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Loss of inner ear sensory hair cells (HC) is a leading cause of human hearing loss and balance disorders. Unlike mammals, many
lower vertebrates can regenerate these cells. We used cross-species microarrays to examine this process in the avian inner ear.
Specifically, changes in expression of over 1700 transcription factor (TF) genes were investigated in hair cells of auditory and
vestibular organs following treatment with two different damaging agents and regeneration in vitro. Multiple components of
seven distinct known signaling pathways were clearly identifiable: TGFb, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1.
Numerous components of apoptotic and cell cycle control pathways were differentially expressed, including p27KIP and TFs
that regulate its expression. A comparison of expression trends across tissues and treatments revealed identical patterns of
expression that occurred at identical times during regenerative proliferation. Network analysis of the patterns of gene
expression in this large dataset also revealed the additional presence of many components (and possible network interactions)
of estrogen receptor signaling, circadian rhythm genes and parts of the polycomb complex (among others). Equal numbers of
differentially expressed genes were identified that have not yet been placed into any known pathway. Specific time points and
tissues also exhibited interesting differences: For example, 45 zinc finger genes were specifically up-regulated at later stages of
cochlear regeneration. These results are the first of their kind and should provide the starting point for more detailed
investigations of the role of these many pathways in HC recovery, and for a description of their possible interactions.
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INTRODUCTION
The human cochlea possesses approximately 16,000 sensory hair

cells (HCs), which are necessary for normal hearing [1]. These

cells are mechanoreceptors that detect sound, head movements

and acceleration, and provide input into the auditory and

vestibular branches of the eighth cranial nerve. Hair cells in the

mammalian ear are produced during a fixed period of embryonic

development, and can be lost later in life as a consequence of

acoustic trauma, exposure to ototoxic drugs or inner ear infections.

The mammalian vestibular organs possess a very limited ability for

sensory regeneration [2,3] and the mammalian cochlea is

completely unable to regenerate hair cells [4]. As a result, the

loss of sensory cells from the mammalian ear can result in

permanent deficits in hearing and balance. Such disorders are very

common; so-called ‘sensorineural’ hearing loss afflicts about 30

million Americans [1].

Sensory epithelia (SE) in the ears of all vertebrates are populated

by two basic cell types: hair cells and supporting cells. The key

limitation to regeneration in the mammalian ear is the inability of

mammalian supporting cells to proliferate or change phenotype in

response to hair cell injury. Several attempts have been made to

induce regeneration in the vestibular organs by exposure to

exogenous mitogens, but these have had limited success [5] [6].

More recently, viral gene transfer techniques have been used to

transfect supporting cells in the damaged cochlea with the gene

encoding the Atoh1 transcription factor. This factor, formerly

known as Math1, is required for normal hair cell differentiation [7]

and also appears to be capable of converting the phenotype of

mature supporting cells into replacement hair cells. These new

sensory receptors can also re-establish synaptic connections with

afferent neurons, leading to a moderate restoration of hearing in

a guinea pig model of hearing loss [8] [9].

Unlike mammals, spontaneous regeneration of sensory hair cells

has been extensively documented in the hearing and balance

organs of non-mammalian vertebrates. The avian inner ear, in

particular, has a very robust capacity for sensory regeneration.

Death of hair cells quickly triggers renewed proliferation of

epithelial supporting cells, and the progeny of these divisions can

differentiate as replacement hair cells and supporting cells [10,11].

These observations have led to the hope that understanding the

biological basis of sensory regeneration in the avian ear might

provide insights into how to induce similar repair in humans.

Relatively little is known about the genetic regulatory mechanisms

that permit regeneration in the avian ear and this has limited the

development of strategies for inducing such regeneration in

mammals. Previous studies of the avian regenerative process have

identified genes on an individual (and essentially ‘‘candidate

gene’’) basis (e.g. DELTA1-[12]; FGFR3-[13]; PROX1-[14]).
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In this study we employed two genomic technologies to obtain

a more global picture of gene expression changes during avian hair

cell regeneration. Specifically, we used micro cDNA amplification

methods and custom gene microarrays [15] [16] to interrogate

nearly all identified transcription factor (TF) genes in the SE of the

chick cochlea and utricle during the early phases of regeneration.

We identified activity within known signaling pathways, several of

which have not been previously implicated or explored in SE

regeneration, and we identified many as-yet unexplored genes that

were differentially expressed. We were able to identify treatment,

tissue and time point-specific changes in TF expression. Notably,

a basal set of TFs was present in both sensory tissues at all stages.

We also identified commonalities and tissue-specific differences

between the sensory epithelia of the utricle and cochlea that

resulted from different damage regimes. This is the first study of its

kind to characterize large-scale gene expression profiles during

sensory regeneration. These results now provide the starting point

for a detailed investigation of the role of these genes in HC

recovery, and for a description of their possible interactions.

RESULTS

Study design
We profiled changes in transcription factor expression in SE of the

cochlea and utricle following two distinct forms of in vitro injury: (1)

laser ‘wounding’ of cultured SE or; (2) ototoxic hair cell death

caused by treatment with the aminoglycoside antibiotic neomycin.

In the first case, cultured SE [17] received linear ‘wounds’ with

a pulsed laser microbeam. Creation of the lesion typically required

3–5 min/culture; during this time, control cultures were removed

from the incubator and kept under identical conditions, but did

not receive lesions. Wounded epithelia were allowed to recover for

30 min, 1 hr, 2 hrs or 3 hrs after the lesions. Equal numbers of

lesioned and unlesioned specimens were analyzed at each recovery

time point. For the second injury regimen, utricles or cochleae

were cultured for 24 hr in medium that contained 1 mM

neomycin [18]. A sample of SE was collected immediately after

this treatment; this constituted the 0 hr time point for the

regenerative time course. Other cultures were rinsed and

maintained in neomycin-free medium for an additional 24 or

48 hr. Equal numbers of specimens were cultured under identical

conditions, but did not receive neomycin; these served as time-

matched controls for comparative gene expression profiling.

Hybridizations were conducted on multiple biological samples

(see below). The sampling times for neomycin-lesioned specimens

were chosen based upon previous studies of hair cell death and

supporting cell proliferation, which indicate that S-phase entry by

supporting cells peaks at about 48 hrs after ototoxic injury in vitro

[19]. On the other hand, the laser time points were expected to

provide us with insights into the very early signaling events that

occur after epithelial injury. Our expectation in employing these

two damage regimes was that we might find some degree of

overlap between the two time courses, but that we might also be

able to discern treatment-specific, as well as cochlea- and utricle-

specific, changes in gene expression.

After appropriate survival times, RNA was prepared and

converted into microarray targets by previously described methods

[15]. TF gene expression was then assayed by comparative

hybridization (injured specimens vs. time-matched controls) to

custom transcription factor gene microarrays [16]. These micro-

arrays contained 50 mer oligonucleotide probes, spotted in

duplicate, that interrogate the vast majority of human transcrip-

tion factor genes (plus a few probes to non-TFs such as sonic

hedgehog [SHH]). We used this array as a cross-species profiling

tool to measure the expression of the orthologous chicken TF

genes. We, and others, have previously demonstrated that cross-

species hybridizations can be reliably used on this type of array

platform [15] [20]. The study described here was embarked upon

before the recent publication of the draft chicken genomic DNA

sequence [21] or the availability of commercial chicken gene chips.

With the release of most of the chicken genomic DNA sequence it

is possible to assess sequence identity between our human probes

and their chicken orthologs. An analysis of this type indicates that

,98% of our probes have .70% sequence identity with the

correct chicken ortholog (data not shown). Hybridization strin-

gencies were adjusted to accommodate this degree of identity for

all of the comparative data described in this study. Each time

course was replicated with additional biological samples, including

controls. Every treatment time point and time-matched control

was hybridized to a minimum of four microarrays; two replicates

plus two dye switch experiments. All of our data, array designs and

analysis parameters are available through the NCBI Gene

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/).

Array analysis
In order to quantify gene expression changes, along with

associated statistical confidence limits, all expression data were

analyzed as described below (see Materials and Methods). Briefly,

array data were first normalized by LOWESS, a locally weighted

linear regression model, to compensate for dye effects. Second,

data from the multiple hybridizations for a given time point were

hierarchically clustered, along with data from additional time

points, to assess the similarity and reproducibility of the data across

multiple biological samples and dye switches. T-tests (calculated by

conducting a one sample t-test on the adjusted intensity data of the

entire array of selected hybridizations at each time point) were

performed between samples to assess reproducibility and similar-

ity. The data were also filtered to remove oligonucleotide probes

that fell below a threshold for background intensity. This threshold

was determined by the intensity of controls spots. During the

creation of self-organizing maps (see below), not all genes passed

the filtering steps in both time courses. In these cases we extracted

the missing values from the primary data and ‘‘filled in’’ the values

to construct the patterns of gene expression across all seven time

points. In general the vast majority of TFs showed relatively

modest gene expression fold changes. This may be due to

a compression of the dynamic range in cross-species hybridizations

[15]. Our prior experience in employing this array platform for

cross-species hybridizations indicated that changes as low as 1.2-

fold frequently reflected higher changes when assessed by q-PCR

([15]and see q-PCR below).

Differential gene expression in the four time courses
In the antibiotic damage regime the 24 and 48 hr time points

reflected gene expression changes within supporting cells, as the

majority of hair cells had been killed by the ototoxic antibiotic

[18,22]. By 48 hrs many of the supporting cells had progressed

into the S-phase of the cell cycle [19]. By contrast, the laser

damage regime resulted in a 100–200 mm-wide ‘wound’ in the

cultured sensory epithelia. The wounds typically closed within 16–

24 hrs of recovery time. The initial phase of wound repair was due

to cell migration, but elevated levels of cell proliferation were also

observed at the wound sites (but not at distant, uninjured regions)

at 16–48 hrs after injury. For the utricle, after the data analysis

steps described above, 143 TFs had passed through the data filters

for differential gene expression (.1.2-fold change at one or more

time point and a p-value of ,0.05) over the three neomycin
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damage time points (Supplemental Tables S1 and S2). Gene

expression in laser damaged SE was compared to time-matched

controls at 30 min, 1 hr, 2 hrs, and 3 hrs after laser lesions. For

the utricle, a total of 66 TFs were differentially expressed across

the four laser time points (Supplemental Tables S3 and S4).

Analysis of the cochlear treatments revealed a much larger

number of significant changes in TF gene expression than were

found for the utricle. A total of 484 genes were differentially

expressed (.1.2-fold change and p-value of ,0.05) across the

cochlear neomycin time course (Supplemental Tables S5 and S6).

Analysis of the cochlear laser comparisons revealed a total of 217

differentially expressed genes (listed in Supplemental Tables S7 and

S8). Overall, when overlaps between the various lists of genes were

taken into account, a total of 605 TFs accounted for all of the

statistically significant changes in gene expression observed across

the two cochlear time courses, and a total of 188 TF genes were

differentially expressed across the two utricle time courses. It is

possible that these apparent differences in numbers of differentially

expressed genes between the two epithelia, reflect more synchroni-

zation of regenerative signaling events in the cochlea when

compared to undamaged controls. It is notable that the undamaged

avian utricle is in a continual low-level state of hair cell turn-over

[23]. This process may result in asynchronies in gene expression

between injured and uninjured utricles. This might lower apparent

fold-changes or increase variability (leading to higher p-values) when

the damaged utricles are compared to the undamaged (but

constantly regenerating) utricles. It is also possible that the larger

number of expression changes in the cochlea reflects a more robust

regenerative program in this particular sensory epithelia.

Validation of expression changes
To independently verify apparent differences in gene expression

we selected 11 genes that showed modest fold-changes for at least

one time point within at least one of the four regenerative time

courses. The orthologous chicken genes were identified by BLAST

searches and PCR primers were designed for use in qPCR assays

on new biological samples. In most cases these assays were

conducted upon tissues from single time points. However, for three

genes (CTNNB1, KIAA0173 and TRIP15) the genes were tested

across one entire time course (the utricle neomycin time course). A

total of 19 time point/tissue/treatment combinations were tested

overall. The results of these multiple qPCR assays are shown in

Table 1 and compared to the apparent fold-changes observed

from the array analysis. As observed in our previous study with this

type of cross-species array platform [15], these data confirmed the

trends seen in the microarray data and indicated that the

microarray, in general, under-reported the actual levels of changes

that occurred across the four time courses. The only example

showing .15% deviation from this under reporting was the level

of CTNNB1 mRNA in the utricle at 48 hrs after neomycin

damage. In this case, the q-PCR assay reported an increase of 2.3

fold relative to undamaged utricle, whereas the array reported

a 3.1-fold increase.

Comparing and contrasting differential gene

expression across tissues and treatments
Despite the large differences in the sheer volume of changes in the

two regenerating epithelia, there were interesting underlying

overlaps between the various transcriptional programs. These are

shown in summary form as the Venn diagrams in Figure 1. For

example, a comparison of all changes in gene expression between

both neomycin time courses (utricle and cochlea) revealed 80

shared genes, of which 21 showed identical trends in at least one

identical time point. These time point commonalities are shown in

Table 2 and in a more expanded form in Supplementary Table

Table 1. QPCR validation of microarray fold-changes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tissue Treatment Timepoint Gene Name Array Fold Change QPCR Fold Change

Utricle NEOMYCIN 0 HRS CEBPG 21.55 22.78

Utricle NEOMYCIN 0 HRS CTNNB1 21.27 21.43

Utricle NEOMYCIN 24 HRS CTNNB1 21.12 21.25

Utricle NEOMYCIN 48 HRS CTNNB1 3.09 2.27

Utricle NEOMYCIN 0 HRS KIAA0173 1.36 1.69

Utricle NEOMYCIN 24 HRS KIAA0173 1.07 1.02

Utricle NEOMYCIN 48 HRS KIAA0173 1.29 1.60

Utricle NEOMYCIN 0 HRS TRIP15 21.25 21.60

Utricle NEOMYCIN 24 HRS TRIP15 1.02 1.20

Utricle NEOMYCIN 48 HRS TRIP15 1.41 1.30

Utricle NEOMYCIN 48 HRS BCL11A 1.33 2.22

Utricle NEOMYCIN 48 HRS CUTL1 1.38 1.30

Cochlea NEOMYCIN 0 HRS TRIP15 21.47 21.25

Cochlea NEOMYCIN 48 HRS JUND 21.36 21.66

Cochlea LASER 30 MINS FOS 1.50 12.50

Cochlea LASER 1 HRS NFIL3 1.32 1.8

Cochlea LASER 1 HRS IRLB 1.29 2.5

Cochlea LASER 2 HRS GATA3 21.29 21.42

Cochlea LASER 3 HRS JUND 1.31 2.4

Triplicate qPCR assays were carried out on new biological samples, using PCR primers designed to the orthologous chicken gene sequences. These are compared to the
apparent fold-changes observed from the array analysis.
doi:10.1371/journal.pone.0000525.t001..
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S9. The largest area of overlap between the cochlea and utricle

was at 48 hrs where 11 genes showed identical patterns of gene

expression (Table 2). Four of these were down-regulated and seven

were up-regulated versus the time-matched controls, but literature

searches and pathway analysis did not reveal any known unifying

functional network that ties these together. Among this group

were; CTNNB1 (a component of canonical WNT signaling [24])

NR1H3 (a.k.a. LXRalpha), an orphan nuclear receptor that is

known to play a role in insulin regulation of cholesterol

homeostasis in hepatocytes [25,26] and; BCL11A (a zinc finger

gene associated with various hematopoietic malignancies [27,28]).

Antibiotic damage in the avian utricle results in a program of cell

division that peaks at 48 hrs after ototoxic injury [29] and returns

to normal levels at 4 days post injury. A recent study [30] also

indicates that markers of hair cell differentiation are expressed in

the SE at .80 hrs after ototoxic injury. Therefore, the pattern of

expression of these 11 genes may mark a period at which the

proliferative program is declining and the differentiation program

is initiating within the regenerating SE.

A similar set of comparisons were conducted on all the

differentially expressed TFs in the laser time courses (Figure 1

and Table 2). These shared 27 differentially expressed genes, of

which 12 showed the same trends for at least one parallel time

point (Table 1). These changes might either reflect laser-specific

responses or be early-acting effects in the common pathway of hair

cell regeneration. It is interesting to note that the 3 hr laser time

points shared two up-regulated genes in common with the 48 hr

neomycin time points (BCL11A and another zinc finger gene,

ZNF248). The last laser time points also showed up-regulation of

five additional genes [JUND, TTLL4 (a.k.a. KIAA0173) HOXD8

and ZNF75A].

A comparison of trends within a given SE (irrespective of the

method of injury) revealed 5 genes (CEBPG, HSF1, LOC51131,

PSMC5 and SSX4) that appear to reflect regenerative responses

specific to the utricle (i.e. they were not differentially expressed in the

regenerating cochlea SE). A similar comparison of trends in the

cochlea identified 90 genes that occurred in both laser and neomycin

lists of differentially expressed genes (Figure 1). In this case, 61 of

these gene expression changes appeared to be specific to the

regenerating cochlea (cf Supplementary Tables S2, S4, S6 and S8).

Among these were two forkhead genes (FOXC1 and FOXH1) three

homeobox genes (HOXA4, HOXC10 and HOXD1) five zinc finger

transcription factor genes (ZFHX1b, ZFP106, ZNF123, ZNF175 and

ZNF258) and three genes from the circadian rhythm pathway (PER1,

PER2 and TIMELESS). Several of these will be discussed in more

detail below. None of these genes has been previously investigated in

the regenerating or developing inner ear.

Notably, we also identified a core group of six genes [BCL11A,

HOXD8, TTLL4, ZNF248 (a.k.a. LOC57209), NR1H3, and COPS2

(a.k.a. TRIP15)] that change their expression levels across all four

treatments and tissue combinations. It should be noted that

although these genes vary across all of the time courses, they do

not necessarily follow exactly parallel patterns of gene expression

across time courses. Thus, COPS2 was initially down regulated in

both neomycin time courses, was up-regulated at 1 hr after laser

treatment in the utricle, but was down-regulated at 3 hrs after

laser treatment in the cochlea. By contrast, some genes such as

BCL11A, appeared quite consistent between the four combina-

tions; BCL11A expression peaked at 3hrs in both laser time courses

and peaked at 48 hrs in both neomycin time courses.

Beyond these various overlaps between treatments and time

courses, the largest group of gene expression changes in each of

the four treatment/time point combinations were specific to just

one SE and one treatment. For example, changes in the expression

of 323 TF genes were specific to cochlea SE that was recovering

from antibiotic damage (Figure 1). Many of these changes (for

example the large group of zinc finger genes mentioned below)

peaked at the 48 hour time point of cochlear SE regeneration.

Identification of known pathways and processes

among the differentially expressed genes.
The comparative data listed in Supplementary Tables S1, S2, S3,

S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17 and

S18 were manually curated via interrogation of Gene Ontology

databases as well as Medline literature citations. This served to

identify multiple components or ‘‘signatures’’ of seven distinct

signaling pathways within all four regenerative time courses. The

identified pathways were those previously shown to be mediated

by; TGFb, PAX, NOTCH, WNT, NFKappaB, Insulin/IGF1, and AP1

signaling. All of these have been implicated, in one way or

another, in the normal development of the vertebrate inner ear.

These signatures (along with their time course(s) and associated

references to each component) are listed in Supplementary Tables

S10, S11, S12, S13, S14, S15, S16. Again, as with the common

genes described above, even within one identified pathway, the

profiles of changes in each time course were frequently quite

different. Nevertheless, some commonalities could be discerned;

for example, the homeobox gene TITF1/NKX2.1 (a component of

both the TGFb and PAX pathways) which interacts with both

SMAD3 and PAX8 [31–33] showed a similar profile in both

neomycin time courses.

Not surprisingly, an additional grouping of genes fell within a set

that we termed cell cycle/apoptosis genes (listed as Supplementary

Table S17). Of interest among this set of genes were three that

have been implicated in the regulation of p27KIP, a cyclin

dependent kinase inhibitor that is a key regulator of cell

Figure 1. Overlaps between differentially expressed genes in the four
treatment/time course combinations. These Venn diagrams illustrate
the overlaps between genes that were scored as being either up or
down regulated. To be included as an overlap a gene must be
differentially expressed in at least one time point in both time courses
(.1.2-fold and p-value, = 0.05), but the time points or trends do not
have to necessarily match. For a detailed listing of all of the genes in the
overlaps see Supplementary Tables S2, S4, S6 and S8).
doi:10.1371/journal.pone.0000525.g001
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proliferation during cochlear development [34]. Although p27KIP is

expressed in supporting cells and may act as a block to cellular

proliferation [35], a probe for this gene was not included on our

array. Therefore, we conducted a semi-quantitative PCR analysis

of the chicken p27KIP gene in the utricule neomycin specimens.

This is shown in Figure 2 and indicates that p27KIP transcription

was down-regulated after utricle SE damage and then returned to

normal levels by 48 hrs after the removal of the antibiotic. Figure 2

also shows microarray data for four other genes that have been

previously shown to regulate p27KIP. These are: COPS2, a compo-

nent of the COP9 signalosome [36], that can inhibit G1-S

transition through interactions with p27KIP; CUTL1 a transcription

factor that inhibits p27KIP transcription [37]; SIX6 within the PAX

pathway which also represses p27KIP transcription [38]; and

DACH1 (a component of both the PAX and TGF–pathways) which

interacts with SIX6 to repress p27KIP transcription [38]. It is

interesting to note that for the COPS2 and SIX6 genes the

microarray data were consistent with their previously described

interactions with p27KIP (i.e. SIX6 transcript levels decreased over

the time course and COPS2 levels initially declined and then

increased). CUTL1 (a putative repressor of p27KIP) also appeared to

increase in expression level over the time course and DACH1

transcript levels did not significantly vary through the time course.

This set of five genes is just one example of the many changes in

known pathway components that can be constructed into

mechanistic and testable hypotheses from this dataset.

Table 2. Genes that exhibit identical patterns of expression in at least one identical time-point.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UTR-NEO COCH-NEO UTR-LSR COCH-LSR

0 hr 24 hr 48 hr 0 hr 24 hr 48 hr 30 min 1 hr 2 hr 3 hr 30 min 1 hr 2 hr 3 hr GENE

21 0 0 21 0 0 0 1 0 0 0 0 0 21 COPS2

21 0 0 21 0 21 – – – – – – – – GTF2F1

21 0 0 21 21 21 0 0 0 0 – – – – IRF2

21 0 0 21 0 0 – – – – – – – – FOXJ3

21 0 0 21 0 21 – – – – – – – – NFE2L1

1 1 1 1 0 0 21 0 0 1 0 0 0 0 ZNF93

1 0 0 1 0 1 0 0 0 0 – – – – ZNF90

0 21 21 0 21 0 0 0 0 1 – – – – ZNF44

0 21 0 0 21 0 0 0 0 0 21 0 0 0 TITF1

1 21 0 0 21 0 0 0 0 0 0 21 0 0 MAPK8IP1

0 0 21 0 21 21 0 0 0 0 – – – – TAF10

0 0 21 0 0 21 0 1 0 0 0 1 0 0 NR1H3

0 0 21 0 0 21 0 0 0 1 – – – – FHL1

0 1 21 0 0 21 0 0 0 0 – – – – FOXA1

0 0 1 0 21 1 0 0 0 1 – – – – MYCBP

0 0 1 0 0 1 0 0 0 1 0 0 0 1 BCL11A

0 0 1 0 0 1 – – – – – – – – CTNNB1

0 0 1 0 0 1 – – – – 0 0 0 0 ZNF324

1 0 1 0 0 1 0 0 0 1 – – – – TBX15

1 0 1 0 0 1 0 0 0 0 – – – – ZNF79

1 0 1 0 1 1 0 0 0 1 0 0 0 1 ZNF248

– – – 1 0 0 21 0 0 1 21 0 0 0 ZBTB6

– – – – – – 1 0 0 0 1 0 1 0 C1orf142

0 0 21 0 0 21 0 1 0 0 0 1 0 0 NR1H3

– – – 0 21 0 0 1 21 0 0 1 0 0 MYT2

0 0 0 0 21 21 0 0 0 1 0 0 0 1 JUND

1 0 0 21 0 0 0 0 0 1 0 0 0 1 TTLL4

1 0 0 0 1 0 0 0 0 1 0 0 0 1 HOXD8

0 0 1 0 0 1 0 0 0 1 0 0 0 1 BCL11A

1 0 1 0 1 1 0 0 0 1 0 0 0 1 ZNF248

– – – 1 0 0 0 0 0 1 0 0 0 1 ZNF75A

– – – 0 0 1 0 0 0 1 0 0 0 1 C14orf106

– – – 0 0 1 0 0 0 1 0 0 0 1 TBX5

Each time course and treatment combination is shown across the top.rows of the table: Utr-neo = utricle neomycin; Coch-lsr = cochlea laser and so on. Specific genes
that exhibit similar patterns of gene expression are shown down the right hand column. Shaded entries illustrate similar patterns. 1 = up-regulation, 0 = no change and
21 = down-regulation relative to untreated controls. All values are derived from Supplementary Tables S2, S4, S6 and S8 and are .1.2-fold and p-value, = 0.05.
doi:10.1371/journal.pone.0000525.t002..
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Clustering with self organizing maps
As described above, literature/database searches plus manual

curation of the data assisted us in placing a total of 70 known TFs

into possible interactive pathways. However, the vast majority of

the TFs in our set have no known function or correlations with

known pathways. In order to potentially identify these relation-

ships and to better discern possible patterns of co-expression

within these data, we derived self-organizing maps (SOMs) by

combining all differentially expressed genes across both time

courses for each tissue type. This form of unsupervised clustering

([39,40]) produces clusters of genes (with upper and lower limit

bars) that show similar patterns of expression across a time course

or set of treatments. In this case the situation is somewhat artificial,

since in building these graphs we made the arbitrary choice that

the 3 hr laser time point would precede the neomycin zero time

point changes on the X-axis, whereas in reality the laser time

course probably overlaps the early stages (0 hr to 24 hr) of

neomycin recovery. Nevertheless, the purpose of these clusters was

to visualize apparent patterns and potential clusters of genes within

the data. Figure 3A shows a group of 16 SOM centroids (clusters

of genes that show similar patterns of differential expression across

all the time points) constructed using Genecluster 2 [39,40] for the

utricle time courses. Figure 3B shows sixteen centroids for the

cochlea data. The actual names of every gene in each cluster are

listed in Supplementary Tables S18 and S19. Some clusters

exhibited relatively large temporal fluctuations in gene expression

across both time courses. One example of this is centroid 3 in

Figure 3A which includes a total of 14 genes such as CEBPG,

JUND, FOXP1, and HOXA13. By contrast, centroids 8 and 12 in

Figure 3A illustrate genes that show relatively small changes in

expression, except at the 48 hour neomycin time point where they

were all up regulated. These were the predominantly late genes in

the utricle regenerative time course. These two centroids together

comprised 19 genes and included POU4F3 (previously implicated

in hearing loss [41]), CTNNB1 and PPARGC1 (both in the WNT

pathway). At the other end of the spectrum were the 11 genes in

centroids 0 and 4 of Figure 3A that appeared to be activated early

and peak in expression at the first or second laser time point.

Among these are the nuclear hormone receptor NR1I3, which

plays a role in transcriptional activation of genes involved in drug

metabolism [42,43] SIX3, a homeobox gene that regulates PAX6

and SOX2 in the developing eye [44] and LOC51637, a TF of

Figure 2. Gene expression changes in p27Kip and four genes that may
regulate its expression. This diagram shows a combination of semi-
quantitative PCR data (for p27Kip) and microarray data for the other four
genes conducted on the utricle neomycin time courses. Each gene
expression profile is color coded with the key to the right of each figure.
The X-axis lists time points and the Y-axis is the log2 fold-change at
each time point. Expression values are derived from Supplementary
Table S2, except for DACH1 which is detectably expressed, but is not
significantly differentially expressed across the time course.
doi:10.1371/journal.pone.0000525.g002

Figure 3. Analysis of the datasets by Self Organizing Maps. All of the
differentially expressed genes listed in Supplementary Tables S2, S4, S6
and S8 were uploaded into Genecluster 2 and 16 centroids per organ
were generated. Each box (centroid) in this figure is numbered from
C0–C15 and they reflect common patterns of expression for clustered
groups of genes within the dataset. The X-axis for each centroid
consists of each time point and runs from the laser 30 min time point
through 1 hr, 2 hrs, 3 hrs and then into the neomycin 0 time point
followed by the neomycin 24 and 48 hr time points. The Y-axis indicates
expression level (fold-change). The number in the top left of each
centroid indicates the number of genes that fall into this cluster of co-
expression. The top line indicates the upper boundary of expression for
all of these genes and the lower line indicates the lower boundary. The
middle line is the mean. All of the specific genes that fall into each
centroid are listed in Supplementary Tables S18 and S19. Figure 3A
shows the clustering for the utricle time points and Figure 3B shows the
clustering for cochlea time points. Arrows indicate various patterns or
genes within specific centroids that are described in the text.
doi:10.1371/journal.pone.0000525.g003
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unknown function, that we previously found to be up-regulated in

the chicken utricle [15] relative to the cochlea.

The cochlea regenerative SOMs (16 in total) are shown in

Figure 3B. In this case the predominantly late genes fall into

centroids 11 and 14 and total 118 genes. However, additional

examples of gradual up-regulation occur in centroids 10 and 15

(55 additional genes). Interestingly, of the 118 genes in centroids

11 and 14, a total of 45 are zinc finger transcription factors (as

defined by being either ZF or ZNF family members listed in

Supplementary Table S19). The vast majority of these are of

unknown function and unknown target specificity. If the genes in

centroids 10 and 15 are included, the total number of zinc finger

TFs peaking in expression at the 48Hr time point rises to 61 (35%

of the 173 total genes in these centroids). By contrast, the other

twelve centroids in Figure 3B all together contain 19 zinc finger

transcription factors (4% of a total of 432 genes in these centroids).

Therefore, it appears that a dramatic burst of zinc finger gene

expression occurs specifically at these late stages of regenerartive

proliferation in the cochlear SE. This contrasts with the utricle

SOMs where zinc finger TFs are distributed fairly evenly through

the centroids. In common with the utricle time courses, CTNNB1

peaks at 48 hrs in the cochlear time courses but, unlike in the

utricle, POU4F3 peaks earlier, at the 24Hr time point (in centroid

4 of Figure 3B). The predominately early genes (19 in total) in

Figure 3B are contained within centroid 3. Of interest within this

group are EGR1, which can be induced by IGF signaling [45],

NFIL3 which is a nuclear factor regulated by IL3 [46,47] and

Neurogenin 1, which is involved in fate choice during inner ear

development [47].

Contrasting patterns of TF genes that are detectably

expressed
In addition to using the normalized intensity values to identify

differentially expressed genes, we also used intensity values to

determine which TFs were detectably expressed at any given time

point, irrespective of any fold-change. This is a useful dataset since,

at the level of detection of our microarrays, it defines lists of TFs

that specify the normal functioning of the SE and makes no

distinction between genes that never vary and those that change in

their expression levels. This involved scoring all genes as ‘‘on’’ that

reproducibly exceeded a background intensity level (and likewise

any gene that failed to meet this cutoff was arbitrarily scored as

‘‘off’’). This cut-off was based upon control oligonucleotides that

were imbedded within our arrays and have no known homologous

sequences in the chicken genome. Venn diagrams (Figures 4A and

4B) illustrate the results of this analysis. It is important to realize

the differences between this analysis and the listings of differen-

tially expressed genes in Supplemental tables S1 through S8. A

gene such as CEBPG is among those that are differentially

expressed in both the utricle laser and neomycin time courses

(Supplementary Tables S1, S2, S3 and S4). However, in the Venn

diagrams this gene is scored as being detectably expressed at all

time points (albeit at different levels between them). In Figure 4A it

therefore falls among the 367 genes that are commonly present in

all time-ponts in the neomycin Venn diagram and the 535

common genes in the laser Venn diagram (Figure 4A). Within

these two sets of common genes (that are apparently on in either

the neomycin or laser time courses) there are 256 that are shared

(Supplemental Tables S20 and S21). These comprise a core group

of expressed TF genes for the sensory epithelium of the utricle,

irrespective of time point or treatment. Likewise, the cochlea has

a core group of 346 TF genes that are common to both time

courses at all time points. There are also a group of 134 genes that

are detectably expressed at all times in all four time courses.

Additionally, the Venn diagrams identify many genes ‘‘uniquely’’

detectable at individual time points. In some cases these may

overlap with those scored as being differentially expressed, or they

may only just exceed the background threshold level at those

particular time points. This analysis also indicates that the largest

number of detectably expressed genes occurs at 0 and 48 hr in the

Neomycin time course and at the 1 hr time point in the laser time

course. A complete listing of the gene overlaps summarized in

Figures 4A and 4B is provided in Supplemental Tables S20 and

S21.

DISCUSSION
In this study we report the first large-scale analysis of changes in

gene expression during the process of avian hair cell regeneration.

We have detected the signatures of seven known signaling

pathways in our data, and changes in expression levels of genes

common to particular time courses and treatments. In general, we

observed modest fold-changes in TF gene expression across all of

the time courses and treatments. This is not unexpected for this

class of genes, even when the array platform is within a species

Figure 4. Detectably expressed TFs in the four treatment/time course
combinations. All TFs that were present (as judged by exceeding
a background intensity level) at any stage were considered in this
analysis, irrespective of differential expression at any time point.
Overlaps between these sets of TFs are illustrated in these Venn
diagrams. Figure 4A shows overlaps for the utricle time points and
treatments. Figure 4B shows overlaps for the cochlea time points and
treatments. For a detailed listing of all of the genes in these diagrams
see Supplementary Tables S20 and S21.
doi:10.1371/journal.pone.0000525.g004
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(rather than the type of cross-species platform used in this study).

For example, in a recent study of gene expression changes of

,25,000 genes in mouse organogenesis (from embryonic day 8.0

to postnatal day 1 [48]), a total of 160 TF genes changed by .1.2-

fold in their expression level. In that particular study, the average

TF change was 1.63-fold and the range was from a 3.66-fold

down-regulation to a 3.63-fold up-regulation. This is remarkably

similar to our observations in the current report and it presumably

reflects the fact that small changes in these potent transcriptional

regulators can have large downstream effects. One should also

consider that some TFs are constitutively expressed and their

activation is mediated by other events, such as phosphorylation

(reviewed in [49]). In that regard, it is interesting to note that in

our experiments we also detected changes in the expression levels

of many of these genes whose protein products are regulated by

phosphorylation events. For example, JUND, CEBPG and CEBPB

are known to be activated by phosphorylation [49,50] and yet we

observed clear and reproducible changes in transcript levels for

many of these types of TF genes.

Most of the changes we observed have not yet been linked into

known networks or pathways. These genes should provide a rich

future source of clues into the genetic programming of avian hair

cell regeneration and SE development in general. Our descriptions

of pathways and trends presented here is just the beginning of

a systems biology approach to this important process. Within our

data set there are numerous examples of individual, differentially

expressed genes that have not previously been implicated in inner

ear development or differentiation. For example, the FOXP1 gene

has previously been implicated in cardiac development [51] but

from our data appears to be rapidly up-regulated early in the

utricle laser time courses (see Supplementary Tables S3 and S4).

We have recently confirmed that this gene is also differentially

expressed during embryonic development of the mouse vestibular

organs that give rise to these SE (Sajan, Warchol and Lovett in

preparation).

There are also changes in particular classes of genes that may

reflect underlying important pathways. One such example is the

change in expression of the Polycomb complex genes EZH1,

EZH2 (enhancer of zeste 1 and 2) CBX1, CBX3, CBX4, CBX6, and

CBX8 (chromobox genes) that occur in the regenerative time

courses in both the cochlea and utricle SE (Supplementary Tables

S1, S2, S3, S4, S5, S6, S7 and S8). These genes are especially

noteworthy because of their roles in controlling cell fate decisions

[52] and in preventing stem cell exhaustion [53] via epigenetic

mechanisms [54–56].

A more global method for interrogating the data presented in

this report is to make use of web-delivered tools to discover

possible networks or canonical pathways. Ingenuity Pathways

Analysis (IPA; IngenuityH Systems, www.ingenuity.com) is one

such set of tools. We uploaded the specific sets of shared genes

(fold-changes and p-values) listed in Supplementary Tables S1, S2,

S3, S4, S5, S6, S7 and S8 into the IPA application. These genes

were then used to generate biological networks developed form

information contained in the Ingenuity Pathways Knowledge Base

(IPKB). All connections within the IPKB are supported by at least

one reference from the literature (see www.ingenuity.com). IPA

also computed a p-value for each generated network derived from

a right-tailed Fisher’s exact test, which indicates the probability

that the focus genes in a network are found together because of

chance alone. A complete description of all of these networks is

beyond the scope of the current study. However, it is interesting to

note that one of the highest scoring networks (p-value of

2.461026) shared between both the cochlea and utricle regener-

ating SE, involves multiple components of estrogen receptor (ER)

signaling. Figure 5A shows an IPA network of these various ER

components (analyzed separately from other differentially expressed

genes). Previous studies have commented on the presence of estrogen

receptor in the developing mammalian inner ear [57], but it is not

clear what endogenous ligand(s) might activate this pathway or

whether this acts via the ligand-independent route [58]. It is known

that ligand–independent activation of ER can be achieved by ER

phosphorylation mediated by various signaling pathways[59].

An additional example of IPA network building involves the

significant enrichment (p-value of 561027) in the cochlear

regenerating epithelia for genes involved in regulation of circadian

rhythm (e.g. BHLHB3, PER1, CREB1, PER2, TIMELESS, CLOCK).

This network has not previously been implicated in sensory epithelia

regeneration or differentiation. These genes are classically thought of

as regulating 24 hour periodicities in gene expression (reviewed in

[60]) although they may play roles in other processes, such as

genotoxic stress [61]. Figure 5B shows an IPA network for the

cochlear differentially expressed genes (in this case, from an analysis

of all differentially expressed cochlear genes). This indicates that both

circadian rhythm and estrogen receptor signaling may converge

within this network. It is also interesting to note that the circadian

rhythm pathway may interact with the aforementioned Polycomb

complex via EZH2 activity, since the mammalian EZH2 gene

product binds to the PER1 and PER2 promoters [62] .

These examples serve to illustrate some of the routes that these

data now open up for the further understanding of this complex

network of interactions. Together these changes in gene expression

lead to the proliferation of supporting cells and the eventual

repopulation of the inner ear hair cells. However, unraveling

which of these candidate genes are necessary and sufficient for the

process will require more direct tests of their effects; such as RNAi

treatments, gene knock-out and gene knock-in technologies in

both the avian and the mammalian inner ear.

MATERIAL AND METHODS

Culture of sensory organs and isolated sensory

epithelia
White Leghorn chicks (10–21 days post hatch) were euthanized by

CO2 asphyxiation and decapitated. Cochlea and utricles were

isolated as described previously [15]. Detailed methods for the

preparation of organ cultures and cultures of isolated SE have also

been reported previously (cochlea: [63]; utricle: [18]; isolated

epithelia: [17]).

Ototoxic hair cell injury
Cochleae and utricles were placed in small culture wells (Mat-Tek;

1 cm diameter; 1 specimen/well) that contained 100 mm of

Medium-199 (with Earles salts, 25 mM HEPES; 2,200 mg/L

sodium bicarbonate, and 0.69 mM l-glutamine; Invitrogen),

supplemented with 10% fetal bovine serum (FBS; Invitrogen).

Half of the specimens also received 1 mM neomycin sulfate

(Sigma), in order to lesion sensory hair cells [2,18]. Other

specimens were cultured under identical conditions, expect that

they did not receive neomycin; these served as time-matched

controls. Utricles and cochleae were maintained under these

conditions for 24 hours. At this point, some specimens were

harvested as described below; these formed the 0 hr recovery

group. Other specimens were rinsed 36with fresh Medium-199/

10%FBS and maintained in culture for an additional 24 or 48 hr.

After appropriate survival times, specimens were rinsed with fresh

Medium-199 and incubated for 60 min in 500 mg/ml thermolysin

(Sigma; prepared in Medium-199), at 37uC. The sensory organs

were then transferred to chilled Medium-199 and the sensory

Inner Ear Hair Cells

PLoS ONE | www.plosone.org 8 June 2007 | Issue 6 | e525



epithelia (consisting of sheets of hair cells and supporting cells)

were separated from the associated stromal tissue using a 27-gauge

needle. Isolated epithelia were dissolved in 100 ml Trizol and

stored at 280uC until further processing. Each biological sample

consisted of four neomycin-treated and four time-matched control

epithelia at each survival time.

Laser microbeam ablations
SE from the cochlea or utricle were isolated using thermolysin [17],

cut into small pieces, and grown for 7–10 days on fibronectin-coated

wells (Mat-Tek) that contained 50 ml Medium-199/10%FBS. Initial

immunocytochemical studies confirmed the purity of the epithelial

cultures. Cell-cell junctions in the sensory epithelia of the avian

cochlea and utricle are mediated by the adhesion molecule N-

cadherin, while junctions between cells from the surrounding

nonsensory tissue are mediated by E-cadherin [17,64,65]. In-

cubation of epithelial cultures with an antibody directed against

chick N-cadherin (NCD-2; Zymed) resulted in strong immunoreac-

tivity at nearly all cell-cell junctions (Supplementary Figure S1). This

result (which is consistent with previous findings [17]) indicates that

the cultures are almost entirely comprised of cells from the sensory

epithelia and contain very few extrasensory cells.

Once the cultures were semi-confluent, they were lesioned via

laser microsurgery [63]. Individual cultures were placed on the

stage of an inverted microscope (Zeiss Axiovert 135) that was

equipped with a pulsed laser microbeam device (Photonics

Instruments). The beam was focused through a 1006 objective

lens at a place that was coincident with the cultured cells and the

pulse controller was adjusted to run at ,10 pulses/sec. The

specimen was then moved slowly through the beam path, using the

microscope stage manipulators, resulting in the creation of a linear

‘wound’ in the confluent epithelium. Typically, 2–3 wounds were

made in each culture, separated by 100–200 mm. Unlesioned

(control) cultures were also removed from the incubator and were

placed on the side of the microscope stage during the lesioning of

their time-matched counterparts. The lesioned and unlesioned

cultures were then returned to the incubator and maintained for

an additional 30 min, 1 hr, 2 hr, or 3 hr. Four individual lesioned

and unlesioned specimens constituted one biological sample at

each of the four recovery times. RNA from the cultures was

obtained by addition of 100 ml of Trizol (Invitrogen) to each well.

Samples were then stored at 280uC until further processing.

cDNA amplification
Isolation of RNA, cDNA synthesis and amplification were carried

out as previously described [15] with the following modifications:

following the second round of amplification and Sephadex G50

minicolumn purification, cDNA was added to an in vitro

transcription kit (Megascript T7 high yield kit, Ambion) as per

the manufacturers instructions. Run-off RNAs were LiCl pre-

Figure 5. Two examples of Ingenuity gene networks constructed
from cochlear differentially expressed genes. Genes that showed
differential expression in both the laser and neomycin cochlear time
courses (listed in Supplementary Tables S6 and S8) were uploaded to
the web-based Ingenuity program (IngenuityH Systems, www.ingenui-
ty.com) and the network of interactions shown here was generated.
Each interaction is shown according to the following legend and is
supported by at least one literature citation (available from the
Ingenuity website). Figure 5A shows the network of interactions for

r

genes specifically identified within the cochlear neomycin time course
as being part of Estrogen receptor signaling. Figure 5B shows the
network of interactions surrounding Circadian rhythm signaling and
was generated by uploading all of the cochlear differentially expressed
genes (rather than a subset as in 5A). Red denotes up-regulation and
green down-regulation in at least one time point. Genes shown in bold
with no shading vary across a time course (e.g. GTF2H4 in Figure 5A was
up-regulated at 24 hrs and down-regulated at 48 hrs). All other genes
were either not represented on the microarray or were not significantly
differentially expressed. A key to additional Ingenuity labels is listed
below.
doi:10.1371/journal.pone.0000525.g005
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cipitated, washed with 75% ethanol, dried and resuspended in

water at a concentration of 0.5–1 mg/ml. The overall yield and

quality of run-off products were assessed by gel electrophoresis.

Target labeling and microarray hybridizations
Run-off RNAs from each sample were used as templates in an oligo

dT12–15 primed cDNA synthesis reaction that included amino-allyl

dUTP (Sigma, 0.2 mM). The cDNA was then either coupled to Cy3

or Cy5 mono ester dyes (Amersham Pharmacia). Labeled cDNA

populations were precipitated and resuspended in 20 ml hybridiza-

tion buffer (50% formamide, 66SSPE, 56Denhart’s, 0.5% SDS.

10% dextran sulfate). Microarray slides were hybridized at 37uC for

12 h and were washed as described in [15].

Microarray Design
The microarrray employed in this study consisted of 50 mer

oligonucleotides designed to the vast majority of human

transcription factor genes (Messina et al 2004). These probes

were designed from coding regions and have previously been

shown to accurately report on the majority of chicken TFs when

used under appropriate hybridization conditions [15]. The array

also contained probes for a limited number of non-TFs (for

example, sonic hedgehog [SHH]). Oligonucleotides were spotted

in duplicate on glass slides. The array also contained a number of

control 50 mers that have no homolog in the human (or chicken)

genome. These were used to measure array sensitivity and to assess

background correction levels.

At least two biological samples (and frequently three or more)

were analyzed per time point, treatment and tissue. For every time

point to control comparison we conducted at least four separate

microarray hybridizations (two comparisons and two dye

switches). We also compared each experimental time point to

the next experimental time point and control time points to

adjacent control time point hybridizations. A total of 226 array

comparisons were conducted for this study. These data are

available through http://www.ncbi.nlm.nih.gov/geo/with acces-

sion numbers GPL4384, GSE5991, GSE6050, GSE6051 and

GSE6052. These data comply with the ‘‘minimum information

about a microarray experiment’’ (MIAME) requirements.

Data Analysis
Microarray images were analyzed with the BioDiscovery Imagene

software package. The Cy3 and Cy5 images were computationally

overlaid, aligned and gridded. The intensity of each spot was then

measured by laser scanning. The raw intensity files generated by

Imagene were analyzed by MIDAS2.17 and TMEV2.2 programs

of TIGR software (http://www.tigr.org) and GeneCluster 2.0

(http://www.broad.mit.edu/cancer/software/genecluster2/gc2.

html). Together, these provide functions for normalizing and

analyzing the data. Data were normalized by implementing locally

weighted linear regression (LOWESS). After data adjustment,

Hierarchical Clustering (HCL) of the data was performed using

TIGR TMEV. HCL was implemented to filter out poor

hybridizations. Low intensity filtering was performed to exclude

genes with intensities lower than the specified thresholds. An

arbitrary cut off (usually in the range of 800–1200) was chosen

based on the control spot intensities (see Microarray design above).

This value was also based on the distribution of intensity values of

the array. Approximately 10–20% of the genes were removed in

this way. We next selected genes that followed the same trend in at

least 80% of the replicated hybridizations. The average fold

change was then calculated by averaging the values across the

replicate hybridizations. Since the genes identified by these

methods (as being differentially expressed) did not necessarily

have expression ratios at all the time points (some were filtered out

at one stage, but were retained at another) we manually extracted

the adjusted intensity values at these time points and calculated the

ratios from the corresponding hybridization data. Such ‘‘filled-in’’

expression ratios allowed us to analyze the expression of all the

selected genes across the entire time course for a particular

treatment. P-values were calculated by conducting a one sample t-

test on the adjusted intensity data of the entire array of selected

hybridizations at each time point.

Quantitative PCR (qPCR)
Validation of microarray fold changes was assessed by qPCR as

previously described [15] using a Stratagene MX3000P machine.

cGAPDH was used as a control gene to calculate DCt in order to

normalize data. Normalized values were used to calculate DCt to

determine fold changes.

SUPPORTING INFORMATION

Figure S1 Immunoreactivity for N-cadherin in cultures of

isolated epithelial cells from the chick cochlea (A) and utricle (B).

Epithelial cultures were maintained in vitro for seven days, at

which time the specimens were fixed and processed for

immunocytochemical localization of N-cadherin. Labeling for N-

cadherin (green) was observed at nearly all cell-cell junctions,

confirming that the cultured cells originated from the sensory

epithelia of the cochlea or utricle (see text). Cell nuclei were also

labeled with DAPI (blue). Scale bar = 20 mm.

Found at: doi:10.1371/journal.pone.0000525.s001 (2.52 MB

DOC)

Table S1 Utricle Neomycin Differentially Expressed Genes (194

total). This listing shows all genes that exhibited.1.2-fold changes

in expression, irrespective of p-value. For p-value filtered data see

Table S2.

Found at: doi:10.1371/journal.pone.0000525.s002 (0.21 MB

DOC)

Table S2 Utricle Neomycin Differential Expression.1.2-fold

and P, = 0.05

Found at: doi:10.1371/journal.pone.0000525.s003 (0.06 MB

PDF)

Table S3 Utricle Laser Differentially Expressed Genes (261

total). This listing shows all genes that exhibited.1.2-fold changes

in expression, irrespective of P-value. For p-value filtered data see

Table S4.

Found at: doi:10.1371/journal.pone.0000525.s004 (0.36 MB

DOC)

Table S4 Utricle Laser Differential Expression.1.2-fold and

P, = 0.05

Found at: doi:10.1371/journal.pone.0000525.s005 (0.05 MB

PDF)

Table S5 Cochlea Neomycin Differentially Expressed Genes

(533 total). This listing shows all genes that exhibited.1.2-fold

changes in expression, irrespective of P-value. For p-value filtered

data see Table S6

Found at: doi:10.1371/journal.pone.0000525.s006 (0.71 MB

DOC)

Table S6 Cochlea Neomycin Differential Expression.1.2-fold

and P, = 0.05

Found at: doi:10.1371/journal.pone.0000525.s007 (0.10 MB

PDF)
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Table S7 Cochlea Laser Differentially Expressed Genes (386

genes total). This listing shows all genes that exhibited.1.2-fold

changes in expression, irrespective of P-value. For p-value filtered

data see Table S8.

Found at: doi:10.1371/journal.pone.0000525.s008 (0.53 MB

DOC)

Table S8 Cochlea Laser Differential Expression.1.2-fold and

P, = 0.05

Found at: doi:10.1371/journal.pone.0000525.s009 (0.07 MB

PDF)

Table S9 A listing of genes that exhibit similar patterns of

expression across the four timecourses. utr-neo = utricle neomycin

timecourse , coch-lsr = cochlea laser timecourse and so on. 1 = up-

regulation, 0 = no change and 21 = down-regulation relative to

untreated controls.

Found at: doi:10.1371/journal.pone.0000525.s010 (0.04 MB

PDF)

Table S10 Transforming Growth Factor-Beta Signaling.

CN = Cochlea Neomycin timecourse. CL = Cochlea Laser time-

course. UN = Utricle Neomycin timecourse. UL = Utricle Laser

timecourse.

Found at: doi:10.1371/journal.pone.0000525.s011 (0.03 MB

DOC)

Table S11 The PAX-EYA-SIX pathway. CN = Cochlea Neo-

mycin timecourse. CL = Cochlea Laser timecourse. UN = Utricle

Neomycin timecourse. UL = Utricle Laser timecourse.

Found at: doi:10.1371/journal.pone.0000525.s012 (0.03 MB

DOC)

Table S12 Notch signaling. CN = Cochlea Neomycin time-

course. CL = Cochlea Laser timecourse. UN = Utricle Neomycin

timecourse. UL = Utricle Laser timecourse.

Found at: doi:10.1371/journal.pone.0000525.s013 (0.02 MB

DOC)

Table S13 WNT signaling. CN = Cochlea Neomycin time-

course. CL = Cochlea Laser timecourse. UN = Utricle Neomycin

timecourse. UL = Utricle Laser timecourse.

Found at: doi:10.1371/journal.pone.0000525.s014 (0.03 MB

DOC)

Table S14 NFKappaB. CN = Cochlea Neomycin timecourse.

CL = Cochlea Laser timecourse. UN = Utricle Neomycin time-

course. UL = Utricle Laser timecourse.

Found at: doi:10.1371/journal.pone.0000525.s015 (0.02 MB

DOC)

Table S15 Insulin/IGF signaling. CN = Cochlea Neomycin

timecourse. CL = Cochlea Laser timecourse. UN = Utricle Neo-

mycin timecourse. UL = Utricle Laser timecourse.

Found at: doi:10.1371/journal.pone.0000525.s016 (0.02 MB

DOC)

Table S16 AP-1 Signaling. CN = Cochlea Neomycin time-

course. CL = Cochlea Laser timecourse. UN = Utricle Neomycin

timecourse. UL = Utricle Laser timecourse.

Found at: doi:10.1371/journal.pone.0000525.s017 (0.03 MB

DOC)

Table S17 Cell Cycle/Apoptosis. CN = Cochlea Neomycin

timecourse. CL = Cochlea Laser timecourse. UN = Utricle Neo-

mycin timecourse. UL = Utricle Laser timecourse.

Found at: doi:10.1371/journal.pone.0000525.s018 (0.03 MB

DOC)

Table S18 Utricle Self Organizing Map Centroid Groups shown

in Figure 3A.

Found at: doi:10.1371/journal.pone.0000525.s019 (0.03 MB

DOC)

Table S19 Cochlea Self Organizing Map Centroid Groups

shown in Figure 3B.

Found at: doi:10.1371/journal.pone.0000525.s020 (0.04 MB

DOC)

Table S20 Utricle Detectably Expressed Genes

Found at: doi:10.1371/journal.pone.0000525.s021 (0.23 MB

DOC)

Table S21 Cochlea Detectably Expressed Genes

Found at: doi:10.1371/journal.pone.0000525.s022 (0.23 MB

DOC)
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