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Abstract

Sotos syndrome (SS), the most common overgrowth with intellectual disability (OGID) disorder, is caused by inactivating germline
mutations of NSD1, which encodes a histone H3 lysine 36 methyltransferase. To understand how NSD1 inactivation deregulates
transcription and DNA methylation (DNAm), and to explore how these abnormalities affect human development, we profiled
transcription and DNAm in SS patients and healthy control individuals. We identified a transcriptional signature that distinguishes
individuals with SS from controls and was also deregulated in NSD1-mutated cancers. Most abnormally expressed genes displayed
reduced expression in SS; these downregulated genes consisted mostly of bivalent genes and were enriched for regulators of
development and neural synapse function. DNA hypomethylation was strongly enriched within promoters of transcriptionally
deregulated genes: overexpressed genes displayed hypomethylation at their transcription start sites while underexpressed genes
featured hypomethylation at polycomb binding sites within their promoter CpG island shores. SS patients featured accelerated
molecular aging at the levels of both transcription and DNAm. Overall, these findings indicate that NSD1-deposited H3K36 methylation
regulates transcription by directing promoter DNA methylation, partially by repressing polycomb repressive complex 2 (PRC2) activity.
These findings could explain the phenotypic similarity of SS to OGID disorders that are caused by mutations in PRC2 complex-
encoding genes.

Introduction
Over the last decade, high-throughput sequencing stud-
ies have identified the genes that are causally mutated
in many congenital disorders. This research has revealed
that many congenital growth and neurodevelopmental
disorders are caused by germline mutations in genes that
encode epigenetic modifying enzymes, i.e. enzymes that
‘read,’ ‘write’ and ‘erase’ epigenetic modifications (1–4).
These epigenetic modifications include DNA methyla-
tion (DNAm) (methyl groups added to cytosines followed
by guanines; cytosine–phosphate–guanine, CpGs) and
histone modifications. Epigenetic modifications function
interactively to regulate processes such as transcription,
primarily by regulating the transcriptional machinery’s
access to DNA. Mutations in epigenetic modifying
enzymes are presumed to cause congenital disorders
by altering the deposition of their target modifications,

resulting in altered transcription of genes that regulate
growth and other affected phenotypes. However, the
mechanisms that are altered by genetic mutations and
affect disease phenotypes are not fully understood for
any Mendelian disorder of the epigenetic machinery.

Sotos syndrome (SS) is an autosomal dominant neu-
rodevelopmental and growth disorder that is caused by
intragenic mutations or whole-gene deletions of NSD1
(5,6). Clinically, SS is primarily characterized by general-
ized overgrowth including tall stature and macrocephaly,
global developmental delay often culminating in intellec-
tual disability, distinct facial features, as well supranu-
clear hypotonia (7). SS is diagnosed in approximately
one in 10 000 births and is the most common of the
‘overgrowth with intellectual disability (OGID) disorders,’
a class of congenital disorders that are defined by con-
current developmental overgrowth and intellectual dis-
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ability (8). NSD1 appears to play a general role in the
regulation of physiological growth because while inacti-
vating NSD1 mutations cause overgrowth, rare germline
NSD1 amplifications cause a dwarfism syndrome known
as ‘reverse SS’ (9,10). NSD1 is deregulated in multiple
cancer types (11–14) suggesting that its inactivation may
drive cancer-related growth.

NSD1 encodes a histone lysine methyltransferase, i.e.
an enzyme that catalyzes histone methylation (15). NSD1
deposits mono and di-methylation of histone 3 at lysine
36 (H3K36me1/2) (12,15,16). NSD1 mutations are under-
stood to cause SS due to impairments of NSD1-catalyzed
histone methylation, as mutations often occur within
the gene region encoding the methyltransferase (SET)
protein domain (5). While the function of H3K36me1
remains poorly understood, H3K36me2 is generally asso-
ciated with active transcription and has been shown to
prevent transcriptional silencing by polycomb repressive
complex 2 (PRC2) in experimental systems (17,18).

H3K36me2 also regulates DNAm, an epigenetic modifi-
cation that regulates transcription (19,20). Consequently,
SS is associated with a genome-wide signature of abnor-
mal DNAm that is primarily characterized by loss of
DNAm (21). Moreover, we and others have previously
reported that in squamous cell carcinomas of the head
and neck (HNSCC) and of the lung (LUSCC), somatic NSD1
mutations are associated with signatures of abnormal
DNAm that are similar to that observed in SS, and are
associated with widespread transcriptional deregulation
(12,14). These observations suggest that NSD1 regulates
transcription by directing DNAm; however, the mecha-
nism through which this occurs is unknown.

Here, we have investigated transcriptional and DNAm
deregulation in SS, in order to characterize patterns of
transcriptional deregulation that are caused by NSD1
inactivation and to gain insights into the mechanism
through which NSD1 regulates transcription.

Results
Identification of transcriptionally
deregulated genes
We profiled transcriptional deregulation in SS by
applying RNA-sequencing (RNA-Seq) to primary whole
blood samples of SS patients (i.e. probands, n = 10), and
matched healthy control subjects (n = 15) (Table 1).

Choufani et al. (21) reported that SS displays a ‘genome-
wide’ signature of abnormal DNAm, which can be used to
diagnose SS with perfect accuracy (21,22). To confirm the
diagnosis of SS in probands and to confirm that they had
abnormal DNAm, we measured DNAm of cg07600533, a
CpG that distinguished SS patients from healthy control
subjects, in all subject DNA samples using pyrosequenc-
ing (Supplementary Material, Table S1). We selected
cg07600533 as a diagnostic CpG because cg07600533
methylation perfectly separated SS patients (N = 38)
from healthy control subjects (N = 53) in data from the
Choufani study (21) (Supplementary Material, Fig. S1A).

Consistently, pyrosequencing-based methylation of
cg07600533 clearly distinguished all SS cases from
controls within samples that were collected as part of
the current study (Supplementary Material, Fig. S1B).
All SS cases in the study were considered to be ‘de novo’
cases, since neither parent nor any family member of the
SS patient was diagnosed with SS. Cg07600533 pyrose-
quencing was applied to both parents of SS probands
in cases where blood samples of both parents could be
collected (n = 6 cases). ‘Normal’ cg07600533 methylation
levels were observed in all parents, confirming that the
SS patient’s NSD1 lesion was not inherited from either
parent.

High RNA-Seq data quality was confirmed by the
observation that all gene expression profiles were consis-
tent with whole blood RNA-Seq data from the GTEx study
(23) and displayed expression of sex chromosome marker
genes that were consistent with the sex of the subject
(Supplementary Material, Fig. S2). Principal component
analysis (PCA) was applied to the top 10% of genes
with the highest variation (mean absolute deviation)
(N = 12 100 genes). This indicated clustering of SS cases
and controls (Fig. 1A).

We next applied differentially expressed gene (DEG)
analysis to identify genes that are abnormally expressed
in SS, defined as genes with an absolute log2-fold count
difference of 1 or greater between SS cases and healthy
control subjects (i.e. an expression fold change of 2 or
greater), and with an false discovery rate (FDR)-corrected
P-value of less than 0.05. We first identified genes that
were differentially expressed between cases and controls
in the discovery set (n = 77) and then investigated the dif-
ferential expression of these genes within the validation
set. The validation set represents an independent RNA-
Seq experiment from the discovery set, as the validation
set samples were collected and analyzed subsequent
to the analysis of RNA-Seq data from the discovery
set; however, the protocols for sample collection, pro-
cessing, and analysis were consistent between the two
study phases such that the validation set experiment
represents a biological replicate of the discovery set
experiment. 41/77 (57%) of these genes were significantly
differentially expressed in the validation sample set
after adjustment for multiple correction testing, all of
which had directions of differential expressions that
were consistent between the discovery and validation
sample sets (23 overexpressed, 18 underexpressed) (Sup-
plementary Material, Table S2). Log2-fold changes for
expression differences between cases and controls were
highly correlated between the discovery and validation
sets, indicating reproducibility of differential expression
between study phases (Supplementary Material, Fig. S3).
In order to improve statistical power to identify DEGs,
we next applied DEG analysis to the combined discovery
and validation experiment datasets, including the study
phase as a covariate within DEG models. This revealed 72
genes that were overexpressed, and 113 genes that were
underexpressed in SS (Fig. 1B) (Supplementary Material,
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Figure 1. Identification of abnormally expressed genes in SS. (A) PCA of transcriptome data of SS and healthy control subjects. PCA was applied to the
top 10% of the most variable genes based on the mean absolute deviation. Lines connect SS patients to their matched healthy control subjects, with line
colors indicating the relationship of the healthy control subjects to the SS patient. (B) Heatmap showing expression of all genes that were overexpressed
(N = 72) and underexpressed (N = 113) in SS patients (case) relative to healthy control subjects (control), based on differentially expressed gene analysis
applied the combined (discovery and validation) sample sets. Labels indicate genes with essential roles in developmental growth and neurodevelopment.
Horizontal sidebars indicated by the bracket show gene expression classifier model predictions for classification of research subjects as either SS patients
or healthy control subjects. This gene expression model was developed using PAM (24) applied to transcriptional data for genes shown in the heatmap.
The PAM posterior probability indicates the probability of the subject being a case, as predicted by the classifier. The final predictions of the model
are indicated by the ‘PAM model prediction’ horizontal sidebar. Abbreviations: SS = Sotos syndrome, exp = expression, PAM = Predictions Analysis of
Microarrays.

Figs S4 and S5) (Supplementary Material, Table S3).
Notably, NSD1 was not differentially expressed between
SS cases controls (Supplementary Material, Fig. S4C).
This is not surprising since many SS cases (including
four of seven cases for which NSD1 lesion data were
available with the current study) are caused by missense
variants that are predicted to perturb NSD1 methyl-
transferase activity rather than NSD1 expression. NSD1
was expressed at appreciable levels in all probands
including 4834-P, an individual with a whole gene
NSD1 deletion. This indicates that in patients with
truncating mutations, NSD1 is expressed from the wild-
type allele, which could partially compensate for NSD1
haploinsufficiency. Importantly, differential expression
could not be accounted for by abnormalities of blood
cell fractions in SS, as fractions of blood cell types were
similar between cases and controls (Supplementary
Material, Fig. S6) (see Supplementary results).

Gene expression-based diagnostic
classification of SS
Multidimensional scaling was applied to transcriptional
data of all (N = 185) deregulated genes, which indicated
the separation of cases from controls (Supplementary
Material, Fig. S7). To determine if the transcriptional
abnormalities identified are sufficient to diagnose SS,
we trained a gene expression classifier to distinguish SS
cases from control subjects based on the expression of
deregulated genes, using prediction analysis of microar-
rays (PAM) (24). We tested the accuracy of this model by
applying it in combination with 10-fold cross-validation.

The gene expression classifier accurately predicted the
SS status of all subjects with high confidence (Fig. 1B).
This indicates that SS could be diagnosed using the tran-
scription signature, as can be done using DNAm data (21).

Downregulation of bivalent developmental genes
We next sought to functionally characterize the genes
that were transcriptionally deregulated in SS. Down-
regulated genes included genes whose deregulation
could account for phenotypes of SS, including genes
that control skeletal development (WNT7A (25,26), FGF9
(27) and GPC4 (28)), neurodevelopment (CTTNBP2 (29),
GPC4 (28), and KCND3 (30)) and craniofacial development
(DLX4 (31), GPC4 (28), and RIPK4 (32)). Other underex-
pressed genes are causally implicated in phenotypes
less frequently observed in SS (6), including autism
spectrum disorder (CTTNBP2 (29), NEO1 (33)), congenital
cardiac defects (HEY1 (34), DSC2 (35)), muscle hypotonia
or weakness (COL6A1 (36)), ocular defects (NECTIN3 (37),
GPC4 (28)) and hypodontia (GREM2 (38), TSPEAR (39)).
Gene set enrichment analysis (GSEA) was applied to
underexpressed genes and identified many enriched
gene sets, of which the most significantly enriched
was ‘ZHAN_MULTIPLE_MYELOMA_MS_UP,’ representing
genes that were upregulated in a subtype of multiple
myeloma that is defined by overexpression of NSD2
(also known as WHSC1) (40) (Supplementary Material,
Table S6). This indicates overlap between genes that
are positively regulated by NSD1 and its paralogue
NSD2, presumably due to their shared H3K36me1/2
methyltransferase activity (41,42).
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The second most significantly enriched gene set, as
well as three additional enriched gene sets, consisted
of genes that are regulated by PRC2, as determined
by chromatin immunoprecipitation-sequencing (ChIP-
Seq) (43,44). These gene sets include genes that were
bound by PRC2 core component proteins SUZ12 and EED
(43), as well as a set of bivalent genes. Bivalent genes
represent a subset of PRC2 target genes that feature
H3K27me3 (43,44), the PRC2-deposited repressive histone
modification, in combination with the activating histone
modification H3K4me3 at the same location within
their promoters. Bivalent genes generally represent
tissue-specific development genes that regulate cellular
differentiation and include many neurodevelopmental
genes (45). Network-based analysis of the enriched
gene sets revealed that many of the enriched gene
sets consisted of genes that encode components of
the synaptic membrane as well as genes that are
involved in embryogenesis (Supplementary Material, Fig.
S8). Also enriched were genes that encode members
of developmental signaling pathways, notably netrin
signaling, which controls axon guidance (46), KRAS
signaling, deregulation of which causes congenital
growth disorders (47,48) and WNT signaling, which
controls cellular differentiation (49).

Overexpressed genes included developmental genes
whose overexpression could contribute to SS phenotypes,
particularly EVC and EVC2, mutations within which
cause short limb dwarfism and congenital heart defects
(50), LEP, which regulates bone metabolism (51) and
FOXJ1, which regulates nervous system development
(52). Despite this, GSEA did not identify any gene set
that significantly overlapped with overexpressed genes,
most likely due to the relatively small number of
overexpressed genes compared with underexpressed
genes.

Confirming deregulation of bivalent genes
Underexpression of PRC2 target genes in SS could
account for many of the phenotypes of SS, since germline
mutations in genes encoding PRC2 core component
enzymes cause OGID disorders that are highly similar to
SS (53). To confirm that genes that are deregulated in SS
contain an overrepresentation of PRC2 target genes, we
analyzed reference epigenomes (54) to assess baseline
chromatin profiles (Chromatin profiles in healthy
NSD1 wild-type tissues) of genes that were abnormally
expressed in SS. These included histone modification
‘tracks,’ which map genome-wide levels of histone
modifications and were measured using ChIP-Seq
applied to peripheral blood mononuclear cells (PBMCs)
of healthy individuals. We also analyzed a consolidated
‘18 chromatin state’ map, which assigns each 500 bp
genomic interval to one of the 18 distinct chromatin
states based on its combination of histone modifications.

Relative to genes that were normally expressed in
SS, genes that were underexpressed and overexpressed
in SS featured higher levels of H3K27me3 as well

as the repressive modification H3K9me3 within their
promoter regions, in reference epigenomes (i.e. in
blood of healthy individuals) (Fig. 2Ai). This indicates
that genes that are transcriptionally deregulated in
SS feature H3K27me3 bound promoters under normal
physiological conditions, confirming that they represent
PRC2-regulated genes as suggested by GSEA. Promoters
of abnormally expressed genes featured lower levels of
all other histone modifications in reference epigenomes;
however, underexpressed genes featured appreciable
H3K4me3 levels at their transcription start sites (TSSs),
indicating that they have bivalent promoters. Indeed,
analysis of consolidated chromatin states confirmed
that bivalent chromatin was strongly enriched within the
promoters of underexpressed genes relative to normally
expressed genes (Supplementary Material, Fig. S9Ai).
Sixty-two percent of underexpressed genes featured
bivalent chromatin within their promoters, compared
with 9% of normally expressed genes (Supplementary
Material, Fig. S9Aii). Half of the remaining non-bivalent
underexpressed genes featured non-bivalent polycomb-
associated chromatin states within their promoters,
indicating that NSD1 primarily promotes transcription
of PRC2 target genes. Moreover, underexpressed genes
were overrepresented for protein-coding genes and had
a higher density of CpG sites within their promoters
relative to genes that were normally expressed in
SS; characteristics that are associated with bivalent
genes (55) (Supplementary Material, Tables S4 and
S5). Genes that were overexpressed in SS were also
overrepresented for bivalent genes, albeit to a lesser
extent than underexpressed genes, indicating that NSD1
regulates bivalent genes both positively and negatively.

To determine if abnormally expressed genes are
normally occupied by PRC2, we examined the levels of
baseline EZH2 ChIP-Seq signal (i.e. EZH2 occupancy or
binding) within the region surrounding the promoters
of DEGs, using an EZH2 binding reference dataset that
was generated by ENCODE (56). This indicated that
relative to genes that were normally expressed in SS,
genes that were underexpressed featured higher levels
of EZH2 occupancy within their promoters, particularly
within regions flanking their TSS, in the blood of healthy
individuals (Fig. 2Aii). Taken together, these findings
indicate that NSD1 inactivation primarily deregulates
PRC2 target genes, particularly downregulating bivalent
genes.

DNA hypomethylation of promoter
CpG island shores and hypermethylation
of intergenic regions
Choufani et al. reported that SS displays a ‘genome-
wide’ signature of abnormal DNAm (21). Here, we profiled
abnormal DNAm using the Illumina 850 K DNAm array
(57) in order to investigate the role of DNAm in medi-
ating transcriptional regulation by NSD1. We profiled
genome-wide DNAm in the blood of three SS case sub-
jects (n = 3), and age- and sex-matched healthy control
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Figure 2. Profiles of baseline histone modifications and EZH2 occupancy at genomic regions that feature promoters of abnormally expressed genes
and regions of abnormal DNA methylation in SS. Heatmaps show mean baseline levels (i.e. ChIP-Seq signal) of histone modifications and EZH2
occupancy within genomic regions that feature: (A) promoters of genes that display different gene expression states in SS; and (B) CpGs that display
different methylation states in SS. ‘Baseline’ EZH2 occupancy and histone modifications levels refer to the levels of these variables in peripheral
blood mononuclear cells of healthy individuals, as indicated by reference ChIP-Seq datasets that were generated as part of the ENCODE (106) and
Epigenomics Roadmap (109) projects, respectively. (A) The heatmap shows (i) mean histone modification and (ii) EZH2 occupancy levels within 500 bp
intervals (i.e. genomic windows) surrounding the TSSs of genes that were overexpressed, normally expressed (normal) and underexpressed in SS. EZH2
and histone modification levels are shown for TSS distance intervals within regions that span from 5 kb upstream to 5 kb downstream of TSSs. (iii)
Shown for reference are bar plots illustrating the proportion of CpGs that were hypomethylated, hypermethylated and hypermethylated in SS, within
each TSS distance interval. These bar plots are equivalent to those shown in Figure 4 (ii), where they are described in additional detail. In (B), the
heatmap shows levels of baseline (i) histone modifications and (ii) EZH2 occupancy at the loci of CpGs that were hypomethylated, hypermethylated and
normally methylated in SS. CpGs are split into groups (TSS distance intervals) along the horizontal axis based on their distance from the closest TSS
(of any gene). This illustrates levels of EZH2 occupancy and histone modifications within TSS distance intervals that feature enrichment of abnormal
DNA methylation (i.e. overrepresentation of hypermethylated and hypomethylated CpGs). (iii) Shown for reference is a heatmap that indicates the
percentages of hypermethylated, hypomethylated and normally methylated CpGs that occurred within each TSS distance interval. Darker red regions
indicate distances from TSSs at which CpGs were disproportionately hypermethylated or hypomethylated in SS. TSS distance intervals were generated
by calculating the distance of each CpG to its closest TSS and then splitting CpGs into forty groups based on this distance. Interval boundaries were
defined by frequency, such that each interval includes an approximately equal number of CpGs. This heatmap and the distribution of abnormal DNAm
in SS are described in additional detail in Figure 3.

subjects (n = 3). We also profiled a pooled blood DNA sam-
ple of the parents of the three probands (n = 5). We gener-
ated this dataset (hereafter referred to as the ‘Stanford’
dataset) in order to investigate the genomic distribution
of abnormal DNAm in SS, since the 850 K array yields
greater and more balanced genome coverage than the
450 k array that was used to generate the preexisting
Choufani dataset (21). Delta beta values (i.e. the mean
methylation beta value difference between cases and
controls) of CpGs were highly consistent between the
Stanford dataset and the larger Choufani dataset for
CpGs that were included in both datasets (Supplemen-
tary Material, Fig. S10). This confirmed that despite its
small sample size, the Stanford dataset provides a reli-
able estimate of abnormal DNAm in SS.

Differential methylation analysis identified many
abnormally methylated CpGs, defined as CpGs with an

absolute delta beta of 0.1 or greater; this approximately
equates to a 10% difference in methylation between
cases and controls. There was a strong bias toward
hypomethylation; overall, 5% of CpGs (n = 41 660) were
hypomethylated, whereas 0.016% of CpGs (n = 12 128)
were hypermethylated. We next analyzed the distribu-
tion of abnormally methylated CpGs with respect to TSSs.
Hypomethylated CpGs were strongly overrepresented
within the regions flanking TSSs, particularly at 5’
TSS flanking regions where there was a clear spike
of DNA hypomethylation (Fig. 3A) (Supplementary
Material, Table S8). Hypomethylated CpGs within these
regions were overrepresented for CpGs that are within
promoter CGI shores, regions of intermediate CpG
density at the borders of CGIs that exhibit high DNAm
variability and are often associated with transcription
(20) (Fig. 3B).
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Figure 3. Characterizing the genomic distribution of abnormal DNA methylation in SS. (A) Heatmap representation of the genomic distribution of
abnormal DNAm in SS. The heatmap shows the distribution of CpGs in relation to the TSSs, with CpGs stratified into those that were hypermethylated
(Hyper), hypomethylated (Hypo) and normally methylated (Normal) in the blood of SS patients, relative to healthy control subjects. The heatmap
indicates the percentages of hypermethylated, hypomethylated and normally methylated CpGs that occur within genomic intervals (i.e. ‘windows’) of
distance to the closest TSS. Dark red cells indicate intervals of distances from TSSs (TSS distance intervals) at which abnormally methylated CpGs states
disproportionately occurred. TSS distance intervals were generated by calculating the distance of each CpG to its closest TSS and then splitting CpGs
into 40 groups based on this distance. Interval boundaries were defined by frequency, such that each interval includes an approximately equal number
of CpGs. Purple horizontal sidebars indicate the percentages of CpGs within each interval that occur within genes and promoter regions (TSS200 and
TSS1500). TSS200 and TSS1500 regions encompass CpGs within 200 and 1500 bp of a TSS, respectively. For each TSS distance interval, green horizontal
sidebars indicate the negative log 10 FDR-adjusted P-values (−log10 P-value) for differences in the frequencies of hypermethylated and hypomethylated
CpGs relative to normally methylated CpGs (Fisher’s exact test). Negative log10 P-values greater than 3 (i.e. P < 0.001) were assigned a value of 3 to
improve visualization of the P-value range. (B) Stacked bar plots indicating the percentages of CpGs that were within CpG islands (CGIs), CGI shores and
CGI shelves, for hypermethylated, normally methylated and hypomethylated CpGs within each TSS distance interval. North ‘N’ and south ‘S’ CGI shores
and shelves (Those that occur upstream and downstream of CGIs) are indicated, as defined within the Illumina 850 k array annotation. (C) Boxplots
indicate the distribution of baseline DNA methylation for CpGs that were hypermethylated, normally methylated and hypomethylated in SS, within each
TSS distance interval. Baseline DNA methylation refers to the level of DNA methylation in the whole blood of healthy control subjects (N = 15). Horizontal
red dashed reference lines indicate the Y-axis position that indicates 50% (i.e. intermediate) baseline DNAm. Abbreviations: TSS = ‘Transcription start
site,’ Island = ‘CpG island,’ Beta = ‘Beta value,’ Q.val = ‘Q value,’ Hyper = ‘Hypermethylated,’ ‘Hypo’ = ‘Hypomethylated,’ ‘Normal’ = ‘Normally methylated.’

A recent study (58) reported that NSD1-deposited
H3K36me recruits DNAm to intergenic regions; this
conclusion was based partially on the authors’ reanalysis
of the Choufani study 450 k array data, which showed
that DNA hypomethylation disproportionally occurred at
intergenic regions. Our findings partially concur with this
analysis, as hypomethylated CpGs were overrepresented

within intergenic regions overall. Despite this, analysis
of the distribution of hypomethylated CpGs in relation
to TSSs indicated that hypomethylation was enriched
only at intergenic CpGs that occurred at the borders of
promoters, i.e., promoter-flanking regions, which repre-
sent cis-regulatory elements of genes. Hypomethylation
was not enriched at intergenic CpGs that were more
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distant from genes, indicating that NSD1 recruits DNAm
to promoter–proximal regions rather than intergenic
regions per se. In contrast, hypermethylated CpGs were
enriched within intergenic regions and introns as well as
3’ TSS flanking regions but were depleted at TSSs and
5’ TSS flanking regions (Fig. 3A). The distinct genomic
distributions of hypomethylated and hypermethylated
CpGs therefore indicate that the direction in which NSD1
regulates DNAm depends on the underlying genomic
context.

DNAm is bimodally distributed such that in healthy
tissues, DNAm levels of the vast majority of CpGs
are either very low (where CpGs occur within gene
promoters) or high (where CpGs occur within intergenic
regions). A distinctive feature of CpGs that were abnor-
mally methylated in SS was that they were generally
restricted to CpGs that display intermediate baseline
DNAm, i.e. approximately 50% DNAm levels in blood
samples of healthy control subjects, across all genomic
regions (Fig. 3C). This observation persisted despite
the exclusion of CpGs within sex chromosomes and
known imprinted regions, indicating that NSD1 main-
tains intermediate DNAm at non-imprinted autosomal
regions.

To determine if NSD1 regulates DNAm within similar
genomic contexts across tissues, we analyzed the
distribution of abnormal DNAm in dermal fibroblasts
of SS patients. We identified CpGs that were abnormally
methylated in dermal fibroblasts of SS patients (n = 3)
relative to those of healthy control subjects (n = 4)
using a previously published Illumina 450 k array
data (21) (Supplementary Material, Fig. S11A). This
revealed a similar distribution of abnormal DNAm in
SS fibroblasts as was observed in blood, characterized
by strong enrichment of hypomethylation at 5’ TSS
flanking CGI shores, enrichment of hypermethylation
within intergenic regions, and intermediate baseline
methylation (in healthy control fibroblasts) of CpGs that
were abnormally methylated in SS. This indicates that
NSD1 regulates DNAm within similar contexts across
tissues.

Promoter DNA hypomethylation of
transcriptionally deregulated genes
We next analyzed the distribution of abnormal DNAm
within regions surrounding transcriptionally deregulated
genes, to determine if DNAm deregulation could play
a role in transcriptional deregulation. Indeed, DNA
hypomethylation was strongly enriched at TSSs of
overexpressed genes (Figs 2Aiii and 4A) (Supplemen-
tary Material, Tables S4 and S8). This suggests that
transcription of these genes is normally silenced by
(NSD1-directed) DNAm, as TSS DNAm is known to
prevent transcriptional initiation (18,19). In contrast
with overexpressed genes, unexpressed genes displayed
DNA hypomethylation within their TSS flanking regions,
precisely at the intervals of distance from TSSs at

which we had observed spikes of DNA hypomethy-
lation within promoter CGI shores. Moreover, genes
that were normally expressed in SS displayed very
little promoter hypomethylation, indicating that NSD1
primarily directs DNAm to promoters of genes that are
transcriptionally regulated by NSD1. Underexpressed
genes displayed significantly higher proportions of
hypermethylated CpGs within their overall regions
compared with normally expressed genes (P < 0.001),
suggesting that hypermethylation plays a role in tran-
scriptionally silencing these genes. For example, the
underexpressed gene HOXC4 featured hypermethylation
of CpGs within its bivalent TSS regions, consistent
with epigenetic silencing; however, the most extreme
alterations of DNAm within HOXC4 were within its TSS
flanking regions, where most CpGs displayed strong DNA
hypomethylation (Fig. 4B).

Colocalization of DNA hypomethylation with
PRC2 binding sites
We next investigated the levels of baseline histone
modifications and EZH2 occupancy at the loci of
abnormally methylated CpGs. This revealed that across
all genomic regions, CpGs that were hypomethylated in
SS featured much higher levels of EZH2 occupancy and
H3K27me3 in reference datasets (in the blood of healthy
individuals) than CpGs that were normally methylated
in SS (Fig. 2B). This indicates that hypomethylation in
SS disproportionally occurs at regions of PRC2 activity.
Moreover, regions of DNA hypomethylation in SS dermal
fibroblasts also featured enrichment of EZH2 occupancy
and H3K27me3, as indicated by analysis of reference
epigenomes that were derived from dermal fibroblast
cultures (Supplementary Material, Fig. S11B). This
indicates that the spikes of DNA hypomethylated within
the TSS flanking regions of underexpressed genes cor-
respond to sites of PRC2 binding and methyltransferase
activity. Taken together with our earlier observation that
underexpressed genes featured enrichment of EZH2
occupancy and H3K27me3 within their TSS flanking
regions, this suggests that NSD1 preferentially directs
DNAm to PRC2 binding sites within the promoters of
NSD1-regulated genes. Consistent with the enrichment
of DNA hypomethylation at bivalent gene promoters,
hypomethylated CpGs within TSS-flanking regions
displayed elevated levels of H3K4me1, a modification
that marks bivalent promoters and enhancers (59),
while hypomethylated CpGs displayed low levels of
all activating histone modification. Hypermethylated
CpGs displayed high levels of H3K4me1 as well as
H3K9me3, a modification that marks heterochromatin,
and H3K36me3, a modification that marks bodies of
actively transcribed genes. Analysis of consolidated
chromatin states at the loci of abnormally methylated
CpGs confirmed that hypomethylated CpGs dispro-
portionately occurred at regions that featured PRC2-
associated chromatin states (Supplementary Material,
Fig. S9B). Interestingly, hypermethylated CpGs were
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Figure 4. Abnormal DNA methylated CpGs within promoters of abnormally expressed genes. (A i) Smoothed lines illustrating the distribution of
abnormally methylated CpGs within promoters of genes that were abnormally expressed in SS. For CpGs that are within 5 kb of TSSs of genes that
were overexpressed (Green), normally expressed (Gray) and underexpressed (Magenta) in SS, smoothed lines plot the delta beta (i.e. the mean DNA
methylation beta value difference between SS patients and healthy control subjects) (Y-axis) against the distance of the CpG to its closest TSS (of a
gene of the relevant expression state). (A ii) Bar plots illustrate the percentages of CpGs that were hypomethylated (Blue), normally methylated (Gray) or
hypermethylated (Red) in SS, within 500 bp intervals (i.e. ‘windows’) surrounding the transcription start sites of genes that were overexpressed, normally
expressed or underexpressed in SS. Each CpG is assigned to a ‘Distance to closest TSS’ interval based of its base pair (bp) distance to the closest TSS of
any gene within the relevant gene expression state. Each bar plot represents all CpGs that are within 5 kb of a TSS of any gene of the relevant expression
state. (A iii) Heatmap of P-values indicating the significance of differential representation of hypomethylated and hypermethylated CpGs within the
promoters of abnormally expressed genes relative to normally expressed genes. For TSS distance intervals that are shown in ‘ii,’ the heatmap indicates
–log10 P-values (Fisher’s exact test) for differences in the proportions of hypomethylated and hypermethylated CpGs within intervals surrounding the
TSSs of overexpressed genes compared with normally expressed genes (over V normal) and underexpressed genes compared with normally expressed
genes (under V normal). Negative log10 P-values greater than 3 (P < 0.001) were assigned a value of 3 to improve visualization of the P-value range. (B)
Karyoplot illustrating levels of abnormal DNA methylation and baseline chromatin states within HOXC4, the most significantly underexpressed gene
in SS. The upper panel (Labeled ‘Genes & chromatin states’) illustrates the structures of HOXC4 and surrounding genes, with background color blocks
illustrating the baseline chromatin states (i.e. the Roadmap Epigenomics (109) blood chromatin states) within the region. The lower panel illustrates
the genomic location and degree of abnormal DNA methylation in SS (Delta beta) of all CpGs within the region. Points indicate the delta beta value for
each CpG, while the brown connecting line indicates the rolling mean of CpG delta beta values. A horizontal gray dashed marker line is shown at the
‘zero’ delta beta position, representing the Y-axis position of CpGs that display normal DNA methylation (i.e. no difference between cases and controls).
Vertical black bars indicate positions of transcription states sites, with labels indicating the associated gene symbol and label colors indicating the
expression state of the associated gene in SS. Transparent pink blocks indicate the regions covered by CpG islands. The Karyoplot was generated using
KaryoplotR (108). Abbreviations: TSS=‘Transcription start site,’ DNAm = ‘DNA methylation,’ Bp = ‘Base pairs.’

associated with active enhancer states. Taken together
with our earlier observation that hypermethylation was
enriched at underexpressed genes, this suggests that
hypermethylation of enhancers could silence bivalent
genes in SS.

Accelerated molecular aging in SS
DNAm is continuously altered with age, such that
age can be predicted from DNAm data using algo-
rithms known as epigenetic clocks (60,61). By apply-
ing epigenetic clocks to the Choufani dataset, two
recent studies (62,63) reported that SS is associated
with ‘accelerated epigenetic aging,’ i.e. with DNAm-
predicted age values that exceed chronological age.
To validate this finding, we calculated DNAm age
for SS case and control samples using an updated

version of the ‘Horvath clock,’ which improves the
accuracy of age estimates by incorporating CpGs that
are represented on the 850 K array (62,63). Consistent
with previous findings, all three SS patients, but not
healthy control subjects (n = 3) were predicted to be
approximately 20 years older than their chronological
age (Supplementary Material, Fig. S12A and Table
S9). We next investigated whether SS patients display
accelerated molecular aging at the level of transcription,
by calculating the transcriptional age of all sam-
ples using two ‘transcriptional aging clocks,’ namely
RNAAgeCalc (64) and TRAP (65). Indeed, SS patients
displayed accelerated transcriptional age relative to
controls based on estimates for both transcriptional
age calculators (Supplementary Material, Fig. S12B). This
postulates that deregulation of DNAm in SS results in
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age-associated transcription deregulation, indicating
that NSD1 inactivation-associated molecular aging could
affect phenotype.

Transcriptional deregulation of Sotos
syndrome-deregulated genes in
NSD1-mutated cancers
It has previously been reported that somatic NSD1 muta-
tions are associated with ‘SS-like’ signatures of abnormal
DNAm in squamous cell carcinomas (HNSCS and LUSCC)
(14). To determine if NSD1 inactivation causes similar
patterns of transcriptional deregulation between SS and
cancer, we investigated differential expression of genes
that were abnormally expressed in SS between SCCs
that harbor somatic NSD1 mutations and those that are
NSD1 wild type. Indeed, the mean expression of genes
that were overexpressed and underexpressed in SS was
higher and lower, respectively, in NSD1-mutated SCCs
relative to NSD1 wild-type SCCs, in both HNSCC and
LUSCC (Supplementary Material, Fig. S13). This indicates
that the patterns of transcriptional and epigenetic dereg-
ulation that are caused by NSD1 inactivation are partially
consistent across tissues and disease states.

Discussion
Here we characterized abnormal transcription and
DNAm in SS, identifying genes that are deregulated
as a result of NSD1 mutations as well as mechanisms
through which NSD1 could regulate transcription. A key
insight was that NSD1 preferentially regulates bivalent
genes; this observation is consistent with experimental
evidence that NSD1 represses PRC2 activity, as experi-
mental NSD1 inactivation in embryonic stem cells (17)
and spermatozoa (18) of mice caused accumulation of
H3K27me3 and downregulation of PRC2 target genes.
Despite this, our findings indicate that NSD1 specifically
promotes transcription of (a subset of) bivalent genes,
rather than PRC2 target genes overall, representing a
much more specific regulatory role than previously
appreciated. Moreover, almost 40% of transcriptionally
deregulated genes were overexpressed, revealing that
NSD1 regulates developmental genes either positively or
negatively depending on context.

Our findings indicate that NSD1 regulates transcrip-
tion by directing promoter DNAm, since abnormal DNAm
in SS was enriched at promoters of transcriptionally
deregulated genes. We found clear evidence that NSD1
represses transcription of a subset of genes by directing
promoter DNAm, since overexpressed genes displayed
DNA hypomethylation directly at their TSSs, regions at
which DNAm prevents transcriptional initiation (19,66).

Intriguingly, we also found evidence that NSD1
promotes transcription of bivalent genes by recruiting
promoter DNAm, as hypomethylation was strongly
enriched within the TSS-flanking regions of under-
expressed genes, particularly at CpG islands shores
that normally feature PRC2 binding and H3K27me3.

These observations lead us to hypothesize that NSD1-
deposited H3K36me protects bivalent genes from PRC2-
mediated silencing by recruiting DNAm to PRC2 binding
sites within their promoters, thereby antagonizing PRC2
activity. In support of this model, DNAm of bivalent gene
CGI shores has been implicated in preventing PRC2-
mediated silencing of these genes (67). In evidence of a
third mechanism, we found that DNA hypermethylation
was enriched at underexpressed genes and enhancers,
suggesting that NSD1-deposited H3K36me promotes
transcription of bivalent genes by precluding DNAm at
nearby enhancers.

NSD1 mutations could cause many of the phenotypes
of SS by disrupting normal PRC2 activity, as SS is pheno-
typically very similar to OGID disorders that are caused
by germline mutations in genes that encode the three
core subunits of PRC2; these include weaver syndrome
(MIM: 277590, caused by EZH2 mutations), Cohen–Gibson
syndrome (MIM: 617561, caused by EED mutations) and
Imagawa–Matsumoto syndrome (MIM: 618786, caused
by SUZ12 mutations). The observation that SS closely
mimics the phenotypes of disorders of PRC2 disruption,
coupled with the collective evidence that NSD1 regulates
PRC2 activity, suggests that NSD1 mutations cause SS at
least partially by deregulating PRC2, as has been specu-
lated previously (53). Moreover, this hypothesis suggests
that disruption of PRC2 could represent a general causal
mechanism underlying OGID, and could play a role in
other OGID disorders that are phenotypically similar to
SS, such as the conditions that are caused by germline
mutations in NFIX (68), HIST1H1E (69) and APC2 (70).

Aberrant silencing of bivalent genes could account
for neurodevelopmental phenotypes of SS, since neu-
rodevelopmental genes often feature bivalent promoters
(42). Moreover, underexpressed genes included a strong
enrichment of synaptic membrane-expressed genes.
This suggests that cognitive impairment in SS could
be caused by the silencing of bivalent genes that
orchestrate synaptic assembly, since disrupted synaptic
assembly is a feature of many neurodevelopmental
disorders (71). We identified other transcriptionally and
epigenetically deregulated genes that are known to
regulate skeletal overgrowth and craniofacial anomalies,
suggesting that perturbation of these genes contributes
to the SS phenotypes. Collectively, these findings suggest
that NSD1 mutations cause SS by impairing epigenetic
regulation of developmental genes.

Genes that were transcriptionally deregulated in SS
were also altered in NSD1-mutated cancers, suggesting
that NSD1 regulates similar transcriptional pathways
through a consistent mechanism across tissues and dis-
ease states. Since bivalent genes are frequently dereg-
ulated in cancer (72), NSD1 mutations might promote
tumorigenesis and oncogenic growth by perturbing PRC2
activity. Since H3K27me3 at bivalent genes is understood
to maintain the identity of stem cells (45), silencing
of bivalent genes in NSD1-mutated cancers could pro-
mote stem cell-like cellular states and could give rise
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to cancer stem-like cells that have increased metastatic
and tumor-initiating potential (73). This hypothesis is
supported by previous observations that NSD1-mutated
cancers display stem cell-like transcriptional and DNAm
profiles (14,74).

Another intriguing finding was that SS patients fea-
tured accelerated molecular aging at the levels of both
DNAm (as previously reported (62,63)) and transcription.
Deregulation at bivalent genes in SS could explain this
phenomenon since aging-associated molecular deregu-
lation occurs predominantly at bivalent domains (75–79).
A validation study to confirm accelerated transcriptional
aging in SS is warranted, as this would identify NSD1 as
a master regulator of human molecular aging.

Functional studies are needed to elucidate the mech-
anisms through which NSD1 regulates transcription and
to confirm that NSD1-directed DNAm precludes PRC2-
mediated silencing of bivalent genes. Understanding this
mechanism could enable the development of targeted
therapies, such as epigenetic drugs or gene therapies
(80,81), for the treatment of SS and related disorders.

Materials and methods
Research subject recruitment and study design
This study was conducted under an approved IRB pro-
tocol. Written informed consent was obtained from all
participants. Ten individuals with clinical features sug-
gestive of classic SS whose diagnoses were confirmed
molecularly (i.e. with an NSD1 mutation or deletion) were
enrolled in the study. Also enrolled were one or both (if
available) parents of each SS patient (parent controls,
n = 16), as well as siblings of patients that were of the
same sex and close to the same age of the proband
(n = 3).

Research subjects were recruited during two separate
phases, which we refer to as the ‘discovery’ and
‘validation’ phases, each including five sets of patients
and matched controls. The discovery phase sample
set included five SS patients that were recruited at
a local child health institute. For each proband, the
discovery study included one or both parents whose
samples were collected and processed at the same time.
For three of these probands, anonymous sex and age-
matched control subjects (blood donors) were included.
The validation set included five SS probands as well as
a healthy control subject that was matched to the case
subject by sex, ancestry (self-declared) and age (within
six years).

Given the challenge of collecting both RNA and DNA
from fresh primary tissues of patients with a rare con-
dition, this study was designed to achieve maximum
statistical power from a limited number of samples. We
achieved this by selecting healthy control subjects that
were matched to probands by potential confounding fac-
tors that could affect gene expression, including age, sex
and ancestry, as well as technical factors. This allowed
us to perform DEG analysis without the need to adjust

for these factors within the model, which would have
reduced statistical power. Control subjects were espe-
cially well matched to probands for all of the aforemen-
tioned demographic and technical factors within the val-
idation study, such that we could exclude these potential
confounding factors for genes that were differentially
expressed within the validation study. For each proband,
at least one healthy control subject was included whose
sample was collected and underwent all steps of process-
ing and analysis at the same time as the probands sam-
ple, thereby serving as technical controls. Where avail-
able, siblings were included to act as controls that were
matched for demographic factors (sex, age and ancestry),
as well as family and technical factors. Where matched
siblings were not available, blood samples were collected
from unrelated individuals that were matched to the
patient by age, sex and self-declared ancestry (Healthy
volunteer controls) (N = 2). Healthy control volunteers’
blood samples were collected on the same date and in
the same location as the matched patient’s sample. One
of these healthy volunteer control subjects (ID: 5530-
P) is the mother of a proband that is included in this
study, whose unaffected sibling is also included. The
other healthy volunteer control subject (ID: 7634-M) is
the mother of a patient whose sample was not analyzed
as part of this study. Where siblings or volunteer subjects
were not available, blood samples of sex/age-matched
healthy blood donors were accessed from a local blood
collection facility. Where blood donor control samples
were used, a sample of a parent of the proband was also
included to control for technical variables and ances-
try, representing the sex-matched parent where possible
(for two out of three cases). For two infant subjects,
where age/sex-matched siblings were not available, nor
could age-matched blood donor samples be accessed
(due to the patient’s age), samples of both parents were
included in all analysis. See Table 1 for details of the
study design.

NSD1 mutations were identified through clinical labo-
ratory testing for all participants. When primary records
of testing were not available DNAm pyrosequencing of
cg07600533 was used to confirm that the patient had the
characteristic DNAm signature of SS.

Blood collection and nucleic acid
extraction and processing
Blood samples (EDTA tubes) were collected from all
research subjects by venipuncture. DNA and RNA were
extracted simultaneously from 1 mL fresh whole blood,
using the AllPrep DNA/RNA Mini kit (Qiagen). In order to
analyze intact RNA from living cells, RNA was extracted
from fresh blood samples promptly after blood collection
(within 5 h). Extracted RNA and DNA were stored at −80
and −20◦C, respectively.

Pyrosequencing
Pyrosequencing was used to measure DNAm of
cg07600533 using a custom-designed pyrosequencing
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assay. Assay design and pyrosequencing were performed
using the PyroMark Q24 system (Qiagen). Pyrosequencing
assay design was attempted for the top five CpGs with
the largest difference in DNAm between SS case and
control subjects within the Choufani et al. dataset.
The cg07600533 assay was selected to confirm the
diagnosis of all subjects because cg07600533 represented
the CpG site with the second-largest difference in
methylation between SS cases and controls and because
the cg07600533 assay measured cg07600533 methylation
with high accuracy, as indicated by the methylation levels
observed in universally methylated and unmethylated
control DNA samples (Supplementary Material, Fig.
S1). Pyrosequencing was applied to PCR amplicons of
bisulfite-converted DNA. PCR was performed using
FASTSTART TAQ DNA polymerase. Bisulfite conversion
was performed using the EZ DNAm kit (Zymo Research).
Universally methylated and unmethylated DNA controls
were purchased from EpiTect. PCR and pyrosequencing
primer sequences are supplied in Supplementary Mate-
rial, Table S10.

RNA sequencing
RNA sequencing (RNA-Seq) was applied to whole blood
RNA samples of ten SS patients and 15 healthy con-
trol subjects. RNA-Seq was performed separately for the
discovery and validation phase sample sets on separate
dates approximately six months apart, such that the val-
idation set experiment represents a biological replicate
of the discovery set experiment.

RNA samples were quality controlled to ensure
adequate concentration, integrity and purity of mRNA,
by applying electrophoresis using the 2100 Bioana-
lyzer (Agilent). Globin mRNAs were depleted from
RNA samples using the GLOBINclear kit (Invitrogen).
Stranded library preparation and eukaryotic tran-
scriptome resequencing were performed using the
BGISeq-500 next-generation sequencing platform with
paired-end 100 bp reads. RNA quality control, globin
depletion, library preparation and sequencing were per-
formed by BGI Group (BGI Group, Shenzhen, Guangdong,
China).

RNA-Seq data preprocessing
Trim-Galore! was used to perform adaptor trimming and
filtering of raw reads. Kallisto (82) was used to align reads
to the GENCODE 32 human transcriptome (Genome build
hg38). MultiQC was used to perform quality control of
RNA-Seq samples based on the output of Trim-Galore!
and Kallisto, including the percentages of reads that
passed quality controls and that were aligned to the
transcriptome. The percentages of aligned reads were
between 83.3 and 91 for all samples. Transcript-level
counts were summarized to gene level using tximport
(83).

Principal component analysis
PCA was applied to the top 10% of most variable genes
based on the mean absolute deviation. PCA was per-
formed by applying the counts2PCA algorithm to normal-
ized counts data that was batch corrected (Correcting for
study phase) using COMBAT (84).

Differentially expressed gene analysis
Limma-Voom (85,86) was applied to identify DEGs
between SS and controls. DEGs were defined as those
with FDR-adjusted P-values less than 0.05 and absolute
log2-fold changes of 1 or greater (corresponding to
an absolute fold change of 2 or greater). To assess
the reproducibility of differential expression, we first
identified DEGs within the discovery set and the con-
firmed differential expression of these genes within the
validation set. Having confirmed the reproducibility of
differential expression, we then performed DEG analysis
within the combined discovery and validation sets,
including the study phase (discovery or validation) as
a covariate in the Limma model matrix.

Development of a diagnostic gene expression
classifier
PAM analysis (24) was used to develop a diagnostic gene
expression classifier model to distinguish SS patients
from control subjects based on gene expression. The
ability of this model to distinguish cases from controls
was assessed by performing PAM analysis in combina-
tion with 10-fold cross-validation. For each fold of cross-
validation, a diagnostic model was trained on 90% of
patient samples and then used to classify the remaining
‘held out’ 10%. The accuracy of PAM predictions across
the ten folds of the outer cross-validation was evaluated
based on the area under the ROC curve. The posterior
probabilities of classifications were also assessed as a
measure of model confidence, as posterior probabilities
that are strongly weighted toward one class indicate high
certainty.

TCGA data access and processing
TCGA gene RNA-Seq data were processed from raw bam
files as part of our previously reported study (87). RNA-
Seq reads were aligned to the GENCODE version 32 using
STAR and counted using RSEM (88), ensuring optimal
matching of gene identifiers between TCGA data and
SS RNA Seq. STAR + RSEM counts were analyzed for
consistency with our previously reported research into
NSD1 using TCGA data, and with TCGA project studies
in general. Transcript-level expression was summarized
to gene level using tximport (83). Gene-level counts were
then normalized using upper quartile normalization (89),
the method that was reported for TCGA projects: Raw
RSEM counts were normalized by the 75th percentile of
the column (patient sample) after excluding zeroes, and
multiplied by 1000.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
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TCGA gene-level copy number (gistic2_thresholded)
data and somatic mutation (gene-level non-silent muta-
tion) data were processed as part of the TCGA Pan-
Cancer project (90). Somatic mutations and copy number
alterations were called using MutSig2 (91) and Gistic2
(92), respectively. Fully processed genetic datasets were
downloaded from the Xena browser (93) and analyzed
without any additional processing.

Functional gene set enrichment analysis
Functional GSEA was carried out using MSigDB (94),
selecting H, C1, C2, C5, C6, C7 and C8 gene set collec-
tions for comparison with the input gene set (genes
deregulated in SS). C3 (regulatory gene sets) and
C4 (computational) libraries were excluded from the
analysis due to the difficulty in interpreting enrichments
of these computationally derived and sparsely annotated
gene sets. The top 100 most enriched gene sets were
visualized as a network map generated using enrichment
map (95).

Estimating blood cell fractions
CIBERSORTx was applied to transcriptional data in
order to infer the fractions of major cell types within
blood samples. CIBERSORTx was applied using two
signature matrices that were previously shown to
accurately impute the relative fractions of cell types from
whole blood RNA-Seq data (96). The signature matrices
consist of sets of genes (gene signatures) whose relative
expression levels indicate the proportions of particular
cell types. These included the LM22 signature matrix,
which comprises of gene expression signatures for 22
immune cell types that were derived from bulk RNA-Seq
data of isolated cell types (97), and the ‘non-small cell
lung cancer (NSCLC) PBMC’ signature matrix, comprised
of gene expression signatures for six blood cell types that
were derived from single-cell RNA-Seq data of PBMCs of a
patient with NSCLC (96). The relative expression levels of
these signature matrix genes indicate the fractions of cell
types and are used to train the CIBERSORTx algorithm.
TPM data were generated using Kallisto, and transcript-
level TPM data were summarized to gene-level data using
tximport (83).

Processing DNAm array data
DNAm was profiled using the Illumina Infinium EPIC
Beadchip array (i.e. the ‘850 K array’) (98). Raw 850 K
array data were extracted using GenomeStudio. Methy-
lation data preprocessing was performed using the minfi
R package (99). Minfi quality controls were applied to
ensure that each sample had high median intensities in
the methylated and unmethylated channels, had mean
P-values access all probes that was less than 0.01 and
that the sex of the patient sample was accurately pre-
dicted from methylation data. WateRmelon (100) was
used to ensure that all samples had high (>94%) bisulfite
conversion rates. CpGs were discarded from the anal-
ysis that had single nucleotide polymorphisms within

either the interrogated CpG or at the single nucleotide
extension, that represented cross-reactive probes that
are listed within the maxprobes R package (101), or that
had detection P-values of greater than 0.01 in more than
10% of samples. CpGs within sex chromosomes were
excluded from all analyses in order to exclude biases
associated with the analysis of sex chromosome DNAm
in samples of mixed sexes.

Processing Choufani et al. SS DNAm array data
Raw DNAm array data that were generated as part of
the Choufani study were accessed from Gene Expression
Omnibus (Accession number: GSE74432). This dataset
included DNAm data that were generated from primary
whole blood samples of SS patients (n = 38) and age-
matched healthy controls (n = 53). Also included were
DNAm array data that were generated from dermal
fibroblasts of SS patients (n = 3) and age-matched healthy
control subjects (n = 4). These data were generated using
the Illumina Infinium HumanMethylation450 Beadchip
array (i.e. the ‘450 k array’). Raw Choufani study data
were preprocessed using the minfi package with a
pipeline that were consistent with that used for 850 K
array data.

Analysis of baseline DNAm
Baseline DNAm (i.e. DNAm in NSD1 wild-type tissues)
was analyzed in healthy control subjects of the Stan-
ford study (n = 15) for blood, and healthy control dermal
fibroblasts from the Choufani study (n = 4) for dermal
fibroblasts. Imprinted CpGs, which were accessed from
Hernadez Mora et al. (102), were excluded from all analy-
ses of baseline DNAm.

Transcriptional and DNAm aging clocks
DNAm age was calculated using the online DNAm
age calculator (http://dnamage.genetics.ucla.edu/) (60).
Transcriptional age was calculated using RNAAgeCalc
(64), which was developed to calculate transcriptional
age from RNA-Seq data, and TRAP (65), which was devel-
oped to calculate transcriptional age from peripheral
blood gene expression microarrays. RNAAgeCalc was
applied to FPKM values using the RNAAgeCalc R package
according to the reference manual. Model parameters
were set such that the model was trained using blood
gene expression data from the GTEx study, including
samples of individuals from all races. FPKM values were
calculated from raw counts using the ‘count2FPKM’
function. Gene lengths (needed to calculate FPKM values)
were calculated from the GENCODE gene transfer format
(GTF) file using GenomicFeatures (103). TRAP was applied
to raw counts using the online transcriptomic age
predictor at https://trap.erasmusmc.nl/.

Accessing and processing reference epigenomes
Reference epigenomes were downloaded from the NIH
Epigenomics Roadmap web portal. These included

http://dnamage.genetics.ucla.edu/
https://trap.erasmusmc.nl/
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imputed hg38 signal tracks for seven histone modifi-
cations, each of which indicates the levels (ChIP-Seq
signal) of a histone modification, as well as consolidated
chromatin state maps, which consolidate data for the
seven histone modifications, indicating the overall
chromatin state within each 200 bp genomic interval.
Consolidated chromatin states thereby indicate the
locations of functional chromatin states including
polycomb-associated chromatin regions and enhancers.

Consolidated, imputed hg38 signal tracks were con-
verted to BedGraph files using the UCSC bigWigToBed-
Graph tool prior to analysis. LiftOver tool was used to
convert chromatin state bed files from genome build
hg19 to hg38. Reference epigenomes were selected to
match the tissue types under investigation, includ-
ing blood and dermal fibroblasts. These reference
epigenomes were established from primary PBMCs
(epigenome identifier: E062) and adult dermal fibroblasts
(epigenome identifier: E126).

Mapping colocalization of genes, CpGs and
genomic features
Bedtools (104) was used to perform operations that
entailed mapping the spatial relationship between
genomic features, such as genes and CpGs. Bed files were
generated for each of the following genomic features:

Genes, TSSs and CpGs: the chromosome locations
of all GENCODE genes and their TSSs were accessed
using BioMart, selecting the ensemble BioMart database
and the ‘hsapiens_gene_ensembl’ dataset. Hg38 genomic
locations of all 850 K array CpGs were accessed from an
annotation file that was generated by Zhou et al. (105).
Bed files were generated that indicated the locations
of all genes, TSSs and CpGs. Metadata columns were
included within each bed file, indicating the expression
and DNAm states of genes and CpGs, respectively.
Additionally, separate bed files were generated for
genes and TSSs that were associated with each gene
expression state (overexpressed, underexpressed and
normally expressed) in SS, as well as CpGs that were
associated with each DNAm state (hypomethylated,
hypermethylated and normally methylated) in SS.

Reference genomes: The Ensembl hg38 DNA primary
genome assembly fasta file was accessed from the
Ensembl FTP website (ftp.ensembl.org). Bed files indi-
cating the positions of genes, exons and introns, were
accessed from the UCSC Table Browser. The positions of
intergenic regions were identified by subtracting genic
regions from the full UCSC hg38 genome using the
Bedtools ‘subtract.’ An hg38 bed file of the ‘cpgIslandExt’
track, indicating the positions of CpG islands, was also
accessed from the UCSC Table Browser.

Reference epigenomes: Reference epigenomes were
downloaded from the NIH Epigenomics Roadmap web
portal. These included consolidated and imputed hg38
signal tracks, which indicate the levels of individual
histone modifications, as well as chromatin state maps
that indicate the overall chromatin state within each

genomic interval. Consolidated, imputed hg38 signal
tracks were converted to BedGraph files using the
UCSC bigWigToBedGraph tool prior to analysis. The UCSC
Genome Browser LiftOver tool was used to convert
chromatin states from genome build hg19 to hg38.

EZH2 binding sites: ChIP-Seq broadPeak file were
accessed from GEO (accession numbers GSM1003498 and
GSM1003550). These datasets were generated as part of
the ENCODE (106) project and included EZH2 ChIP-Seq
datasets that were derived from the lymphoblastoid cell
line GM12878, and the primary dermal fibroblast culture
NHDF-Ad. LiftOver was used to convert the broadPeak
files from genome build hg19 to hg38.

The Bedtools operations that were used to perform
analysis outlined in the Results section are as follows:

Calculating the mean histone modification levels
within gene promoter-proximal regions (Fig. 2Ai) (Sup-
plementary Material, Table S7): Bedtools ‘map’ was used
to calculate mean histone modification signal across all
genomic windows that overlapped with promoters of
each gene. The promoter of each gene was defined as
the combined regions that are within 1500 base pairs
of all TSSs of the gene. Prior to mapping of histone
modifications to genes, Bedtools ‘slop’ was used to add
1500 bp to the start and end genomic coordinates of
each TSS, yielding the ‘TSS1500’ region of the TSS. Since
each gene can have multiple TSSs, histone modification
levels were averaged across all TSS1500 regions that were
associated with each gene, yielding the average promoter
histone modification level of the gene.

Calculating mean levels of EZH2 occupancy within
promoter-proximal regions (Fig. 2Aii): Bedtools ‘map’ was
used to calculate mean EZH2 ChIP-Seq signal (from EZH2
ChIP-Seq broadPeak files) within consolidated chromatin
state 200 bp windows (from chromatin state BedGraph
files). This yielded 200 bp windows of average EZH2 occu-
pancy (EZH2 occupancy windows). Values of zero were
assigned to chromatin state windows that did not overlap
with EZH2 broadPeak files, indicating the absence of
EZH2 occupancy. Using this approach, we confirmed that
EZH2 signal was elevated within regions that feature
polycomb-associated chromatin states, providing proof
of principle for our approach (data not shown). Bedtools
‘window’ was used to identify EZH2 occupancy win-
dows that overlapped with regions spanning from 5 bp
upstream to 5 kb downstream of TSSs of genes that were
overexpressed, underexpressed and normally expressed
in SS. This yielded three sets of EZH2 occupancy windows,
occurring within 5 kb of TSSs of overexpressed, under-
expressed and normally expressed genes. For each of
these sets of EZH2 occupancy windows, Bedtools closest
was then used to calculate the distance of each EZH2
occupancy window to its closest TSS of the relevant gene
expression state. Bedtools closest was applied using the
‘D -b’ parameter (where TSSs are designated as ‘b’), such
that the strand orientation of TSSs was considered when
calculating the distance of EZH2 occupancy windows
(which do not possess stranded information) to them.

ftp.ensembl.org
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
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This stipulates that where EZH2 occupancy windows are
upstream of TSSs, a negative distance is calculated. This
parameter also specifies that where TSSs are on the anti-
sense strand, EZH2 occupancy windows that have higher
start and stop coordinates are considered to be upstream
of TSSs. To calculate percentages of EZH2 occupancy
within TSS distance intervals (Fig. 2Ai), EZH2 occupancy
windows were split into 1 kb windows based on their
distance from the closest TSS, using the arules R package
(107). Mean EZH2 occupancy was then calculated across
EZH2 occupancy windows that were within each TSS
interval, for TSSs that were associated with each gene
expression state.

Calculating levels of histone modifications and EZH2
occupancy within the loci of CpGs (Fig. 2B) (Supplemen-
tary Material, Fig. S11B): Bedtools ‘intersect’ was used to
identify regions within histone modification tracks that
overlapped with each CpG. Similarly, Bedtools ‘intersect’
was used to identify regions within EZH2 ChIP-Seq broad-
Peak files that overlapped with each CpG. CpGs that did
not overlap with EZH2 broadPeak files were assigned
values of zero, indicating that these loci did not feature
EZH2 binding. Mean histone modification and EZH2 sig-
nal were then calculated across CpGs that were associ-
ated with each DNAm state, for CpGs within each TSS
distance interval.

Calculating the percentages of hypermethylated,
hypomethylated and normally methylated CpGs (in SS)
that occur within intervals of distance from the closest
TSS (Figs 2B and 3A) (Supplementary Material, Figs S9B
and S11A): Bedtools ‘closest’ was used to calculate the
distance of each CpG to its closest TSS (of any gene),
using the ‘D -b’ parameter (where TSSs are designated
as ‘b’), such that the strand orientation of TSSs was
considered when calculating the distance of CpGs to TSS.
This stipulates that where CpGs are upstream of TSSs,
Bedtools closest yields a negative distance value, and that
where the TSSs are on the antisense strand, CpGs that
have higher genomic coordinates are considered to be
upstream of the TSS. To calculate TSS distance intervals,
CpGs were split into forty equally sized groups (i.e. with
approximately equal numbers of CpGs) based on their
distance from the closest TSS, using the arules R package
(107).

Calculating distances of CpGs to TSSs of genes
that were overexpressed, underexpressed, or normally
expressed in SS (Figs 2Aiii and 4Aii): Separate bed files
were generated that indicated the positions of TSSs of
overexpressed, underexpressed, and normally expressed
genes. For TSSs associated with each gene expression
state, Bedtools ‘window’ was used to identify all CpGs
that occur within 5 kb of any TSS of that state. This
yielded three sets of CpGs, occurring within 5 kb of
TSSs of overexpressed, underexpressed and normally
expressed genes. For each of these sets of CpGs, Bedtools
closest was then used to calculate the distance of each
CpG to its closest TSS of the relevant gene expression
state. Bedtools closest was applied using the ‘D-b’

parameter (where TSSs are designates as ‘b’), such that
the strand orientation of TSSs was considered when
calculating the distance of CpGs (which do not possess
stranded information) to them. This stipulates that
where CpGs are upstream of TSSs, a negative distance
is calculated. This parameter also specifies that where
TSSs are on the antisense strand, CpGs that have higher
start and stop coordinates are considered to be upstream
of TSSs.

Calculating percentages of CpGs that were hypomethy-
lated and hypermethylated within 5 kb genomic windows
(Supplementary Material, Fig. S5): Bedtools ‘makewindows’
was used to split the hg38 reference genome into 5 kb
windows. Bedtools map was then used to map each CpGs
to its 5 kb window. The percentage of CpGs within each
5 kb window that were hypomethylated and hypermethy-
lated were then calculated, and rolling means of these
percentages were used to plot the genomic distribution
of abnormal DNAm using karyoploteR (108).

Calculating percentages of chromatin states within
regions surrounding gene promoters (Supplementary
Material, Fig. S9): Separate bed files were generated for
TSSs of overexpressed, underexpressed and normally
expressed genes. For TSSs associated with each gene
expression state, Bedtools ‘window’ was used to identify
consolidated chromatin state 200 bp windows that
overlapped with regions spanning from 5 bp upstream
to 5 kb downstream of any TSS that was associated
with that gene expression state. This yielded three
sets of chromatin state windows, occurring within
5 kb of TSSs of overexpressed, underexpressed and
normally expressed genes. For each of these sets of
chromatin state windows, Bedtools closest was then
used to calculate the distance of each chromatin state
window to its closest TSS of the relevant gene expression
state. Bedtools closest was applied using the ‘D-b’
parameter (where TSSs are designated as ‘b’), such that
the strand orientation of TSSs was considered when
calculating the distance of chromatin state windows
(which do not possess stranded information) to them.
This stipulates that where chromatin state windows
are upstream of TSSs, a negative distance is calculated.
This parameter also specifies that where TSSs are on
the antisense strand, chromatin state windows that have
higher start and stop coordinates are considered to be
upstream of TSSs. To calculate percentages of chromatin
states within TSS distance intervals (Supplementary
Material, Fig. S9Ai), chromatin state windows were
split into 1 kb windows based on their distance from
the closest TSS, using the arules R package (107). To
identify chromatin state regions that overlapped with
gene promoters (Supplementary Material, Fig. S9Aii),
Bedtools window was used to identify all consolidated
chromatin state regions that overlapped within TSS1500
regions of genes, i.e. regions within 1500 bp of TSSs of
genes. Prior to the mapping of chromatin state regions to
promoters, Bedtools slop was used to extend the genomic
coordinates of TSSs by 1500 bp, yielding the TSS1500

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac026#supplementary-data
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genomic coordinates for each gene. Since each gene can
have multiple TSSs, consolidated chromatin state regions
that overlap the promoter of a gene were defined as those
that overlap any TSS1500 region of that gene.

Calculating percentages of consolidated chromatin
states within regions that overlap CpGs (Supplementary
Material, Fig. S9B): Bedtools intersect was used to identify
regions within chromatin state maps that overlap with
each CpG. For CpGs that were associated with each
DNAm state, the percentage of CpGs that overlapped
with each chromatin state was calculated.

Calculating overlap of CpGs with genomic region types
and genomic features (Supplementary Material, Table
S8): Bed files were generated for each of the following
types of genomic region categories: whole genes, introns,
exons, 5’UTRs, 3’UTRs, intergenic regions, CpG islands
and EZH2 ChIP-Seq peaks (i.e. EZH2 occupancy/binding
sites). Bedtools intersect was used to identify the CpGs
that overlap with genomic regions of each category. Bed-
tools intersect was also used to identify the CpGs that
overlap with genes and TSS regions. Bedtools slop was
used to calculate the genomic coordinates of TSS200 and
TSS1500 regions by adding 200 or 1500 base pairs to the
start and end coordinates of TSSs, respectively. Bedtools
slop was also used to add 1 kb or 5 kb to the starts and
ends of GENCODE genes.

Calculating levels of abnormal DNAm within genes
(Supplementary Material, Tables S3 and S4): Bedtools
map was used to calculate mean beta values and delta
beta values across all CpGs that occur within each gene.
Bedtools map was also used to count the number of
hypomethylated, hypermethylated and normally methy-
lated CpGs within each gene. Prior to mapping of CpGs to
genes, Bedtools slop was used to add a specified number
of base pairs to the start and end of the genomic coordi-
nates of each gene, such that operations were applied to
all CpGs that occur within the specified genomic region.
This approach was used to calculate mean DNAm within
genes and their surrounding regions, adding either one
kilobase (1 kb) or five (5 kb) to each gene. Similarly, to
analyze CpGs that occur within 200 or 1500 bp of each
TSSs, Bedtools slop was used to add either 200 or 500 bp
upstream and downstream to the genomic coordinates of
each TSS, and Bedtools map was then used to calculate
statistics across all CpGs that are within these regions.
The regions within 200 and 500 bp of TSSs are referred to
as the ‘TSS200’ and ‘TSS1500’ regions, respectively. TS200
and TS1500 regions were analyzed for consistency with
the official annotation of Illumina DNAm arrays (98).
Each gene can have multiple TSSs; therefore, to analyze
the TSS200 and TSS1500 regions of each gene, statistics
were averaged across all TS200 or TS1500 regions associ-
ated with the gene.

Data Analysis Software

Data analysis was performed using R version 3.6.0. Other
programs and tools are indicated within the relevant
methods and result sections.

Supplementary Material
Supplementary Material is available at HMG online.
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Kamath, A., Banerjee, A., Luo, Y., Rogers, D., Brooks, A.N. et
al. (2020) Visualizing and interpreting cancer genomics data
via the Xena platform. Visualizing and interpreting cancer
genomics data via the Xena platform. Nat. Biotechnol., 38,
675–678.

94. Subramanian, A., Subramanian, A., Tamayo, P., Tamayo, P.,
Mootha, V.K., Mootha, V.K., Mukherjee, S., Mukherjee, S., Ebert,
B.L., Ebert, B.L. et al. (2005) Gene set enrichment analy-
sis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc. Natl. Acad. Sci. U. S. A., 102,
15545–15550.

95. Isserlin, R., Merico, D., Voisin, V. and Bader, G.D. (2014) Enrich-
ment map - a Cytoscape app to visualize and explore OMICs
pathway enrichment results. F1000Res, 3, 141.

96. Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaud-
huri, A.A., Scherer, F., Khodadoust, M.S., Esfahani, M.S., Luca,
B.A., Steiner, D. et al. (2019) Determining cell type abundance
and expression from bulk tissues with digital cytometry. Nat.
Biotechnol., 37, 773–782.

97. Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W.,
Xu, Y., Hoang, C.D., Diehn, M. and Alizadeh, A.A. (2015) Robust
enumeration of cell subsets from tissue expression profiles.
Nat. Methods, 1–10.

98. Moran, S., Arribas, C. and Esteller, M. (2016) Validation of a
DNA methylation microarray for 850,000 CpG sites of the
human genome enriched in enhancer sequences. Epigenomics.,
8, 389–399.

99. Aryee, M.J., Jaffe, A.E., Corrada-Bravo, H., Ladd-Acosta, C., Fein-
berg, A.P., Hansen, K.D. and Irizarry, R.A. (2014) Minfi: a flexi-
ble and comprehensive bioconductor package for the analysis
of Infinium DNA methylation microarrays. Bioinformatics, 30,
1363–1369.

100. Pidsley, R., Wong, C.C.Y., Volta, M., Lunnon, K., Mill, J. and
Schalkwyk, L.C. (2013) A data-driven approach to preprocessing
Illumina 450K methylation array data. BMC Genomics, 14, 293.

101. McCartney, D.L., Walker, R.M., Morris, S.W., McIntosh, A.M., Por-
teous, D.J. and Evans, K.L. (2016) Identification of polymorphic
and off-target probe binding sites on the Illumina Infinium
MethylationEPIC BeadChip. Genomics Data., 9, 22–24.

102. Hernandez Mora, J.R., Tayama, C., Sánchez-Delgado, M.,
Monteagudo-Sánchez, A., Hata, K., Ogata, T., Medrano, J., Poo-
Llanillo, M.E., Simón, C., Moran, S. et al. (2018) Characterization
of parent-of-origin methylation using the Illumina Infinium
MethylationEPIC array platform. Epigenomics., 10, 941–954.

103. Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M.,
Gentleman, R., Morgan, M.T. and Carey, V.J. (2013) Software for

 https://doi.org/10.12688/f1000research.7563.2


2184 | Human Molecular Genetics, 2022, Vol. 31, No. 13

computing and annotating genomic ranges. PLoS Comput. Biol.,
9, e1003118.

104. Quinlan, A.R. and Hall, I.M. (2010) BEDTools: a flexible suite
of utilities for comparing genomic features. Bioinformatics, 26,
841–842.

105. Zhou, W., Laird, P.W. and Shen, H. (2017) Comprehensive char-
acterization, annotation and innovative use of Infinium DNA
methylation BeadChip probes. Nucleic Acids Res., 45, gkw967.

106. Dunham, I., Kundaje, A., Aldred, S.F., Collins, P.J., Davis, C.A.,
Doyle, F., Epstein, C.B., Frietze, S., Harrow, J., Kaul, R. et al. (2012)
An integrated encyclopedia of DNA elements in the human
genome. Nature., 489, 57–74.

107. Hahsler, M., Chelluboina, S., Hornik, K. and Buchta, C.
(2011) The arules R-package ecosystem: analyzing interest-
ing patterns from large transaction data sets. J. Mach. Learn.
Res., 12, 2021–2025.

108. Gel, B. and Serra, E. (2017) KaryoploteR: an R/Bioconductor
package to plot customizable genomes displaying arbitrary
data. Bioinformatics, 33, 3088–3090.

109. Roadmap Epigenomics Consortium, Kundaje, A., Meuleman,
W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi,
A., Kheradpour, P., Zhang, Z., Wang, J. et al. (2015)
Integrative analysis of 111 reference human epigenomes.
Nature., 518, 317–330.


	 NSD1 mutations deregulate transcription   and DNA methylation of bivalent developmental   genes in Sotos syndrome
	 Introduction
	 Results
	 Discussion
	 Materials and methods
	 Supplementary Material
	 Acknowledgements


