracted significant
attention as an enabling approach for designing novel molecular materials with minimal
design bias and thereby realizing more directed design for a specific materials property
space. Further, data-driven approaches have emerged as a new tool to accelerate the
development of novel organic electronic materials for organic light-emitting diode (OLED)
applications. We demonstrate and validate a goal-directed generative machine learning
framework based on a recurrent neural network (RNN) deep reinforcement learning
approach for the design of hole transporting OLED materials. These large-scale
molecular simulations also demonstrate a rapid, cost-effective method to identify new
materials in OLEDs while also enabling expansion intomany other verticals such as catalyst
design, aerospace, life science, and petrochemicals.
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INTRODUCTION

We are in a paradigm-changing era in the way scientists develop new materials. The advent of
modern virtual screening techniques has benefited from virtually infinite cloud computing resources
and then, when combined with modern machine learning techniques, and has demonstrated
extraordinary success (Gómez-Bombarelli et al., 2016). In recent years it has become recognized
that one could rely on computational chemistry to deliver sufficient accuracy to inform industrial
materials research (Yarnell et al., 2021). This new paradigm directly results from the latest advances
in the theory and methods of atomic-scale chemical simulation and the expanding computational
power described previously.

With the emergence of simulation as a technology driver, improved algorithms for artificial
intelligence (machine learning), cloud compute resources, and computational capabilities such as
GPUs, TPUs, analog, and purpose-directed (AI/ML) chips (Shalf, 2020) are advancing the utility of
simulation capabilities. As a result of these changes, many organizations are expanding their digital
transformation efforts (Cheng et al., 2021) to include more efficient data-driven solutions aimed at a
significant speed-up in assessing key control variables for the design and commercialization of novel
materials (Himanen et al., 2019). With physics-based simulation tools as the foundation, data science
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helps researchers minimize costly experimental measurements,
and computationally intensive simulations (Meredig et al., 2014;
Butler et al., 2018) while enabling the utilization of datasets for a
more thorough exploration of a materials space (Raccuglia et al.,
2016; Ghiringhelli et al., 2017). With these advantages, there is
increased use and need for machine learning methods in
conjunction with physics-based simulation for various
applications in materials research (Pilania et al., 2013; Bartók
et al., 2017; Liu et al., 2017; Wei et al., 2019; Moosavi et al., 2020;
Nisbet et al., 2020; Xie et al., 2020).

Despite this great potential, there remain challenges such as
data scarcity, quality, and the inherent complexity of the model-
building and validation procedures that pose a significant obstacle
in a data-driven discovery framework. These obstacles often pose
a threat to the effective use of the cheminformatics approaches in
chemical discovery. Recently software packages have automated
best practices for creating predictive machine learning models
over chemical data, applying regularization, and searching over
appropriate model architectures (Dixon et al., 2016). These
packages have successfully provided life sciences applications’
value (Abd El-Karim et al., 2018; de Oliveira and Katekawa, 2018;
Murahari et al., 2019; Iwaloye et al., 2020).

The ever-increasing demand for high-performance display
technology in consumer electronics drives the design and
synthesis of various novel OLED materials, such as charge
transporters, hosts, and emitters (Melnyk and Pai, 1990; Jhulki
and Moorthy, 2018). Optoelectronic properties, such as HOMO,
LUMO, hole reorganization energy, and thermal properties, such
as glass transition temperature, are key considerations when
designing high-performance OLED materials (Buckley, 2013).
Although scientists and engineers have accumulated significant
knowledge in synthesizing these materials in the lab over the
years, the process of experimentally making and measuring the
synthesized structures still requires a considerable amount of
effort and time.

Atomic-scale simulation has been an essential tool for
navigating the enormous chemical space of novel OLED
materials (Halls et al., 2015; Halls et al., 2016). With
increasing high-throughput computational capabilities, massive
theoretical screening of millions of compounds has become a
reality (Matsuzawa et al., 2020a). The ready availability of high-
quality computational data generated from simulations is proving
to be a gold mine for data-driven prediction of material
properties, thereby realizing a significant speed-up in assessing
key control variables for designing novel materials.

Although there are several ways to generate ideas for new
compounds in silico, such as exhaustive R-group enumeration,
core hopping, and early structure-based de novo design
algorithms (Halls et al., 2015), they share many common
limitations. One of the most prominent is that generated
compounds often do not have the desired properties,
including activity, operational stability, and many others
depending on the application area despite the intended
optimization within the chemical design space. Recent
successes with recurrent neural networks (RNN) on SMILES
representations of molecules generating predicted activities
against dopamine receptor Type 2 (Schneider and Fechner,

2005) have pointed to a new path for molecular de novo design
targeting specific properties.

In this work, we report a new materials discovery framework
powered by the combination of high-throughput quantum
chemical simulations and RNN-based generative machine
learning techniques designed to explore the chemical space of
hole-transporting materials for optimal properties. Successful
demonstration of a goal-directed machine learning approach
for the case study is realized by uncovering novel materials
chemistry satisfying the design criteria.

METHODS AND PRINCIPLES

Goal-Directed Generative Machine
Learning
We built a goal-directed generative model using the REINVENT
(Olivecrona et al., 2017) protocol, which has shown success in
drug discovery applications (Ghanakota et al., 2020) by
generating tens of thousands of unique structures with
targeted properties while only requiring a few hours of
computing time. The deep reinforcement learning
methodology applied in the REINVENT protocol is a robust
solution for chemical enumeration while not consuming a
prohibitive amount of computation cost (Olivecrona et al.,
2017; Ghanakota et al., 2020).

The general schematics of the goal-directed generative model
in Figure 1 describes a protocol of two individual stages. The first
stage trains a prior network from an extensive collection of
structures in the chemical space of interest. The second stage
shifts the distribution based on a utility function, encoding the
desired property ranges. In previous studies, we trained the
REINVENT algorithm with a group of structures generated by
the PathFinder algorithm (Ghanakota et al., 2020). This work
aims to use a design space for REINVENT to cover organic
electronics, represented by the popular structural motifs shared
among successful hole transport materials.

Hole transport materials cannot be successfully designed
based on a single design parameter. Most material designs
require consideration of multiple parameters that may or may
not be coupled to each other by a complicated network of trade-
offs. We developed a multiparameter optimization (MPO)
scoring function to cope with design principles. Four critical
hole transport performance parameters were selected and used to
construct the property space, namely two molecular orbital
energies (HOMO and LUMO) that define the band offset of
the hole transport layer, hole reorganization energy that dictates
charge carrier (i.e., hole) mobility, and glass transition
temperature (Tg) that determines morphological stability. The
property space was projected to a single MPO score and used as
the utility function for the REINVENT algorithm generating new
chemical structures described in Figure 1.

Chemistry by Neural Network
As demonstrated in previous drug discovery work (Olivecrona
et al., 2017), the prior network provides a mechanism to create
new chemical structures powered by a deep neural network. A
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training set library defines the chemical design space. Still, it is
crucial to recognize that one cannot simply reuse a prior network
explicitly used for drug design (e.g., ChEMBL database). An
entirely new training set that resembles more of the chemical
space for a target material must be used, such as the one needed in
this work.

We collected two groups of chemical structures composed of
cores, and R-groups, to assemble the common structural motifs of
known hole transport materials for building a prior network.
R-groups are defined by the chemical substructures observed
frequently on the structural periphery of known hole transport

materials, and each is given a single attachment as a connection
point to a core. The core and R-group setup can provide an
extensive chemical library base through simple structural
enumeration while preserving the chemical space of designers’
interest. The symmetric enumeration scheme also adds the
resulting chemical structures with high symmetry, translating
into better operational stability and, to a certain degree, and
enhanced synthetic viability for the resulting design space
(Voršilák et al., 2020).

We manually selected thirty-eight unique cores (Figure 2)
from frequently appearing fragments in known hole transport

FIGURE 1 | Schematic representation of the goal-directed generative model for materials discovery.

FIGURE 2 | Thirty-eight unique core structures curated from a known group of hole transport materials as the basis of the training set for building a prior network.
Attachment points for R-group enumeration are marked with I.
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materials published in commercial catalogs and literature
(Shahnawaz et al., 2019). We enumerated the structural
R-groups with a genetic algorithm featured in the Materials
Science Suite as a goal-directed chemical design solution
(Schrödinger, 2021; Jennings et al., 2019), starting from a
group of similarly found fragments reported in the hole
transport materials literature. The same genetic optimization
tool implemented in this work has already found utility for
designing new molecular materials for battery technology
(Murdock et al., 2015). We used the genetic algorithm as a
library generation tool without explicit goals to generate
53,808 unique R-groups defined in the organic electronics
space. The unique R-group set used in this work to build the
training set for the prior network is available from files provided
with the supporting information.

The Materials Science Suite (Schrödinger, 2021) enumerated
R-groups based on the core and R-group libraries. The
structural enumeration steps provide symmetrically
equivalent groups of substitution points that will always get
the same R-group, while each of the R-groups can be substituted
independently. Based on the principles of structural
enumeration, over 2 million structures were generated and
used for training the prior network.

High-Throughput Quantum Chemistry
Once a prior network defines the chemical design space, the next step
is to build a training set for the scorer network of the generative
model. The role of the scorer network is to provide the context of
structure-property relationships to the model, so the machine can
accurately differentiate useful chemistry from less-useful chemistry.
Training the scorer network requires a property space paired with the
chemical space. This building process is similar to a conventional
quantitative structure-property relationships (QSPR) model. It is
difficult to find or generate a large amount of reliable data, and
consequently, this data scarcity is a challenge when building an
accurate machine learning model.

One of the emerging trends in overcoming the data scarcity
problem in chemical machine learning models is to utilize
physics-based theoretical predictions of the material’s
properties as a virtual training set. These simulations are
now possible because of recent improvements in predictive
accuracy and that one can cost-effectively access such
predictions at a large scale. A recent example of organic
semiconductor design (Matsuzawa et al., 2020b)
demonstrates how the state-of-the-art physics-based
simulation technology powered by a large-scale computing
environment accessible to the scientific community can be
utilized to produce a large number of reliable materials
databases for the development of new materials. The
automated large-scale quantum chemical and machine
learning predictive schemes used in work are designed to
utilize a similar strategy in developing new organic electronic
materials.

Using a diversity selection method (An et al., 2012)
featured in Schrödinger’s MS Informatics package, 265
representative structures were selected from each of the 38
cores, resulting in a total of 10,070 structures. We ran

geometry optimization of all 10,070 structures with the
same parameters to calculate orbital and reorganization
energies. Any compounds that have failed to produce a
converged low-energy geometry were removed from the
list, leaving 8,627 compounds to be selected and used as
the training set for the scorer model. The Materials
Science Suite optoelectronics workflow module was used to
compute orbital energies (for HOMO and LUMO) and hole
reorganization energies of the training set compounds. The
raw orbital energies computed from density functional
calculations are rarely comparable to the ones obtained
from the experiment. This is because the experimental
orbital energies are often derived from measured redox
potentials using the following expressions to assess the
difference between the electrode energy and the redox
potentials:

VAbs. Electrode� ENHE + VElectrode (1)

EHOMO/LUMO � VAbs. Electrode − VOxidation/Reduction (2)

Shukla and coworkers (Shukla et al., 2009) and Kondakova
and coworkers (Kondakova et al., 2008) suggested that a relatively
inexpensive level of theory and basis set (B3LYP/MIDI!)
combined with empirical corrections from molecular density
functional calculations can generate the orbital energies
(Koopman redox potentials) that are more comparable to the
experimental measurements. We apply the empirical corrections
to produce the Koopman redox potentials from the raw density
functional orbital energies as follows:

VOxidation � − 17.50 · EHOMO, DFT(eV) − 2.17 (3)

VReduction � − 22.50 · ELUMO, DFT(eV) − 3.21 (4)

These redox potentials are then entered into Eqs 1, 2 to
produce the orbital energy predictions. ENHE is the energy of
the NHE electrode in water, taken to be −4.28 V (Truhlar et al.,
2004; Kondakova et al., 2008), and VElectrode is the potential of the
chosen electrode relative to NHE. We used the VElectrode of 0.25 V

FIGURE 3 | QSPR model predictions vs experiment for the glass
transition temperature (Tg) of the 250 OLED compounds used to build the Tg
prediction model. Filled squares represent the training set data, and empty
squares represent the test set data.

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 8003704

Kwak et al. OLED Design by Machine Learning

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


in this work, which is the potential relative to the saturated
calomel electrode (SCE). This results in the absolute electrode
potential (VAbs. Electrode) of −4.53 V. Hole reorganization energies
were computed using the following equation:

λ h � (E neutral
relaxed at cation − E neutral

relaxed at neutral) + (E cation
relaxed at neutral

− E cation
relaxed at cation) (5)

The reorganization calculations were performed at the
same level of theory without further empirical corrections,
which provides accurate predictions in the hole transport
materials space based on a previous study (Evans et al.,
2016).

Owing to the computational cost of predicting glass
transition temperatures (Tg) using physics-based
simulations (Afzal et al., 2021), we opted to use a QSPR
model instead. The QSPR model was trained to predict Tg

based on 250 known OLED materials from the literature
(Naito and Miura, 1993; Fujikawa et al., 2000; Shirota,
2000; Yin et al., 2003; Kimura et al., 2005; Xu and Chen,
2005; Gao et al., 2007; Shirota and Kageyama, 2007). A
Kernel-based Partial Least Squares (KPLS) method (An
et al., 2013) was used to build a predictive model that
results in an R2 for the training set compounds of 0.87 and
that for the test set compounds of 0.86. A training-set to a
test-set ratio of 4:1 was used to assess the model’s accuracy to
unknown chemistry. Figure 3 shows the comparison between
the QSPR predicted and experimentally measured Tg of the
250 OLED compounds used to build the QSPR
prediction model.

Multiparameter Optimization
Multiparameter optimization, often referred to as MPO, provides
a measure to assess the logistic transformation function for each
constituent property. The MPO scheme used in this work
translates each property data to a dimensionless scale between
0 and 1. The MPO scores are set up so that the compound would
score below 0.2 if it is bad, between 0.2 and 0.8 if it is ok, and
above 0.8 if it is good, and based on the user-specified criteria. The
MPO score itself is continuous as defined by the curve for any
given set of properties that consist of the multiparameter space.
The first step to convert a set of individual properties into a single
MPO score is to normalize each individual property into a
dimensionless score that ranges from zero to one. We define
this normalized score as the desirability score. Conversion from
the individual properties to the desirability score is done using a
logistic function, whose shape can be further tuned by defining
fixed boundaries between bad and good values. In each property
space, we define a specific logistic function f(x) for the property x.
This is done by constraining the value of f(x) as 0.2 at the
boundary between ok and bad values for x, and as 0.8 at the
boundary between good and ok values for x. These points
correspond to the inflection points on the logistic function
curve, as shown in Figure 4. With these constraints, one can
solve the logistic function written as below for a and b for each
property space:

f(x) � 1
1 + e−b(x−a)

(6)

If the property needs to be maximized (identified as a “higher
better” mode with b > 0) or to be minimized (identified as a
“lower better”mode with b < 0), a single logistic function can be

FIGURE 4 | Desirability score setups for the multiparameter optimization scoring of hole transport materials. HOMO energy (upper left) is set up with the “middle
good”mode, hole reorganization energy (lower left) is set up with the “lower better”mode, and both LUMO energy (upper right) and glass transition temperature (lower
right) are set with the “higher the better” mode.
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used to set up the desirability score per property space. If the
target property is sandwiched between the less-desired property
domains (identified as a “middle good” mode), we break down
the property space into two spaces and solve for the two logistic
functions—“higher better” mode on the left and “lower better”
mode on the right—that are facing each other in line symmetry
at the target property. Once the logistic function f(x) is solved
for each property space, f(x) becomes the desirability score for a
compound that has the property x. The MPO score is then
generated by taking the geometric mean of the desirability
scores.

⎛⎝∏n
i�1

ai⎞⎠
1
n

� ���������
a1 · a2/ann

√
(7)

Here, ai is an individual desirability score for the i-th property
of a compound, and n is the number of individual properties that
get combined to produce a single MPO score, where n � 4 in this
work. The MPO scoring scheme was integrated as part of the
multiparameter optimization solution of LiveDesign (LiveDesign,
2021) for automation.We note that the geometric mean is used in
this work to produce MPO scores instead of the arithmetic mean
because the arithmetic mean could cause a dramatic shift in the
MPO score by just one of the target properties being an outlier.
This could be detrimental to the quality of the generative model,
as a single property labeled as bad can disqualify the compound
regardless of how high it scores on other properties.

Figure 4 summarizes how the desirability scores for each of
the four hole transport materials properties examined in this
work were set with target values and cutoffs. HOMO energy
scores were defined such that a maximum score in the “middle
good”mode would be for a target property of −5.5 eV. Deviations
from this target value by 0.5 and 1.5 eV were set as the boundaries
between good/ok and ok/bad regions, respectively. LUMO energy
scores were set with the “higher better” mode to be a maximum
value of −3.0 eV set as good while below −4.0 eV was set as bad.
Hole reorganization energy scores were set with the “lower better”
mode to minimize the value. We observed known hole transport
materials with high charge mobilities with a hole reorganization
energy less than 0.3 eV (Evans et al., 2016); thus, compounds with
reorganization energy below 0.2 eV were defined as good while
those above 0.4 eV were defined as bad. The score was set for the
glass transition temperature relative to a “higher better” mode
that maximizes Tg. The upper and lower boundaries between
good/ok and ok/bad were set as 140°, 110°C, respectively.

DESIGN BY GENERATIVE MODEL

The prior network from the generative model created more than
20 million chemical structures over 40 h of model generation on a
single general-purpose GPU card (NVIDIA GeForce GTX 1080).
REINVENT also generated 56,290 unique chemical structures
when optimizing for MPO score. Further inspection of the
generated structures indicates that 93.2% (52,469) of the
structures are predicted to have an MPO score of 0.8 or

higher. Such high scores on the chemical structures from the
generative model provide direct measures for the model
performance. Using the diversity selection algorithm featured
in Canvas, 2,477 representative candidates out of the 50 K +
structures were further selected for validation. In this work, the
group of candidates was used both as the validation set for the
MPO score and as the representative design pool for the new hole
transport materials. The newly generated chemical compounds
from the generative model were predicted with an MPO score
higher than 0.8 (56,290). The validation set selected from the
diversity selection (2,477) is provided in the supporting
information.

Validation in Property Space
We assessed the accuracy of the structure-property relationships
predicted by the generative model’s MPO score for the validation
set of 2,477 candidate compounds. MPO scores estimated for the
validation set compounds were compared to the properties
(i.e., orbital energies and hole reorganization energy by
quantum chemical calculations and Tg from QSPR
predictions) of the 8,627 training set compounds used to build
the scorer network. A comparison of the distributions of MPO
scores between the training set for the scorer network and the
validation set created by the generative model is shown in
Figure 5. It is clear, as shown in the figure, that the agent
network from the generative model is fully capable of
generating a large number of chemical structures that exceed
property scores compared to the chemical structures used as the
starting point.

We note the MPO scores shown in the figure for the validation
set are not the scores produced by the agent network from the
generative model as part of the model predictions. Instead, the
MPO scores were individually recomputed based on the
properties of each compound through quantum chemical
calculations (for the orbital energies and the reorganization
energy) and QSPR predictions (Tg). We find that nearly 84%
of the remaining validation set compounds (2,088) score greater
than or equal to 0.8 on theMPO score after the reevaluation of the
individual properties. The MPO score of 0.8 in this work is
designed to be the indicator that differentiates a good design from
a bad design, and the number of compounds among the
validation set with the MPO score greater than 0.8 would
provide the predictive measure of the structure-property
relationship model used within the generative model itself.

The results presented in the MPO score distribution indicate
that a generative model can design new chemistry while
significantly pushing the property profile into the desired
MPO score range of 0.92 as compared to the property space
from the training set where the MPO score is almost evenly
distributed between 0 and 1.

We compared the individual design properties between the
training set chemistry and the generative model chemistry, see
Figure 6. Comparisons of the percentages within the target space
between the training set and the validation set chemistry are
summarized in Table 1. Overall, we found that individual
properties and MPO scores are generally in the expected
target property range. Further analysis revealed two different
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FIGURE 5 | MPO score distribution (histogram) of the training set for the scorer network (blue) and the validation set generated by the generative model (red).

FIGURE 6 | Comparisons between the training set chemistry (blue) and the chemistry created by the generative model (red) over the four individual design
properties considered in this work - hole reorganization energy (upper left), HOMO energy (upper right), LUMO energy (lower left), and glass transition temperature (lower
right).

TABLE 1 | Percentages of chemical compounds from the training set and the validation set generative chemistry model bound within the target space.

Property MPO EHOMO (eV) ELUMO (eV) λh (eV) Tg (°C)

Target interval space [0.8, 1] [−5.7, −5.3] [−3.0, 0.0] [0.0, 0.2] [140, ∞]
% in training set chemistry 16.1 32.3 59.0 36.9 23.0
% in design by generative model 84.1 86.1 55.4 70.9 95.5
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types of variation in the property space derived from the
generated chemistry model. The first type is where the newly
developed chemistry becomes enriched in a property space
corresponding to the more desirable hole reorganization
energy and the LUMO energy.

In contrast, a significant reduction in the population of less-
desired properties is observed. There is an enrichment in the
desired property space marked with an improved distribution
corresponding to ideal HOMO energy and glass transition
temperatures in this second grouping.

For the hole reorganization energy, most of the validation set
chemistry from the generative model shares a hole reorganization
energy below 0.2 eV. The training set chemistry was constructed
with substructures from known OLED chemistry. Consequently,
the hole reorganization energies were already well regulated in the
training set space. As such, there was little need to drive down the
average value for the reorganization energy for the newly
generated chemistry. Instead, it is more desirable to minimize
the number of compounds generated with the reorganization
energies that are much higher than the mode of the distribution.
This is indeed the observed trend from the newly generated
chemistry in Figure 6.

Orbital energies show signs of improvement from the
generative model by delivering an enriched LUMO energy
and favorable shift of the HOMO energy. However, a couple of
observations cannot be simply addressed as improvements in
the property space. The HOMO energy, for example, of the
validation set lies close to the target property, and it shows a
bimodal distribution with fewer centered at the desired value
of −5.5 eV versus the two modes centered around −5.56 eV and
−5.32 eV. In the LUMO case, the generative model does not
seem able to push the LUMO energy much higher than the
starting point. Instead, it can be seen from the summary in
Table 1 that the generative model returns a reduced number of
compounds from the target property space.

This performance indicates a specific limitation, and hence,
requires a close inspection of the generative model by the user. In
this case, a generative model scheme improved molecular
electronic property prediction. However, it is essential to note
that some property subspaces may be inherently unapproachable
by an initially defined and trained prior network. Again, a close
inspection by the user of each property is required before
assessing the model’s validity. Further, while LUMO energy
space did not seem to show as impressive an improvement as
other property space, the starting point for LUMO energy already
had the highest percentage of structures in the training set (59%)
that meet the design criteria. As such, maintaining the equivalent
ratio of chemistry that meets the criteria while simultaneously
satisfying other critical design criteria, and retaining a high MPO
score, was still deemed a significant success.

The glass transition temperature can illustrate the most
straightforward improvement among the individual target
properties that drive the generative model. The validation
chemistry from the generative model pushes the average Tg
towards the upper-bound of the starting distribution from the
training set while resulting in a significant shift of the average Tg
expected from the materials by nearly 60°C, with over 95% of the

new materials designed by the model satisfying the property
target (Tg > 140°C).

Validation in Chemical Design Space
One advantage of using recurrent neural networks in combination
with reinforcement learning for a generative chemistry model
(Olivecrona et al., 2017) is the ability to generate valid chemical
structures with a much higher success rate than traditional
methods such as variational autoencoder algorithms (Alperstein
et al., 2019; Jewell et al., 2021). For example, the convolutional
variational autoencoder (CVAE) has been widely known among
the drug discovery community as a fast and efficient tool to
generate new molecular structures. Yet, the approach is often
challenged by the low success rate in generating valid chemical
structures, let alone ones with the desired properties (Lim et al.,
2018). On the other hand, we confirmed that over 80% of the two

FIGURE 7 | (A) Similarity vs ΔMPO of the top-500-ranked new designs
by MPO score and (B) the distribution of ΔMPO shown as a histogram with a
dashed line marking the point of no improvement (i.e., ΔMPO � 0). Each data
point from (A) is drawn with a circle whose size scales to the MPO score
of the newly designed target.
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million-plus SMILES strings generated by the prior network in this
work were valid chemical structures, and rendering the rate of
developing valid chemistry a non-issue for this framework.
Optimization in the property space has also proven more
successful with the RNN based generative design, as reported in
benchmark studies (Brown et al., 2019; Marques et al., 2021).

As the first step to understanding the design space, we
examined the overall similarity between the chemical
structures from the training set for the scorer network and the
validation set generated by the model. Similarities between
chemical structures were quantified by a Tanimoto distance

metric that is a normalized measure of the similarity in
descriptor space between two molecules:

Similarity �
∑
i
xB
i x

A
i

∑
i
xA
i x

A
i + ∑

i
xB
i x

B
i −∑

i
xB
i x

A
i

(8)

where A and B are indicators for two different molecules in
comparison (with A being the reference molecule). In this work,
we use extended-connectivity fingerprints from RDKit (Rogers
and Hahn, 2010) as the descriptor space for estimating the
similarities, and as such, i denotes an index for the fingerprint
bit. The similarity value per pair of molecules lies between one
and zero based on the definition. One indicates identical
molecules, while zero indicates a complete dissimilarity. The
primary purpose of the analysis is to assess the novelty of the
design space quantitatively. In an ideal scenario, the candidate
materials space created by the generative model would be 1) close
enough to the training set space to retain the original design space
characteristics (e.g., organic compounds with a resemblance to
hole transport materials) and 2) far enough from the training set
space to have an improved set of properties as predicted by the
machine learning algorithms.

Five hundred top-ranked structures were selected based on the
MPO score from the newly generated structures in the generative
model. Then, for each of the structures, a new chemical structure
with the highest Tanimoto similarity was selected based on its
MPO score:

ΔMPO � MPOG −MPOS (9)

where,

MPOG � MPO{newdesign created by the generativemodel}
(10)

MPOS � MPO{closest siblingfrom the training set} (11)

Note that ΔMPO >0 indicates improved properties with the
new design but an ΔMPO <0 is a decline in the design properties.
Figure 7A summarizes the difference in MPO scores for all 500
pairs of structures picked from the top-ranked validation set
compounds and the corresponding (closest-resembling) training
set compounds. Figure 7B also shows the distribution of the
MPO score difference by a histogram.

Most of the structure pairs shown in the plot mark a similarity
score greater than 0.50 on the x-axis, confirming a solid
resemblance between the newly generated structures and the
starting space for those designs. The next thing to notice is
that most of the data points (461 out of 500, or 92.2%) shown
in Figure 7 lie above the line ΔMPO � 0, implying the
improvement of the target properties over the closest
representations from the training set space. The maximum
ΔMPO is around 0.5, while the minimum ΔMPO score is less
than around −0.03. So, the extent of improvement is much greater
than decline. Its also noteworthy that the most significant
improvement in the property space occurred when the
similarity between the closest siblings in training and
validation sets ranges from 0.55 to 0.70.

FIGURE 8 | Machine-drawn examples created by the generative model
(M1 and M2) and their counterparts in the training set space for the scorer
network with the highest similarity (T1 and T2) are shown with individual
properties and their MPO scores. (A) Similarity 0.565, (B) Similarity
0.706.
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Figure 8 lists a couple of example pairs selected from the
similarity analysis. One derives from the high-scoring machine-
generated design, and the other from a training set space where
the scorer network resembles the machine-generated design.
Inspecting the individual chemical structures generated by the
model with high scores, we find many of the structures contain
one of the 38 original core chemistries provided as the basis for
building the prior network. In Figure 8, for example, two
apparent core structures have driven the generative and
training set chemistry models into relatively higher MPO
ranges than average. This result is consistent with the general
observation that the generative molecular structures are defined
by core-fragments found in the training chemistry and the
generative molecular structure space. This introduces a
constraint on structure diversity in this study but will be the
subject of future work.

We note a unique aspect of the design results in an increase of
MPO score by nearly 0.2 while there is no apparent structural
correlation between the training and the validation set
compounds. In most of these cases, comparing the training set
chemistry and the generative model design points to a trend
wherein the structural features not shared by the two are often
alien to the 38 core structures used to build the prior network.
This often leads to a reduced number of symmetry points and,
thus, increases the uniqueness of each design. Based on this
aspect, newly generated molecular design by the generative model
can benefit from the known chemical design space that is proven
to work while suggesting new design ideas to push the target
property space even further. More specific design strategies to
accomplish this will be discussed in the later section in more
detail.

One of the desired traits of the generative model for chemistry
is to have the capability to extrapolate target properties beyond
the range that the training set data provides. While the MPO
scoring scheme we used in this work is not designed explicitly to
support the capability of extending the score outside the training
set domain—i.e., by confining them with the definition of the
MPO score to be between 0 and 1—individual properties are not
strictly bound by such constraints and still have the freedom to
result in an extrapolation. In fact, we observe in Figure 6 the sign
of extrapolation in the glass transition temperature with the
newly generated compounds, as the validation set analyzed in
this work has 17 compounds with Tg greater than the upper limit
from the training set (215°C). This is supported by the previous
study where the REINVENT formalism was used to create the
new molecular designs (Marques et al., 2021), reporting the
model’s general capability of extrapolating outside the training
set domain. Based on our observation, we believe the best strategy
to bring the extrapolation capability to the generative model is 1)
to take advantage of multiparameter optimization, 2) to
maximize the number of training set data to provide enough
resolution in the property space to extend near the edges of the
training set domain, and 3) to have the property prediction
model—such as quantum chemistry for electronic properties
and QSPR for glass transition used in this work—available
well outside the training set space to keep the accuracy of
predicted properties for the validation sets high.

Validation by Chemical Stability
Chemical stability is an essential design for any novel organic
electronic material. Bond dissociation energy (BDE) of the
weakest bond for a chemical compound is often considered a
good predictor of chemical and operational stability. An explicit
demonstration for hole transport materials was previously
described by Kwon and coworkers and Kondakov and
coworkers (Lee et al., 2021). Unfortunately, there is significant
difficulty incorporating BDE of the weakest bond into the scoring
function for a generative model. First, the cost associated with
accurate predictions for all BDEs in a given molecule is
prohibitively expensive (i.e., it scales approximately as 3·n
times the cost of orbital energy calculations where n is the
number of bonds per molecule). Second, the BDE for the
weakest bond of an entire molecule is extremely sensitive to
the subtle changes in the molecule’s chemical structure and
conformation. A machine learning approach for prediction is
nearly impossible, and further, we note this is a different problem
than predicting a single BDE of a particular bond given
surrounding chemistry (St. John et al., 2020).

We introduced a post-generative screening stage to refine the
machine-generated andmodel-augmented designs by the weakest
BDEs of compounds. This works particularly well with hole
transport material design since the training set for the prior
network is based on a partially conjugated organic space that is
not expected to show the instability typical in other design spaces
such as high-energy materials.

For all design examples shown in this work, BDEs of the
weakest bond at the ground state (S0) and the triplet excited
state (T1) were computed by quantum chemical simulation
using LACV3P** basis set and B3LYP functional. Given the
environment in which the hole transport layers are often
deployed, BDEs of the cationic (i.e., positively charged) and
the anionic states (i.e., negatively charged) were also
computed. For each molecule, the BDE of the weakest
bond was determined by calculating BDEs computed for
the bonds that can dissociate without involving hydrogen
abstraction processes. Each BDE is computed as the energy
difference between the homolytic dissociation of a single,
acyclic bond from the input molecular compound. For the
excited state BDEs, the energy before the bond dissociation
was computed at the designated excited state (i.e., S1 or T1),
representing the initial state for the bond dissociation
process. For the charged state BDEs, one electron was
added to (for anionic BDE) or removed from (for cationic
BDE) the molecule before and after the bond dissociation.
Since one can place the extra charge on either side of the
dissociated species, each bond results in two independent
BDEs for each charged state. This algorithm was automated
to be performed over all input structures for all initial
states—i.e., neutral, excited, cationic, and anionic. Once
the BDEs were computed, they were sorted to identify each
state’s lowest BDE per compound. The BDE analysis based on
the weakest link of each compound ensures the chemical
design created or inspired by the generative model meets the
minimum requirements of compound stability under the
normal operation of the device.
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DE NOVO DESIGN STRATEGY AND
OUTLOOK

Design Augmented by the GenerativeModel
The new chemistry drawn from the generative model provides a
methodology for autonomous materials design. While the raw
chemistry generated as SMILES strings from the generative model
shows a list of interesting molecular structures paired with
desired properties, much greater insights can be extracted
from the individual design suggestions.

First, the generative model methodology demonstrates a viable
approach to autonomousmaterial design by delivering viable hole
transport structures. While the diversity of structures in this first
stage does not take explicit synthetic difficulty into account, it
does, however, and minimize the bias a practicing chemist brings
to molecular design. Second, one can more efficiently examine a
structural space and ensure it has been thoroughly investigated
versus the traditional empirical approaches. Third, the model
accurately reflects existing known design rules. For example,
successful HTL molecules in the design space minimize lone-
pair electrons on heteroatoms that are not sterically hindered
(e.g., protected) as they may be susceptible to known degradation
paths such as photochemical or cationic-nucleophilic reactions,
see Figure 8 (So and Kondakov, 2010; Schmidbauer et al., 2013).

While these unwanted characteristics can be filtered out in
generating new chemistry, this will result in the loss of a
significant number of new candidates generated by the model
and thus, interfere with the value we get from examining a diverse
set. A recommended strategy in the putative workflow is to
investigate the representative groups of compounds that share
frequently appearing substructure patterns, then apply minor
corrections in their design by manual inspection.

Figure 9 shows select candidates (D1, D2, and D3) derived
from structures frequently appearing in the validation set and
having high MPO scores while incorporating fewer less-
desirable fluorination and alkylation substituents. For
example, it has been reported that fluorine substituents on
aromatic and heterocyclic ring systems are prone to a variety
of chemistries (e.g., homolytic and heterolytic fragmentation
or even substitution nucleophilic aromatic (SNAr) reactions
with nucleophiles such as pyridyl nitrogen (March 1985; Shi
et al., 2015). Further, alkyl substituents that are para- or

FIGURE 9 | Bond dissociation energies for the ground state (S0), triplet-
excited state (T1), cationic state, and anionic state, predicted by quantum
chemical calculations over three example hole transport material designs
derived from the generative model (D1,D2, andD3), and compared to a
known hole transport material, NPB (shown on top).

FIGURE 10 | Four examples (A–D) of the high-MPO-scoring
compounds from the generative model are accompanied by some of the
frequently appearing substructure motifs, marked by the area enclosed within
the dotted lines.
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ortho-to an sp3 hybridized nitrogen (triarylamine) are
suspected to be sites for chemical degradation through
free-radical formation, but this has yet to be proven
experimentally. Again, the refined set of structures were
(re)validated with relatively high MPO scores (MPOD1 �
0.78, MPOD2 � 0.72, and MPOD3 � 0.95), and then further
examined for their chemical stability represented by the
dissociation energies of the weakest bond, relative to that
of a reference hole transport material, NPB (N,N′-Di (1-
naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine, and
chemical structure shown in Figure 9), on the different
potential energy surfaces reviewed (e.g., ground state,
triplet-excited state, cationic, and anionic states), confirm
that all structures were valid hole transport material
candidates.

Another design rule can be extracted from the generative
model by examining the pattern of how the machine draws the
new compounds rather than simply accepting computed
recommendations. The success of this methodology is
evidenced by the similarity analysis summarized in Figure 7;
many chemical motifs from the training set for the prior network
reappear in the candidates from the generative model.

Figure 10 illustrates how these frequently appearing motifs
are identified amongst the candidate compounds generated
by the model Figures 10A–D. During the manual inspection
of several high-scoring compounds, we found that a particular set
of structural patterns appear with higher frequency than others,
and such as those marked in the figure with the dotted lines.
We identified that these patterns are tied to the design rules
that are not as obvious to the human eye and can be used

to create another set of more advanced designs that neither
human nor machine has considered.

The advantage of this strategy is that unlike blindly accepting
the outcome of the generative model, one could get access to a
much clearer logic behind the structure-property relationships. It
also presents an opportunity for the materials experts to
seamlessly compare their ideas and intuition with the machine
model results.

Not surprisingly, most of the frequently appearing
substructures are among the fragments found in either the
core or the R-group chemistry used to build the prior
network. This means the design process relies on
concentrating the existing chemical design space on what
works best rather than digging up an entirely new chemical
space every time. This design approach represents an
enrichment of the chemical space.

At the same time, the generative model does not
systematically inhibit the appearance of a brand-new
chemical motif. Figure 10D is an example of the
substructure marked by the dotted line, spiro[acridine-9,9′-
xanthene] group, which has also appeared in D3 and had
never been introduced as part of the core chemistry used to
build the prior network.

Based on the recognized substructure patterns among the
high-scoring candidates returned by the generative model, we
built a small set following these simple design rules:

(1) Assemble a structure with two or fewer substructures
identified from the raw design

(2) Maintain high symmetry for synthetic viability

FIGURE 11 | Bond dissociation energies for the ground state (S0), triplet-excited state (T1), cationic state, and anionic state, predicted by quantum chemical
calculations over three example hole transport material designs derived from the generative model (R1, R2, and R3) derived from the design principle that takes the
patterns observed by the generative model as input while coupling them with user directives.
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(3) Use fast QM calculations, including the BDE analysis, and to
iterate through ideas

Figure 11 lists three of the simplest design examples following
these rules. Among the examples shown in the figure, two (R1
and R2) are from simple recombination of the frequently
appearing chemical substructures from the generative model,
10-phenyl phenoxazine and 10-phenyl 10H-spiro acridine-9,9′-
fluorene, respectively. They are based on a primary design
principle that combines the same symmetry point at the
center (2-fold rotational) and the core chemistry (biphenyl) of
NPB. The remaining structure (R3) is an extension of a known
chemical motif, truxene (Yang et al., 2009; Goubard and Dumur,
2015; Shi et al., 2015), and with an R-group (isoquinoline) that
appears in the machine-drawn candidates with high frequency.

The example designs R1–R3 were assessed for their predicted
properties in the same manner as previously done (D1–D3), and
the MPO scores for all three remain quite high (MPOR1 � 0.88,
MPOR2 � 0.97, and MPOR3 � 0.95). The dissociation energy of
the weakest bonds for R1 and R2 in the S0 and T1 states are
predicted to be equal to or lower than those of NPB. R3 looks to
have significantly better chemical stability, given that the BDE
from the weakest bond is expected to be higher than the other two
by nearly 50 kcal/mol for all examined states. BDE of the weakest
bonds for the cationic and the anionic surfaces are predicted to be
higher than that of NPB, confirming a legitimate design example
for novel hole transport materials that can withstand both hole
and electron currents. MPO scores and the individual material
properties (including the results from BDE analysis) of the six
example designs are summarized in Table 2 for a quick
comparison.

While the design rules illustrated in this work demonstrate
solid pathways to novel organic electronic materials using
unbiased, machine-generated information, and these examples
also highlight that the human factor cannot be completely
isolated. The discontinuity of the structure-property
relationship is often quite evident after minor refinement. Still,
it may be easily missed by a non-expert. One example of this issue
is exemplified with the design of R1 and R2. By following the
same design principles (1–3) illustrated above, there is no
apparent pressure to favor either biphenyl groups or a single
phenyl group at the center. However, an experienced OLED
expert would immediately note that the biphenyl groups at the
center are observed in successful hole transport materials (e.g.,

NPB, CBP, TPD, and dPVBi, etc.). A quick set of quantum
chemical calculations supports the expert’s intuition. In this
case, the single-phenyl-ring versions of R1 and R2 end up
with lower bond dissociation energies around the core,
especially with near-zero or even negative BDE in the T1 state.

This does not mean a single phenyl ring near the center should
be eliminated from design directives. As seen for D1 and D2, the
machine found a set of chemical motifs around a single phenyl
ring that delivers adequate stability while satisfying critical
requirements for hole transport materials. This is an example
where the machine can find subtle yet often not-readily-
interpretable changes outside the desirable core chemistry,
which effectively drive the property space further into the
more desired target space, and as shown in Figure 8. In both
cases, the clear benefit of the design augmented by the generative
model is that one could form a high-throughput process whereby
a machine dispenses unbiased design ideas while human experts
constantly filter and refine the list, nudging it in the direction of
viable design rules. In other words, the machine becomes an
expert tool to accelerate the creation of new design ideas while
diversifying the design space in an unbiased manner. But, it is not
a replacement for human experts. Instead, it is a tool that
augments experts and thus accelerates exploration of a target
material space.

Chemistry by Machine: The Next Step
While this work demonstrates the value of using a generative
model approach for materials design, many challenges remain.
One of them is to account for the subtle balance between chemical
diversity and synthesizability in the autonomous chemical design
process. In this work, R-group enumeration from known core
chemistry and symmetric attachment points was utilized as a
simple measure to circumvent the synthesizability issue without
explicitly involving additional scoring functions for synthetic
viability. This approach produced new chemistry resembling
the available design space and identified novel hole transport
materials while maintaining synthetic viability. A next step to
expand this work would involve constructing a neural network
for the generative model with an explicit synthesizability score
integrated into the MPO score. The main hurdle for such an
approach is the availability of tools that offer sufficient accuracy
over the entire molecular space (Boda et al., 2007; Ertl and
Schuffenhauer, 2009; Emami et al., 2015; Schneider et al.,
2016; Coley et al., 2018; Konze et al., 2019). Another method

TABLE 2 | Summary of MPO, individual design properties, and BDE analysis results for the machine-drawn design examples (D1–D3) and recombination with frequently
appearing structural patterns (R1–R3).

Design MPO EHOMO (eV) ELUMO (eV) λh (eV) Tg (°C) Weakest BDE (kcal/mol)

S0 T1 Cation Anion

D1 0.78 −5.77 −2.75 0.12 125 85.5 44.4 108.6 51.0
D2 0.72 −5.43 −2.44 0.18 120 109.8 53.1 130.6 91.6
D3 0.95 −5.57 −2.61 0.14 168 70.7 18.5 78.3 41.9
R1 0.88 −5.36 −2.49 0.08 158 63.5 3.8 78.2 43.4
R2 0.97 −5.59 −2.42 0.05 184 70.0 6.1 81.2 41.2
R3 0.95 −6.06 −2.60 0.14 164 111.3 55.3 130.9 106.7
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uses the transfer learning approach (Merk et al., 2018), which
partially retrains the prior networks for a smaller set of known
synthesizable structures. This has been shown to enable the agent
networks to be biased toward generating more synthesizable
structures for an RNN-based generative model of drug
discovery (Segler et al., 2018). Such an approach could
potentially drive the design process to start with a much more
diverse chemical space, then follow up by fine-tuning the design
selections with a smaller set of known hole transport materials.
The first step towards this is to survey algorithms to produce
synthetic accessibility (SA) generally accepted in the community,
generate the SA scores for the training set plus the generated set of
compounds in this work, and perform a comparative analysis to
assess the validity as well as to enhance the MPO scoring scheme
towards the synthesizability. We believe this could be an
immediate future work, explicitly considering a more extensive
set of operational design rules for OLED materials lifetime.

Aside from refining the algorithms to generate new and
improved materials chemistry from the generative model,
human intuition and how its construction is integrated into
the design process plays a critical role in the goal-directed
materials discovery process. The hole transport materials
example illustrates the importance of expert input when
setting up the desired property space for the model and
defining the final design rules that are transferable and
interpretable. Ultimately, this is not a single stream design
process that starts with fixed neural networks and ends with a
few refinements. It is designed to work as an iterative process
where the neural network and the scoring scheme get updated
with new information and insights obtained recursively from the
design ideas and the generative model.

CONCLUSION

A goal-directed generative model powered by recurrent neural
networks and reinforcement learning algorithms is presented as a
new materials discovery strategy in organic electronic
applications. High-throughput quantum mechanical
calculations and automated machine learning algorithms were
combined with the RNN-based generative model to produce
novel design ideas for molecular materials based on the
desired set of target properties and design rules.
Demonstration of the framework with a hole transport
material example confirms its value as a design tool that
accelerates the materials discovery process based on an
unbiased sampling of chemical space while optimizing the
properties of the materials.

Retaining similarity to the existing hole transport material
design space, the generative model successfully created a new set
of design ideas while optimizing for target properties, and

exemplified by a multiparameter optimization (MPO) score of
92% compared to related structures in the training set chemistry.
Despite using a single MPO score to define the goal in the
property space, improvements of all individual properties (e.g.,
orbital energies, hole reorganization energy, and glass transition
temperature) were observed across the design suggestions.
Utilizing a few expert design principles, one can construct
machine-generated design ideas that are used as valuable
ingredients for a set of novel design directives that are set to
find the balance between chemical diversity and synthetic
viability.

We note that the materials design process presented in this
work by the goal-directed generative model is not confined to the
organic electronics space but introduces a new data-driven design
framework for molecular materials. We believe the introduction
of the framework will significantly reduce the development cost
for new molecular materials, enabling rapid exploration, and
validation of a chemical design space.
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