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Abstract

Human behavior and cognition result from a complex pattern of interactions between brain 

regions. The flexible reconfiguration of these patterns enables behavioral adaptation, such as the 

acquisition of a new motor skill. Yet, the degree to which these reconfigurations depend on the 

brain's baseline sensorimotor integration is far from understood. Here, we asked whether 

spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual 

differences in future learning. We analyzed functional MRI data from 19 participants prior to six 

weeks of training on a new motor skill. We found that visual-motor connectivity was inversely 

related to learning rate: sensorimotor autonomy at baseline corresponded to faster learning in the 

future. Using three additional scans, we found that visual-motor connectivity at baseline is a 

relatively stable individual trait. These results suggest that individual differences in motor skill 

learning can be predicted from sensorimotor autonomy at baseline prior to task execution.
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Introduction

Adaptive biological systems display a common architectural feature that facilitates 

evolvability (Kirschner and Gerhart, 1998; Kashtan and Alon, 2005; Félix and Wagner, 

2008). That feature is modularity, or near-decomposability (Simon, 1965), in which the 

system is composed of small subsystems (or modules) that each perform near-unique 

functions. This compartmentalization reduces the constraints on any single module, enabling 

it to adapt to evolving external demands relatively independently (Kashtan and Alon, 2005; 

Wagner and Altenberg, 1996; Schlosser and Wagner, 2004). These principles relating 

modularity to adaptivity are evident across the animal kingdom, offering insights into 

phenomena as diverse as the developmental program of beak morphology in Darwin's 

finches (Mallarino et al., 2011) and the heterochrony of the skeletal components of the 

mammalian skull (Koyabu et al., 2014).

While an intuitive concept in organismal evolution where genetic programs drive dynamics 

over long time scales, it is less clear how modularity might confer functional adaptability in 

neural systems whose computations are inherently transient and fleeting. To gain conceptual 

clarity, we consider synchronization: a foundational neural computation that facilitates 

communication across distributed neural units (Fries, 2005; Voytek et al., 2015). Evidence 

from the field of statistical physics demonstrates that synchronization of a dynamical system 

is directly dependent on the heterogeneity of the associations between units (Gomez-

Gardenes et al., 2007). Specifically, in systems where units with oscillatory dynamics are 

coupled in local modules, each module can synchronize separately (Arenas et al., 2006), 

offering the potential for unique functionality and independent adaptability. These 

theoretical observations become intuitive when we consider graphs: visual depictions of 

nodes representing oscillators, and edges representing coupling between oscillators (Fig. 1a). 

Modules that are densely interconnected will tend to become synchronized with one another, 

and each module will therefore be unable to adapt its dynamics separately from the other 

module (Arenas et al., 2006). This highly constrained state decreases the potential for 

adaptability to incoming stimuli in a changing environment. Conversely, modules that are 

sparsely interconnected with one another will maintain the potential for adaptive, near-

independent dynamics.

Given these theoretical observations in oscillator networks, we hypothesize that human 

brains display a modular architecture for the explicit purpose of facilitating behavioral 

adaptability (Meunier et al., 2010; Bullmore et al., 2009). Such a hypothesis is bolstered by 

evidence that neuronal cell distributions evolve differently in regions of the brain that code 

for simpler reflexive versus more complex adaptive functions (Lewitus et al., 2012). The 

hypothesis also has implications for individual differences in cognitive ability across 

humans. Specifically, we expect that individuals that display greater modularity, or sparser 
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connectivity, between task-specific modules should also display more behavioral 

adaptability in the face of novel task demands (Bassett et al., 2011, 2013, 2015) (Fig. 1b). 

We expect that modularity should be particularly important between low-level modules that 

must evolve independently; connections involving higher-level control areas could have a 

different relationship due to the importance of these connections in the acquisition of new 

skills (Cole et al., 2013).

To test these hypotheses, we studied a cohort of healthy adult human subjects who learned a 

new motor skill from visual cues over the course of 6 weeks (Fig. 1c). During this 

timeframe, recorded fMRI activity during task execution shows that learning induces a 

growing autonomy between motor and visual systems (Bassett et al., 2015). Here, we 

focused on functional connectivity at rest acquired from the same cohort, prior to the onset 

of learning. We hypothesized that individuals who display a greater functional separation, or 

greater modularity, between motor and visual modules at rest are poised for enhanced 

adaptability in this task, and therefore should learn faster over the 6 weeks of practice than 

individuals who display less functional separation between these modules. Further, we ask 

whether this baseline segregation between modules is a trait of an individual, consistently 

expressed over multiple scanning sessions, or a state of an individual, and therefore 

potentially responsive to external manipulation or internal self-regulation. The answers to 

these questions have direct implications for predicting and manipulating a human's ability to 

adapt its behavior — or learn — in the future.

The experimental protocol comprised of 6 weeks of training on 6 distinct motor sequences. 

Following a brief explanation of the task instructions, an initial MRI scan session was held 

during which blood-oxygen-level-dependent (BOLD) signals were acquired from each 

participant. The session began with a resting state scan lasting 5 min where participants were 

instructed to remain awake and with eyes open without fixation. During the remainder of the 

first scan session (baseline training), participants practiced each of 6 distinct motor 

sequences in a discrete sequence production (DSP) task for 50 trials each, or approximately 

1.5 hr. Participants were then instructed to continue practicing the motor sequences at home 

using a training module that was installed by the experimenter (N.F.W.) on their personal 

laptops. Participants completed a minimum of 30 home training sessions, which were 

interleaved with two additional scan sessions, each occurring after at least 10 home training 

sessions. A final scan session was held following the completion of the 6 weeks of training. 

The same protocol was followed in each of the 4 scan sessions: a 5 min resting state scan, 

followed by approximately 1.5 hr of the DSP task, where each of 6 distinct motor sequences 

was practiced for 50 trials each.

Results

Behavioral markers of learning

Participants practiced a set of 10-element motor sequences in a DSP paradigm (Fig. 1d). 

Training occurred over the course of 30 or more behavioral training sessions spanning 

approximately 42 days, for a total of over 2000 trials (Fig. 1f; Fig. S1). The time required to 

correctly perform each sequence (movement time) decayed exponentially over time, and the 

rate of this decay displayed remarkable individual variability (Fig. 1c, Fig. S2). To quantify 
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this feature of behavior, we defined the learning rate as the exponential drop-off parameter 

of the movement times, collated from home training sessions over the course of the entire 

experiment and averaged between two extensively practiced sequences (EXT sequences; see 

Methods) (Bassett et al., 2015). The learning rate—which quantifies how rapidly each 

participant converges to their own optimal performance — varied between 2.7 × 10−3 and 

8.0 × 10−3 trial−1 (M = 5.2 × 10−3, SD = 1.6 × 10−3 trial−1). These data indicate that the 

fastest learner converged to relatively steady performance approximately three times faster 

than the slowest learner (Fig. 1c).

Sensorimotor initialization predicts future learning

Next, we asked whether a modular architecture during resting state—an important correlate 

of underlying structural connectivity (Honey et al., 2009; Goñi et al., 2014) and a marker of 

prior experience (Taylor et al., 2012; Duan et al., 2012; Burton et al., 2014) — is predictive 

of behavioral adaptability. To address this question, we considered a visual module and a 

motor module identified in a previous study with the same subjects (Bassett et al., 2015). 

These modules, derived from the analysis of fMRI data acquired during the performance of 

the motor sequence task, were shown to become less integrated with one another as 

sequence performance became more automatic (Bassett et al., 2015). We therefore 

hypothesized that functional connections between the same modules would, at baseline, 

explain individual variability in future learning rate.

To test this hypothesis, we analyzed the spontaneous fluctuations in BOLD activity during a 

5 min scan immediately prior to the initial task practice session. We parcellated the brain 

into a set of 333 functionally-defined regions representing putative cortical areas (Gordon et 

al., 2014) and identified the subset of these regions corresponding to the two modules of the 

task-based fMRI study with the same cohort (Bassett et al., 2015). These two sets of regions 

broadly corresponded to (i) early visual cortex (which has been referred to as the visual 
module; Fig. 2a; Table 1) and (ii) primary and secondary somato-motor regions (which has 

been referred to as the somato-motor module; Fig. 2a; Table 1).

We then asked whether the interactions between these two modules at baseline were 

predictive of future learning rate. We extracted the average resting state time series from 

each brain region and calculated their pairwise Pearson correlation coefficient. Next, we 

applied a Fisher z-transform to these coefficients and calculated the average z-transformed 

correlation between regions in the visual and somato-motor modules. We refer to this value 

as the visual-motor connectivity. We observed that individuals with low visual-motor 

connectivity at rest, prior to any task practice, exhibited a larger learning rate in the 

following 6 weeks of practice (Spearman's rank correlation: ρ = −0.5772, P = 0.0110; Fig. 

2b). Similar results were obtained using an anatomically-defined parcellation with 626 

regions (Spearman's rank correlation: ρ = −0.6211, P = 0.0055; Fig. S3). These results 

suggest that baseline visual-motor connectivity can be thought of as a sensorimotor 

initialization parameter that constrains adaptive learning behavior.

To confirm that these task-based modules were also effective modules at rest, we calculated 

the modularity quality of this partition during the resting state (Equation (2) in Methods). 

The value obtained for this partition (Q = 0.4226 ± 0.0719 SEM) was larger than the 
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modularity of all 10,000 random partitions of visual and motor regions (Q = −0.0108, CI: 

[−0.0310, 0.0256], P = 0.0001) and also larger than the modularity of all 10,000 random sets 

of the modules in the brain of equal size to visual and motor regions (Q = −0.0106, CI: 

[−0.0313, 0.0270], P = 0.0001). Therefore, the visual and somato-motor modules used in our 

analyses are also effective modules at rest.

Behavioral and neural specificity

The relationship between resting visual-motor connectivity and future behavior was highly 

specific to learning rate, being unrelated to error rates, reaction time, or other parameters of 

the fitted movement time versus trials-practiced curve (Fig. S4). Moreover, the relationship 

remained significant (α = 0.05) even after regressing out the effect of initial performance 

(Spearman's rank correlation: ρ = −0.5614, P = 0.0138) or after regressing out the effects of 

both initial and final performances (Spearman's rank correlation: ρ = −0.4684, P = 0.0448), 

and became marginally significant after regressing out the effect of final performance 

(Spearman's rank correlation: ρ = −0.4526, P = 0.0533). Therefore, baseline visual-motor 

connectivity is specifically related to the rate of decay of movement time (learning rate).

Having established that baseline functional connectivity between broadly defined visual and 

somato-motor areas predicts individual differences in future learning rate, we next explored 

which specific subregions — or functional connections — within visual and somato-motor 

areas might be most responsible for driving this effect. For this analysis, we used an 

annotated surface-based parcellation ( aparc.a2009-s.annot in Freesurfer) which has a 

label for each cortical region (Destrieux et al., 2010). We observed a general trend for 

negative correlations between visual-motor connectivity and learning rate, as evident from 

the predominantly blue color in Fig. 3a (Spearman's rank correlation between visual-motor 

connectivity and learning rate, using broad visual and somato-motor regions of interest from 

a surface-based parcellation, was: ρ = −0.5596, P = 0.0141). This result indicates that the 

broader regions selected in surface space still retain the overall properties of the original 

parcellation with task-identified modules. To test whether some functional connections were 

significantly more correlated with learning rate than others, we used a bootstrap procedure 

with 10, 000 subject samples with replacement to derive the sampling distribution of each 

correlation value in Fig. 3a. We observed that individual differences in future learning rate 

were most strongly predicted by functional connectivity between the premotor area adjacent 

to the right superior precentral sulcus and early visual areas adjacent to the calcarine sulcus 

in both hemispheres (left calcarine sulcus to right superior precentral sulcus: Spearman's ρ = 

−0.8211, bootstrap: M = −0.7935, 95% CI = [−0.9365, −0.5434]; right calcarine sulcus to 

right superior precentral sulcus: Spearman's ρ = −0.8228, bootstrap: M = −0.7904, 95% CI 
= [−0.9043, −0.6060]; Fig. 3b). Across all bootstrap samples, these two values were larger 

than 98% of the others, demonstrating that these connections are robustly more correlated 

with learning rate than other visual-motor connections.

We then wished to examine whether the observed correlation between visual-motor 

connectivity was specific to visual and motor modules, or whether this effect was also 

present between other modules of the brain. We considered a set of 12 putative functional 

modules defined in the parcellation used: auditory, cingulo-opercular, cingulo-parietal, 
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default mode, dorsal attention, fronto-parietal, retrosplenial-temporal, somato-motor hand, 

somato-motor mouth, salience, ventral-attention, and visual (Gordon et al., 2014). We then 

calculated the average pair-wise connectivity between each pair of putative modules, and the 

correlation between learning rate and module-to-module connectivity across subjects. Using 

this approach, we observed that connectivity between our task-derived modules was one of 

the most predictive of learning rate (2nd out of 66 pairs, P = 0.0299; Fig. 3c). This suggests 

that the relationship between modularity and learning rate was highly specific to visual-

motor connectivity.

Nonetheless, prior evidence suggests a critical role for online cognitive control during 

learning (Galea et al., 2010; Chrysikou et al., 2014) and adaptive behavior in general 

(Chrysikou et al., 2011; Thompson-Schill et al., 2009). Recent analyses using graph theory 

suggest that at least five distinct modules are associated with cognitive control (Power et al., 

2011): the fronto-parietal network, the cingulo-opercular control network, the salience 

network, the ventral attention network, and the dorsal attention network. We therefore 

examined the degree to which connectivity within these five modules correlated with 

learning rate. We found that connectivity within the cingulo-opercular network was the only 

one that significantly correlated with learning rate (Spearman's rank correlation: ρ = 

−0.6228, P = 0.0053, Bonferroni adjusted p-value: P = 0.0265), although the exploratory 

character of these analyses suggests that they be interpreted as preliminary evidence.

Finally, we wished to verify whether visual-motor connectivity at baseline is related to other 

network-derived metrics. In particular, network flexibility has been previously shown to 

predict the learning rate in future sessions in a similar motor learning paradigm using cued 

rather than discrete sequence production (Bassett et al., 2011). Flexibility is defined as the 

proportion of times in which a given node changes module affiliation (Bassett et al., 2011). 

Using functional connectivity data acquired during task execution, we calculated the average 

node-wise flexibility for each subject and each session. We then computed the correlation 

between visual-motor connectivity and flexibility. We observed that visual-motor 

connectivity was uncorrelated with network flexibility on the first scan (Spearman's rank 

correlation: ρ = 0.0240, P = 0.9224), as well as with the avearge network flexibility across 

scans (Spearman's rank correlation: ρ = 0.0714, P = 0.7716). We also assessed the degree to 

which visual-motor connectivity predicts learning rate controlling for network flexibility. We 

found that visual-motor connectivity still predicted learning rate when controlling for 

network flexibility on the first scan (partial Spearman's rank correlation: ρ = 0.6020, P = 

0.0082) and when controlling for average network flexibility across scans (partial 

Spearman's rank correlation: ρ = 0.5846, P = 0.0108). Therefore, visual-motor connectivity 

predicts learning rate independently from network flexibility.

Sensorimotor initialization: A state or a trait?

Given the predictive nature of baseline visual-motor connectivity, one might wish to know 

whether this baseline varies from day to day, thereby playing the role of an online 

initialization system, or whether it remains relatively stable over the course of the 6-week 

experiment. That is, are we measuring a network property related to learning that varies 

from session to session (over the course of hours or days) or is this a consistent relationship 

Mattar et al. Page 6

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



over the entire experiment, indicative of a subject-level trait? The answer to this question 

could offer much needed insight into the potential neurophysiological mechanisms 

underlying the observed relationship between baseline connectivity and learning: for 

example, from stable trait markers of structure (Honey et al., 2009; Goñi et al., 2014) or 

prior experience (Taylor et al., 2012; Duan et al., 2012; Burton et al., 2014) to dynamic state 

markers of arousal (Nassar et al., 2012).

To address this question, we examined data from the three additional resting state sessions 

obtained throughout the 6 week training period (Fig. 1f). Therefore, a total of 4 resting state 

scan sessions separated by 1.5–2 weeks, each lasting 5 min, were examined for each subject. 

We then conducted a repeated measures ANOVA across the four scans and examined the 

sources of variance. We observed no consistent trend in the evolution of visual-motor 

connectivity across sessions, with only 5.5% of the total variance being explained by session 

(F(3, 54) = 1.7710, P = 0.1637). In contrast, 38.2% of the total observed variance in visual-

motor connectivity was accounted for by differences between subjects (F(18, 54) = 2.0352, 

P = 0.0231). These observations suggest the existence of a significant trait marker.

How does the trait versus state nature of visual-motor connectivity impact prediction 

accuracy? When estimating the stable trait component by averaging an individual's visual-

motor connectivity values over all four scanning sessions, we observed that this trait 

component significantly predicts learning rate over the 6 weeks of training (Spearman's ρ = 

−0.4614, P = 0.0484; Fig. 4b). When using the median visual-motor connectivity as an 

estimator for the trait component, however, the relationship was no longer significant 

(Spearman's ρ = −0.3579, P = 0.1329). Importantly, there is clearly additional variance that 

is not explained by this trait component, as evidenced by session-to-session variability in 

visual-motor connectivity (Fig. 4a). Indeed, the relationship between visual-motor 

connectivity in the first session and learning rate remained significant even after regressing 

out the average trait component from each individual's visual-motor connectivity 

(Spearman's rank correlation: ρ = −0.4772, P = 0.0405). Thus, we hypothesized that session-

to-session fluctuations in visual-motor connectivity could also explain the amount of 

learning on a session-by-session basis.

To assess the potential predictive role of state dependent components of visual-motor 

connectivity, we asked whether visual-motor connectivity estimated from a single baseline 

scan predicts learning rate in a temporally adjacent training session more so than in 

temporally distant training sessions. To estimate a session-specific learning rate, we used 

movement times from minimally trained sequences (MIN) to ensure learning (as indexed by 

a reduction in movement times) was still occurring throughout all four sessions. These trials 

were performed during scan sessions, in runs immediately following the resting state scans. 

While the individual correlations between session-specific learning rate and session-specific 

visual-motor connectivity were not statistically significant, their average (ρ̄ = −0.2261) was 

the largest of all possible pairings of resting state scans and task execution sessions (24 

permutations, P = 0.0400). These results suggest that visual-motor connectivity contains 

both a trait and a state component, the former predicting a stable task aptitude and the latter 

predicting temporally-specific measures of learning.

Mattar et al. Page 7

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

The understanding of many higher-level cognitive functions often requires one to study the 

brain during effortful thought (Gazzaniga and Mangun, 2014). Yet, some basic 

organizational principles and constraints can also be observed while the brain idles at 

baseline. Consistent evidence from multiple imaging modalities and subject cohorts 

demonstrate that the brain's resting baseline is characterized by a modular (Meunier et al., 

2009; Bullmore et al., 2009; Sporns and Betzel, 2015), or near-decomposable nature (Simon, 

1965), and that these modules are composed of brain regions that tend to perform similar 

cognitive functions (Salvador et al., 2005; Power et al., 2011; Yeo et al., 2011; Cole et al., 

2014). Yet, how this modular architecture supports the sequential and dynamic integration of 

the many high-level cognitive functions required during motor skill learning remains far 

from understood (Bassett and Mattar, 2017). Here we observe that individuals who display 

lower values of correlation between their resting baseline activity in motor and visual 

regions learn faster in the following 6 weeks of task practice. That is, our results suggest that 

a more modular architecture in low-level visual and motor regions may be beneficial for 

learning a visual-motor task. This result complements both empirical and theoretical lines of 

inquiry recently demonstrating that modular architecture confers robustness as well as 

evolvability simultaneously (Anderson and Finlay, 2014), helps organisms evolve new skills 

without forgetting old skills (Ellefsen et al., 2015), and – in the motor-visual system – 

increases as learning occurs (Bassett et al., 2015).

The benefits of independence

While the baseline separation between the entire motor and visual modules was predictive of 

individual differences in future learning behavior over 6 weeks of task practice, we also 

observed that the regional associations that drove this prediction most were the functional 

connections between the contralateral superior precentral sulcus and the bilateral calcarine 

sulcus. In classical models of motor processing and control, the superior precentral sulcus is 

thought of as the dorsal premotor area (Hardwick et al., 2013), and activation in this area is 

related to the performance of visual-motor hand/arm conditional responses (Amiez et al., 

2006). It is well known that this region plays a central role in mapping visual cues to spatial 

motor responses in both human and non-human primates (Astafiev et al., 2003; Rushworth 

et al., 2003; Grefkes and Fink, 2005; Halsband and Lange, 2006; Kravitz et al., 2011). Given 

this specific role in motor-visual integration, it is interesting that individuals with the 

weakest baseline connections between this area and early visual cortices learn the fastest. 

One simple interpretation of these findings builds on the notion that the learning process is 

one in which the task of the brain is to develop direct motor-motor associations (Verwey, 

2001; Wymbs et al., 2012; Kahn et al., 2017): each finger movement directly triggers the 

next, without the need for visual cues. Individuals with low connectivity between dorsal 

premotor and visual areas – and therefore more independence or autonomy of visual and 

motor processes (Bassett et al., 2015) – are able to develop motor-motor associations faster.

Such an explanation suggests the presence of a broader competitive process that may play a 

role in other cognitive tasks: individuals that display greater integration between cognitive 

processes at rest may be less able to disengage such processes from one another during task 
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execution. This hypothesis is indeed supported by preliminary evidence in both healthy and 

clinical cohorts. For example, in healthy adult subjects, increased modularity (decreased 

integration) of resting state functional connectivity networks has been shown to be positively 

correlated with improvement in attention and executive function after cognitive training 

(Arnemann et al., 2015). Similarly, individuals with greater negative correlation between 

default mode and working memory networks exhibited better behavioral performance on a 

working memory task (Sala-Llonch et al., 2012). Conversely, in subcortical vascular mild 

cognitive impairment, increased integration between modules in the inferior and superior 

parietal gyrus at rest has been shown to be associated with impaired cognitive performance 

(Yi et al., 2015). Finally, such a broad competitive process is supported by recent work in 

normative neurodevelopment showing that individuals with weaker sensorimotor integration 

at rest tended to display better cognitive performance (N = 780 in the Philadelphia 

Neurodevelopmental Cohort) (Gu et al., 2015).

Drivers of baseline architecture

A growing literature demonstrates the absolutely fundamental role of baseline network 

architecture in explaining individual differences in cognition and behavior. The strength of 

individual functional connections, or larger sets of connections, has been observed to 

correlate with individual differences in IQ (Song et al., 2008, 2009), fluid intelligence 

(Smith et al., 2013; Finn et al., 2015), attention (Rosenberg et al., 2016; Kessler et al., 2016; 

Poole et al., 2016), visual orientation discrimination (Baldassarre et al., 2012), working 

memory (Sala-Llonch et al., 2012; Zou et al., 2013), color knowledge (Wang et al., 2013), 

auditory stimulus detection (Sadaghiani et al., 2015), pursuit rotor performance (Wu et al., 

2014), and the ability to learn foreign sounds (Ventura-Campos et al., 2013) and 

probabilistic regularities (Stillman et al., 2013). Yet, it is unclear what neurophysiological or 

develpmental factors drive these individual differences at baseline.

Current theories of resting state drivers can be summarized along two key dimensions: 

genetically-encoded structure, and prior or current experience. First, resting state functional 

connectivity is related to some degree to underlying large-scale structural connectivity as 

estimated by white matter tractography (Honey et al., 2009; Hermundstad et al., 2013, 2014; 

Goñi et al., 2014; Shen et al., 2015): two brain areas that are connected by a large number of 

white matter streamlines also tend to display strong correlations in their resting BOLD 

activity. These structural patterns may form a constraint on resting state dynamics, at least 

partially driven by the genetic codes underlying module formation (Richiardi et al., 2015). 

Yet, structural connectivity can only be a partial explanation, as resting state functional 

connectivity varies appreciably over time scales in which structure remains constant 

(Andellini et al., 2015; Deuker et al., 2009; Hutchison et al., 2013; Leonardi et al., 2014). It 

will be interesting in future to determine whether structural differences among individuals 

might explain some of the predictive relationship between resting state functional 

connectivity and future learning behavior.

The second key driver of resting state functional connectivity is experience. Over short time 

scales, resting state patterns are altered for up to 20 min following task performance (Barnes 

et al., 2009), being modulated by cognitive processes as diverse as short term memory 
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(Gerraty et al., 2014) and visual-motor learning (Albert et al., 2009). Moreover, resting state 

connectivity can be altered over longer time scales with cognitive training (Arnemann et al., 

2015), mindfulness training (Taylor et al., 2012; Taren et al., 2015), progressive neurological 

disorders (Pievani et al., 2011), and aging (Betzel et al., 2014). While recent and more 

distant experience can play a role, perhaps the more tantalizing observation is that a person's 

arousal state is also directly linked to their resting state functional connectivity (Eilam-Stock 

et al., 2014). This finding is particularly interesting in light of our results from the state-trait 

analysis, which suggest that visual-motor connectivity is more correlated with learning 

occurring in the immediately following trials than with trials performed in a different 

session. The existence of these state-dependent predictors of future learning is consistent 

with recent observations that arousal systems may directly regulate learning by coordinating 

activity in the locus coeruleus and anterior cingulate cortex (Nassar et al., 2012). Future 

work is necessary to determine the degree to which arousal state – as opposed to prior 

training – might manipulate the pattern of resting state connectivity, priming the system to 

optimally learn in the immediate future.

Baseline initializations vs. transient, online control

Cognitive control is a critical driver of learning during task performance (Dumontheil, 2014; 

Galea et al., 2010; Dixon and Christoff, 2014; Bassett et al., 2015). In an exploratory 

analysis in our data, we observed that baseline functional connections within the cingulo-

opercular network significantly correlate with individual differences in future learning. This 

finding provides preliminary evidence of the relative importance of (i) baseline architecture, 

which represents the initialization of the brain, and (ii) task-elicited dynamics, which 

represents transient, online control. In combination with prior literature, our results suggest 

that the relative autonomy of sensorimotor systems and the recruitment of the cingulo-

opercular network at rest strengthens the motor-motor associations that enable automatic 

performance (Verwey, 2001; Wymbs et al., 2012).

Methodological considerations

There are several important methodological and conceptual considerations relevant to this 

work. First, while we use the term modularity, we do not mean the traditional notion of pure 

encapsulation of psychological function as propounded by Fodor in his historic contribution 

to the field: “Modularity of Mind” (Fodor, 1983). Instead, we use the term as mathematically 

defined in the context of networks in (Newman, 2006b) to mean separation or segregation 

without requiring complete independence. Second, it is important to be clear about what the 

estimate of learning rate used here measures and what it does not measure. Critically, the 

learning rate is independent of initial performance, a measurement heavily influenced by 

experience on similar tasks, and is independent of final performance, a measurement heavily 

influenced by finger mechanics. Finally, in this work, we utilize large-scale non-invasive 

human recording of BOLD signals. It would be interesting in future to determine whether 

the sensorimotor autonomy that we describe here is related to competitive sensorimotor 

interactions reported at the neuronal level (Grent et al., 2014).
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Implications for educational and clinical neuroscience

We have shown that baseline visual-motor connectivity is a strong predictor of learning rate 

specifically in a DSP paradigm, but it is possible that these results would generalize to other 

motor skills, or that baseline separation between relevant cognitive systems is, in general, 

beneficial for other classes of learning in perceptual, cognitive, or semantic domains. 

Predicting individual differences in future learning has massive implications for 

neurorehabilitation (in those who are aging, injured, or diseased) and neuroeducation (in 

children or older trainees). Predictors drawn from behavioral performance or from brain 

images acquired during behavioral performance necessarily have limited applicability in 

rehabilitation and education domains where subjects may be unable to perform the task, or 

be unable to lie still in a scanner during task performance. Predictors drawn from resting 

state scans offer the possibility for direct translation to the clinic and classroom. Moreover, 

our delineation of state and trait components of sensorimotor initialization predictors 

suggests the possibility of directly manipulating subject state, for example with non-invasive 

stimulation (Galea et al., 2010; Luber and Lisanby, 2014), neurofeedback (Bassett and 

Khambhati, 2017), or task priming (Enriquez-Geppert et al., 2013) to enhance future 

performance, thereby optimizing rehabilitation or training.

Materials and methods

Participants

Twenty-two right-handed participants (13 females and 9 males; mean age of 24 years) 

volunteered to participate in this study. All volunteers gave informed consent in writing, 

according to the guidelines of the Institutional Review Board of the University of California, 

Santa Barbara. Three participants were excluded: one failed to complete the experiment, one 

had excessive head motion, and one had a functional connectivity profile whose dissimilarity 

to those obtained from other participants was more than three standard deviations away from 

the mean, potentially due to sleep (Fig. S6). The final cohort included 19 participants who 

all had normal or corrected vision and no history of neurological disease or any psychiatric 

disorder.

Experimental setup and procedure

In a discrete sequence-production (DSP) task, participants practiced a set of ten-element 

motor sequences, responding to sequential visual stimuli using their right hand (Fig. 1d). 

The visual display contained a horizontal array of five square stimuli, each corresponding to 

one finger. Mapped from left to right, the thumb corresponded to the leftmost stimulus and 

the smallest finger corresponded to the rightmost stimulus. The square corresponding to the 

current button press was highlighted in red, changing to the next square immediately 

following a correct button press. Only correct button presses advanced the sequence, and the 

time for completion was not limited. Participants were instructed to respond quickly and to 

maintain accuracy.

Six different ten-element sequences were used in the training protocol, with three possible 

levels of exposure: two sequences were extensively trained (EXT; 64 trials per session); two 

sequences were moderately trained (MOD; 10 trials per session); and two sequences were 
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minimally trained (MIN; 1 trial per session). The same sequences were practiced by all 

participants. In each sequence, each of the five possible stimulus locations was presented 

twice and included neither immediate repetitions (e.g. “1-1”) nor regularities such as trills 

(e.g., “1-2-1”) or runs (e.g., “1-2-3”). A sequence-identity cue indicated, on each trial, what 

sequence the participant was meant to produce: EXT sequences were preceded by either a 

cyan (EXT-1) or a magenta (EXT-2) circle, MOD sequences were preceded by either a red 

(MOD-1) or a green (MOD-2) triangle, and MIN sequences were preceded by either an 

orange (MIN-1) or a white (MIN-2) star. No participant reported any difficulty viewing the 

identity cues. The number of error-free sequences produced and the mean time required to 

complete an error-free sequence was presented after every block of ten trials. See Fig. S7 for 

the number of trials performed for each sequence type.

Participants were scanned on the first day of the experiment (scan 1) and on three other 

occasions (scans 2–4) spaced approximately 1.5–2 weeks apart from one another. The entire 

experiment spanned approximately 42 days (Fig. S1). A minimum of ten home training 

sessions was completed in between any two successive scanning sessions, for a total of at 

least 30 home sessions. Home training sessions were performed on personal laptop 

computers using a training module installed by the experimenter.

Before the first scanning session, the experimenter provided a brief introduction to 

participants in which he explained the mapping between the fingers and the DSP stimuli, as 

well as the significance of the identity cues. Next, fMRI data was acquired as subjects rested 

quietly in the scanner prior to any task performance. Finally, fMRI data was acquired as 

subjects performed a series of trials on the DSP task spread over five scan runs, using a 5-

button response box with distances between keys similar to placement on a standard 15 in 

laptop. Each scan run acquired during task performance contained 60 trials grouped in 

blocks of ten, and similarly to home training sessions, performance feedback was given at 

the end of every block. Each block contained trials belonging to a single exposure type 

(EXT, MOD or MIN), and included five trials for each of the two sequences. Therefore, an 

equal number of trials from each sequence was performed during scan sessions (50 trials per 

sequence, for a total of 300 trials per scan session; Fig. S7). Trial completion was indicated 

by a fixation cross, which remained on the screen until the onset of the next sequence 

identity cue (the intertrial interval varied between 0 s and 6 s).

Two sessions were abbreviated due to technical challenges. In each case when a scan was cut 

short, participants completed four out of the five scan runs for a given session. We included 

behavioral data from these abbreviated sessions in this study.

Behavioral apparatus

In home train sessions, stimuli were presented with Octave 3.2.4 and Psychtoolbox 3 

(Brainard, 1997) on each participants’ laptop computer. During scan sessions, stimuli were 

presented with MATLAB version 7.1 (Mathworks, Natick, MA) and Psychtoolbox 3 

(Brainard, 1997), back-projected onto a screen and viewed through a mirror. Key presses 

and response times were collected using a custom fiber optic button box and transducer 

connected via a serial port (button box, HHSC-1 × 4-l; transducer, fORP932; Current 

Designs, Philadelphia, PA), with design similar to those found on typical laptops. For 
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instance, the center-to-center spacing between the buttons on the top row was 20 mm 

(compared to 20 mm from “G” to “H” on a recent version of the MacBook Pro), and the 

spacing between the top row and lower left “thumb” button was 32 mm (compared to 37 mm 

from “G” to the spacebar on a MacBook Pro).

Behavioral estimates of learning

Following standard conventions in this literature, we defined the movement time (MT) as the 

difference between the time of the first button press and the time of the last button press in a 

single sequence. We calculated MT for every sequence performed in home training sessions 

over the course of the 6 weeks of practice. Across all trials in home training sessions, the 

median movement time was, on average, 1.70 s (average minimum 1.03 s and average 

maximum 7.12 s), with an average standard deviation of 0.79 s. For each participant and 

each sequence, the movement times were fit with a two-term exponential model (Schmidt 

and Lee, 1988; Rosenbaum, 2009) using robust outlier correction (operationalized by 

MATLAB's function “fit.m” in the Curve Fitting Toolbox with option “Robust” and type 

“LAR”), according to Equation (1):

MT = D1etκ + D2etλ, (1)

where t is time, κ is the exponential drop-off parameter (which we refer to as the learning 
rate) used to describe the fast rate of improvement, λ is the exponential drop-off parameter 

used to describe the slow, sustained rate of improvement, and D1 and D2 are real and 

positive constants. The magnitude of κ indicates the steepness of the learning curve: curves 

with larger κ values decay more quickly than curves with smaller κ values. Therefore, κ 
indicates the speed of learning, independent of initial performance or performance ceiling. 

The decrease in movement times has been used to quantify learning for several decades 

(Snoddy, 1926; Crossman, 1959). Several functional forms have been suggested for the fit of 

movement times (Newell and Rosenbloom, 1981; Heathcote et al., 2000), and variants of an 

exponential are viewed as the most statistically robust choices (Heathcote et al., 2000). 

Given the vastly superior number of practiced trials in EXT sequences (Fig. S7), we estimate 

the learning rate for each participant as the average κ between both EXT sequences, 

consistent with previous work (Bassett et al., 2015).

In addition to movement time, we defined error rate as the number of incorrect button 

presses during the full execution of each sequence, and reaction time as the time between the 

onset of a trial and the first button press. We performed a linear fit on both of these 

additional measures and repeated our main analysis with both their intercept and slope terms 

(Fig. S4).

MRI data collection

Magnetic resonance images were obtained at 3.0T on a Siemens Trio using a 12-channel 

phased-array head coil. T1-weighted structural images of the whole brain were collected 

from each subject (repetition time [TR] = 15.0 ms; time echo [TE] = 4.2 ms; flip angle: 90°; 

3D acquisition; field of view: 256 mm, slice thickness: 0.89 mm; 256 × 256 acquisition 

Mattar et al. Page 13

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matrix). Data from one resting state run (146 TRs), five experimental runs (variable number 

of TRs depending on how quickly the task was performed (Bassett et al., 2015)), and a 

second resting state run (146 TRs) were acquired with a single-shot echo planar imaging 

sequence that was sensitive to BOLD contrast ([TR] = 2, 000 ms; time echo [TE] = 30 ms; 

flip angle: 90°; field of view: 192 mm, slice thickness: 3 mm with 0.5 mm gap; 64 × 64 

acquisition matrix across 37 axial slices per TR). The present study examines data from four 

resting state scans, each lasting 5 min (150 TRs), acquired at the beginning of each scanning 

session.

MRI data preprocessing

Cortical reconstruction and volumetric segmentation of the structural data was performed 

with the Freesurfer image analysis suite (Dale et al., 1999). Preprocessing of the resting state 

fMRI data involved multiple steps: the first four volumes in each run were discarded to 

allow stabilization of longitudinal magnetization; sinc-interpolation in time was performed 

with AFNI's (Cox, 1996) 3dTshift to correct for the slice acquisition order; orientation of all 

images was changed to Right-Posterior-Inferior using AFNI's 3dresample; images were 

rigid-body motion corrected with AFNI's 3dvolreg by aligning all volumes with the mean 

volume (estimated with AFNI's 3dTstat) in each run; coregistration between the structural 

image and the mean functional image was performed with Freesurfer's bbregister (Greve and 

Fischl, 2009); brain-extracted functional images were obtained by applying Freesurfer's 

brain mask on to images from each functional run using AFNI's 3dcalc; global intensity 

normalization was performed across all functional volumes using FSL's fslmaths (Smith et 

al., 2004) to ensure that all time series were in the same units; functional data was smoothed 

in surface space with an isotropic Gaussian kernel of 5-mm full width at half-maximum and 

in the volumetric space with an isotropic Gaussian kernel of 5-mm full width at half-

maximum and, using Freesurfer's mris_volsmooth; six motion parameters estimated using 

Artifact Detection Tools (ART) (Whitfield-Gabrieli, 2009) — three for translation and three 

for rotation—, as well as the temporal derivatives, quadratic terms, and temporal derivatives 

of the quadratic terms had their contribution removed from the BOLD signal; non-neuronal 

sources of noise (white--matter and CSF signals) were estimated by averaging signals within 

masks obtained with Freesurfer segmentation tools and by identifying voxel time series with 

high temporal standard deviations, and removed using the anatomical (aCompCor) and 

temporal CompCor (tCompCor) methods (Behzadi et al., 2007); finally, a temporal band-

pass filter of 0.01 Hz–0.1 Hz was applied using AFNI's 3dFourier. Motion-censoring was 

not performed to ensure an equal amount of data per subject.

Using the above processing pipeline, we expect to have been able to correct for motion 

effects due to volume-to-volume fluctuations relative to the first volume in a scan run. After 

this motion correction procedure, we observed no correlation between any of the six motion 

parameters (x-translation, y-translation, z-translation, roll, pitch, and yaw, calculated for 

each run and training session) and visual-motor connectivity (P > 0.05) across all scanning 

sessions. These results indicated that individual differences in motion were unlikely to drive 

the effects reported here.
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Parcellation scheme

We used a functionally-derived parcellation scheme with 333 regions of interest (ROIs) 

representing putative cortical areas (Gordon et al., 2014). Region boundaries were identified 

such that each parcel had a highly homogeneous resting-state functional connectivity 

pattern, indicating that they contained one unique RSFC signal. We also used a surface-

based parcellation of human cortical gyri and sulci (aparc. a2009s.annot in Freesurfer) 

(Destrieux et al., 2010).

In a supplementary set of analyses, we used a volumetric-based parcellation scheme 

composed of 626 ROIs (AAL-626) that was formed by the combination of two separate 

atlases: (i) an AAL-derived 600-region atlas (Hermundstad et al., 2013, 2014), which 

subdivides the 90 AAL anatomical regions into regions of roughly similar size via a spatial 

bisection method, and (ii) a high-resolution probabilistic 26-region atlas of the cerebellum in 

the anatomical space defined by the MNI152 template, obtained from T1-weighted MRI 

scans (1-mm isotropic resolution) of 20 healthy young participants (Smith et al., 2004; 

Woolrich et al., 2009). The combination of these two atlases provided a high-resolution, 

626-region atlas of cortical, subcortical, and cerebellar regions. This volumetric atlas, which 

we call AAL-626 atlas, has been used previously (Bassett et al., 2015).

Functional connectivity estimation

In previous work, analyses of the task data from the same experiment yielded two sets of 

ROIs based on the high probability that its regions were assigned to the same functional 

community by time-resolved clustering methods (Bassett et al., 2015). These two sets of 

regions broadly corresponded to (i) early visual cortex (which has been referred to as the 

visual module; Fig. 2a) and (ii) primary and secondary somato-motor regions (which has 

been referred to as the somato-motor module; Fig. 2a). A list of region labels associated with 

the two modules is displayed in Table 1. Because this prior work used regions defined 

anatomically (AAL-626), we first determined the equivalence with the Gordon333 atlas. 

Specifically, for each region of the AAL-626 atlas, we determined the region of Gordon333 

with the largest spatial overlap in MNI152 space. This procedure, in turn, allowed us to 

identify the visual and somato-motor modules in the Gordon333 atlas. We then extracted the 

average resting state time series across regions from each of the functional modules, 

calculated their Spearman's rank correlation coefficient (a nonparametric measure of 

statistical dependence between two variables), and applied a Fisher r-to-z transformation. 

We refer to this z-value as the visual-motor connectivity.

Importantly, the removal of various signal components present throughout most of the brain 

(in particular by the tCompCor method) leads to a shift in the distribution of functional 

connectivity values, giving rise to negative correlations. We note that, while these 

approaches substantially improve the robustness of our results by eliminating physiological 

noise from the data (Lund and Hanson, 2001), our results remain significant with a less 

stringent noise removal pipeline that does not shift the range of correlation values (Fig. S9).

We confirmed that the modules identified from the task data were also modules at baseline 

by comparing the modularity quality (Newman, 2006a) of the actual partition with the 
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modularity quality of 10, 000 permuted partitions. The modularity quality is given by 

equation (2):

Q = 1
4m ∑

ij
Aij −

kik j
2m δ(gi, g j), (2)

where Aij is the functional connectivity matrix including all visual and motor regions, ki and 

kj are the strength of nodes i and j, m = 1
2 ∑iki is the total strength in the network, and δ(gi, 

gj) = 1 if nodes i and j belong to the same module or δ(gi, gj) = 0 otherwise. We observed 

that the modularity quality of the actual partition into visual and motor modules was higher 

than the modularity quality of all 10, 000 permuted partitions (p = 0.0001), demonstrating 

that the separation of brain regions into motor and visual modules is an accurate 

representation of the network organization.

A similar approach was performed for the surface-based analysis, which aimed to identify 

which specific functional connections within visual and somato-motor areas were most 

correlated with learning rate. We used broadly defined visual and somato-motor regions of 

interest (ROIs) and examined the correlations between each visual-to-motor connection and 

learning rate. The visual ROI was defined as composed of the entire occipital lobe, parieto-

occipital, and occipito-temporal areas (Fig. 3a), and the somato-motor ROI was defined as 

composed of precentral, paracentral, and postcentral sulci and gyri, and central sulcus (Fig. 

3a). After projecting the BOLD time-series from each voxel into surface vertices in subject 

native space, we extracted the average activity within each of the surface-based parcels and 

calculated the Fisher r-to-z transform of the Spearman's rank correlation coefficient between 

the activity in each region of the visual ROI and each region of the somatomotor ROI.

Measure of statistical relationship

Spearman's rank correlation was chosen as a measure of statistical relationship between any 

two variables with different units. This nonparametric statistic measures the extent to which 

two variables are monotonically related without a requirement for linearity. To assess the 

relationship between two variables with the same units, Pearson product-moment correlation 

was used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Network dynamics constrain adaptive learning behavior
(a) The degree of connectivity between two modules can impose important constraints on 

the types of dynamics that are possible. A lower degree of statistical dependence between 

the activity profiles of two modules can allow for greater flexibility in module dynamics. (b) 
Learning a new motor skill — a sequence of finger movements — induces a progressive 

change in the connectivity between visual and somato-motor cortices in humans (Bassett et 

al., 2015). We hypothesize that individuals who display a greater functional separation, or 

greater modularity, between motor and visual modules at rest are poised for enhanced 

adaptability, and therefore will learn faster over 6 weeks of practice than individuals who 

display less functional separation between these modules. (c) Time in seconds required to 

correctly perform each sequence of finger movements (here referred to as movement time) 

for two example human subjects over 6 weeks of training. We observe an exponential decay 

in the trial-by-trial movement times for all participants (black lines), indicating that learning 

is occurring. The exponential drop-off parameter of a two-term exponential fit (red line) 

quantifies how rapidly each participant learned. Left and right panels illustrate the fits for an 

example slow and fast learner, respectively. (d) On each trial, the initial stimulus indicated 

which sequence should be performed. Each correct key press led to the next stimulus cue 

until the ten-element sequence was correctly executed. At any point, if an incorrect key was 

hit, a participant would receive an error signal (not shown in the figure), and the sequence 

would pause until the correct response was received. (e) Stimulus-response mapping 

between a conventional keyboard or an MRI-compatible button box (lower left) and a 

participant's right hand. (f) Training occurred over the course of 30 or more behavioral 

training sessions spanning approximately 42 days. Participants were scanned on the first day 

of the experiment and on three other occasions spaced approximately 1.5–2 weeks apart. 

Each scan session began with a 5 min resting state scan.

Mattar et al. Page 23

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Baseline visual-motor connectivity predicts future learning rate
(a) Visual module (yellow) and somato-motor module (purple), identified by time-resolved 

clustering methods applied to BOLD activity acquired during execution of motor sequences 

(Bassett et al., 2015). The modules were defined in a data-driven manner and correspond 

broadly to putative visual and somato-motor modules. (b) Functional connectivity between 

visual and somato-motor modules, estimated at rest and prior to learning, reliably predicts 

individual differences in future learning rate. We define the learning rate as the exponential 

drop-off parameter of the participant's movement time as a function of trials practiced, and 

we define functional connectivity as the average value of the correlation coefficient between 
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activity in visual regions and activity in somato-motor regions. Note that we use the term 

“prediction” to imply that the value of one variable (at one point in time) can be used to 

predict the value of another variable (at a later point in time), without implying the use of 

out-of-sample generalization (Gabrieli et al., 2015).
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Fig. 3. Learning rate is best predicted by connectivity between early visual and dorsal premotor 
areas
(a) Using a surface-based annotation encompassing broadly defined visual and somato-

motor areas, we calculated the correlation between learning rate and the functional 

connectivity between each pair of sub-regions (negative correlations are represented in blue; 

positive correlations are represented in red). Learning rate was best predicted by 

connectivity between early visual areas adjacent to the calcarine sulcus in both hemispheres 

(yellow) and the dorsal premotor area adjacent to the right superior precentral sulcus 

(purple). (b) Functional connectivity between left calcarine sulcus and right superior 

precentral sulcus significantly predicted individual differences in future learning rate (data 

points are indicated by left pointing triangles). Similarly, functional connectivity between 

right calcarine sulcus and right superior precentral sulcus significantly predicted learning 

rate (data points are indicated by right pointing triangles). (c) Distribution of correlation 

values between learning rate and module-to-module connectivity across subjects. Visual-

motor connectivity has one of the highest correlations with learning rate.

Mattar et al. Page 26

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Visual-motor connectivity as a trait and as a state
(a) Between-session variability of visual-motor connectivity. For each participant, dots 

represent visual-motor connectivity measured at each of four resting state scans conducted 

immediately prior to task execution. Despite large variability between sessions, 38.2% of the 

observed visual-motor connectivity variance was accounted for by a trait marker 

representing between-subject variability. (b) The trait marker is the component of visual-

motor connectivity that remains stable across time, with the variability from session to 

session here termed the state component. The average visual-motor connectivity across all 

four sessions, an estimator of the trait component of visual-motor connectivity, significantly 

Mattar et al. Page 27

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predicted overall learning rate (ρ = −0.4614, P = 0.0484). (c) Left: Spearman's correlation 

coefficients between session-specific learning rate, estimated from trials performed inside 

the scanner immediately following resting state scans, and session-specific visual-motor 

connectivity. Right: Spearman's correlation coefficients for all 24 permutations of resting 

state scans to task sessions, between visual-motor connectivity and session-specific learning 

rates. The actual pairing of resting state scans to task sessions had the strongest average 

correlation from all possible pairings (P = 0.0400), indicating that the state component of 

visual-motor connectivity has some degree of temporal specificity.
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Table 1

Brain areas in visual and somato-motor modules.

Visual module Somato-motor module

Left/Right intracalcarine cortex Left/Right precentral gyrus

Left/Right cuneus cortex Left/Right postcentral gyrus

Left/Right lingual gyrus Left/Right superior parietal lobule

Left/Right supracalcarine cortex Left/Right supramarginal gyrus, anterior

Left/Right occipital pole Left/Right supplementary motor area

Left parietal operculum cortex

Right supramarginal gyrus, posterior
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