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collapsing tests and the variant-based collapsing
tests for detecting rare variants in pedigrees
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Abstract

Background: Both common and rare genetic variants have been shown to contribute to the etiology of complex
diseases. Recent genome-wide association studies (GWAS) have successfully investigated how common variants
contribute to the genetic factors associated with common human diseases. However, understanding the impact of
rare variants, which are abundant in the human population (one in every 17 bases), remains challenging. A number
of statistical tests have been developed to analyze collapsed rare variants identified by association tests. Here, we
propose a haplotype-based approach. This work inspired by an existing statistical framework of the pedigree
disequilibrium test (PDT), which uses genetic data to assess the effects of variants in general pedigrees. We aim to
compare the performance between the haplotype-based approach and the rare variant-based approach for
detecting rare causal variants in pedigrees.

Results: Extensive simulations in the sequencing setting were carried out to evaluate and compare the haplotype-based
approach with the rare variant methods that drew on a more conventional collapsing strategy. As assessed through a
variety of scenarios, the haplotype-based pedigree tests had enhanced statistical power compared with the rare variants
based pedigree tests when the disease of interest was mainly caused by rare haplotypes (with multiple rare alleles), and
vice versa when disease was caused by rare variants acting independently. For most of other situations when disease was
caused both by haplotypes with multiple rare alleles and by rare variants with similar effects, these two approaches
provided similar power in testing for association.

Conclusions: The haplotype-based approach was designed to assess the role of rare and potentially causal haplotypes.
The proposed rare variants-based pedigree tests were designed to assess the role of rare and potentially causal variants.
This study clearly documented the situations under which either method performs better than the other. All tests have
been implemented in a software, which was submitted to the Comprehensive R Archive Network (CRAN) for general use
as a computer program named rvHPDT.
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Background
Genetic studies such as genome-wide association studies
(GWAS) have typically relied on the common disease/
common variant (CDCV) paradigm, and the GWAS
approach has had its share of success with some genetic
disorders. Although earlier analyses of GWAS data
revealed that this approach can detect common variants
with modest effects, however, only a small portion of
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these significant associations with common variants
were subsequently found to be functional and these as-
sociations account for a small portion of the total herit-
ability of genetic variations. On the other hand, in recent
years, the role of rare genetic variants has received more
attention due to the advent of next generation sequen-
cing (NGS) technology. Indeed, some rare variants were
found to play a causal role in human diseases, including
psychiatric disorders. This led to the shift from the
CDCV approach to a common disease-rare variant
(CDRV) approach.
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Given this increased recognition that common dis-
orders may in fact reflect the aggregated effects of many
rare variants, genetic analysts investigating this new
hypothesis have had to deal with a host of new chal-
lenges. The more affordable whole genome sequencing
(WGS) technology demands new analytical tools to
analyze these data.
Many methods have been developed to analyze data

from case–control studies. These include: 1) collapsing
methods [1]; 2) the weighted-sum association method
[2,3]; 3) pooled association tests for rare variants [3];
4) the aSum test [4,5]; 5) the alpha test [6]; and 6) the
sequencing kernel association test (SKAT) [7]. The
interested reader is referred to three thoughtful papers
that review current methods for collapsing and pooling
data [8,9]. Family based studies can be used to address
the issue of rarity via the enrichment of rare variants
within pedigrees. One impediment to family-based
sequencing, however, is the fact that, with few excep-
tions, the statistics used to study rare variants were
traditionally designed for use with population-based
data. Family-based approaches include FBAT software
(v2.0.4), which provides both un-weighted (FBAT-v0)
and weighted sum tests (FBAT-v1) to analyze rare vari-
ants [10]. The FBAT-v1 test is weighted based on allele
frequency, similar to the weighted sum statistic (WSS)
[2]. Shugart and colleagues [11] proposed weighted
pedigree-based statistics using the function of kinship
matrix as a correction factor to adjust family correla-
tions. And Zhu and Xiong [12] proposed a sophisti-
cated family-based functional principal-component
analysis (FPCA) with or without smoothing. On the
quantitative traits side, Guo and Shugart [13] used
beta-determined weight testing to analyze nuclear fa-
milies, and collapsed rare variants using regression
coefficients. More recently, Chen and colleagues [14]
proposed using SKAT to analyze rare variants in family
samples.
It is worth noting that all the family-based associ-

ation tests listed above are variant-based approaches.
Nevertheless, haplotypes—which are combinations of
alleles (namely, the DNA sequences) at adjacent loca-
tions on a chromosome—has the potential to provide
further insight into the structure of underlying linkage
disequilibrium (LD), thus potentially yielding higher
power in association studies investigating common and
rare variants [15,16]. For certain complex diseases such
as hypertension, rare haplotypes have been shown to
influence disease susceptibility [17-19]. Here, to high-
light the importance of haplotype-based approaches,
we provide a brief review on the studies detected hap-
lotypes composed of multiple rare variants contribu-
ting to disease or traits related to lipid metabolism. In
2002, Knoblauch and colleagues [20] reported a robust
haplotype effect in six genes including the cholesterol
ester transfer protein (CETP), Lipoprotein (LPL), hep-
atic triglyceride (HL), low-density lipoprotein choles-
terol receptor (LDLR), Apolipoprotien E (ApoE) and
lecithin-cholesterol acyltransferase (LCAT) on lipid
concentrations. More specifically, the authors re-
cruited 732 individuals from 184 German families and
identified 26 genetic variants (a combination of rare
and common variants) in CETP, LCAT, HL, LPL and
LDLR. They utilized the family structure to help estab-
lish the haplotypes and observed a haplotype effect on
the genetic variance of the LDL/HDL ratio [20]. Later,
Cohen et al. [21] documented the contribution by mul-
tiple rare variants to low plasma levels of high density
lipoprotein cholesterol (HDL-C) after sequencing the
coding regions and consensus splice sites of genes
ATP-binding cassette transporter (ABCA1), Apolipo-
protein (APOA1) and Lecithin (LCAT) in 256 indivi-
duals of the Dallas Heart Study (DHS). Here we
highlight the findings in the ABCA1 gene as a success-
ful example. Cohen et al. examined the sequence vari-
ants which are unique to the low HDL-C group and
the high HDL-C group and identified 14 non-
synonymous mutations in the low HDL-C group, and 6
synonymous mutations in the high HDL-C group.
Similar observations on causal rare variants were made
in a Canadian sample (155 with low HDL-C and 108
with high HDL-C). For the non-synonymous genes, the
authors reported the predicted effects for some of the
amino acid changes. A majority of them were predicted
to be “possibly damaging”. Although the authors did
not use a statistical framework to examine this work,
their results suggested an example for a gene-based
haplotype with a number of rare causal and non-causal
variants. In 2007, Saleheen et al. [22] reported a novel
haplotype in ABCA1 gene associated with plasma
HDL-C concentration. The authors selected five non-
synonymous single nucleotide polymorphisms (SNPs)
after sequencing ABCA1 in 200 unrelated Pakistanis
individuals of who are free of ischemic heart diseases.
Furthermore, they aimed at detecting causal mutation
in individuals having arterial hypertension. In their
study, R219K, V399A and V771M polymorphisms were
not associated with either HDL-C or LDL-C. On the
other hand, their haplotype analysis revealed a signal for
an interaction between R219K and V825L polymor-
phisms. Further, the RL haplotype was found to be asso-
ciated with the low levels of HDL-C [P = 0.001]. More
recently, Slatter et al. [23] reported five rare mutations
(in five of the low-HDL samples) and promoter haplo-
types in ABCA1 in 154 low-HDL samples and 102 high-
HDL samples. More specifically, their analysis of four
SNPs in ABCA1’s promoter region identified the over-
representation of the “C-14 T” SNP and the “TCCT”
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haplotype in the low-HDL individuals [23]. Together, all
these studies indicated the clinical importance of haplo-
types composed of multiple rare variants.
At the theoretical level, Lin and colleagues [8]

pointed out that haplotypes may serve as the “superal-
leles” that combine the joint effects from uncommon
causal variants not genotyped in GWAS. While the
research community has accepted the concept of
haplotype-based analysis, to our knowledge the use of
haplotype-based tests as tools to detect rare variants
in pedigree data remains unstudied. Here, we review
several pedigree-based statistics specifically designed
to test for rare variants in family-based data and then
introduce our new methods—the haplotype-based
pedigree tests—that uses the haplotype constructed
by rare or uncommon variants. In general pedigrees,
PDT [9], which breaks a pedigree into case-parent
trios and discordant sib-pairs, and then sum up their
contributions, has been often used in the field of
genomic research. Using this approach, rare haplo-
types are collapsed under the framework of the PDT
in pedigree data.
Overall, we developed five tests termed hPDT, maxH,

maxV, hPDT-t and vPDT-t. The detailed mathematical
expressions will be provided under Methods. Our main
goal is to investigate the performance of haplotype and
variants based tests in general pedigrees, which will
allow us to address the question of whether or not
haplotype-based collapsing tests would outperform the
variant-based collapsing tests for detecting rare vari-
ants in human pedigrees under difference cases of
scenarios.

Methods
The hPDT and vPDT
Let N be the total number of pedigrees. Let M be the
total number of variants in the gene of interest, and H
haplotypes formed are denoted by h1, h2, …, hH. For
the pedigree i, let nT be the number of informative
nuclear families and nS be the number of informative
discordant sibships. Similar to PDT, hPDT considers
the difference in the number of transmitted and
untransmitted haplotypes from parents to affected
siblings and the difference in the number of haplo-
types between affected and unaffected siblings. For
k-th haplotype, the hPDT statistic for pedigree i is
thus defined as:

U kð Þ
i ¼

XnT
j¼1

T kð Þ
ij þ

XnS
j¼1

S kð Þ
ij ; ð1Þ

Where T kð Þ
ij is the number of transmissions minus the

number of non-transmissions on the h th haplotype in
trio j, and S kð Þ
ij is the number of copies in the affected

sib minus the number of copies in the unaffected sib
in sib-pair j.
Without loss of generality, assume hH is the most

frequent haplotype, and for the rest of H − 1 haplotypes,
the summary random variable for the pedigree i is
defined as:

Di ¼
XH−1

k¼1

whU
kð Þ
i ; ð2Þ

where wk is the weight for the haplotype k. We define
a similar weight function as in Madsen and colleagues
[2]:

wk ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqk 1−qkð Þ

q
; ð3Þ

where λ is the number of individuals in N families, and qh
is the haplotype frequency of the k-th haplotype. Under

the null hypothesis of no association, E T kð Þ
ij

� �
¼ 0 for all

trios and E S kð Þ
ij

� �
¼ 0 for all discordant sib pairs and, con-

sequently, E U kð Þ
i

� �
¼ 0 and E(Di) = 0 for any pedigree

structure. If N families are unrelated, under the null
hypothesis of no association

E
XN
i¼1

Di

 !
¼ 0 ð4Þ

and

Var
XN
i¼1

Di

 !
¼
XN
i¼1

Var Dið Þ ¼ E
XN
i¼1

D2
i

 !
ð5Þ

The above derivation is adopted from the material
provided by the original authors of the PDT test [9].
For N unrelated families, the hPDT statistic is defined

as:

Z ¼
XN

i¼1
DiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
D2

i

q ð6Þ

which asymptotically follows a standard normal distri-
bution under the null hypothesis of no association
based (see Equation (5)).
In spirit, the vPDT test (Chung R, Tsai H, Eu B, Kao

H, Chiu Y: Extension of the pedigree disequilibrium test
for rare variants: an application to the genetic analysis
workshop 18 dataset. Unpublished) is similarly defined
as the hPDT test; however vPDT simply combines the M
rare variants using allelic frequencies determined
weights while the hPDT test use haplotype frequencies
determined weights.
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The maxH and maxV
For k-th haplotype, the PDT statistic could be con-
structed as

Z kð Þ ¼
XN

i¼1
U kð Þ

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
U kð Þ

i

� �2r ð7Þ

and the maxH test is defined as the maximal value of
Z(k) for all haplotypes except for the most frequent
one. Similarly, the maximal variants test, maxV, could
be constructed by the maximal value of PDT tests
based on single variant over all M rare variants. The
p-values of maxH and maxV are obtained by a standard
permutation procedure. For the maxH test, the transmitted
and non-transmitted haplotypes of each offspring are ran-
domly sampled from the parental haplotypes; for the maxV
test, the transmitted and non-transmitted alleles of each
child are randomly sampled from the parental alleles on
each rare variant.
For a single analysis sample (i.e., for a real data ana-

lysis), we propose to adopt the standard permutation
procedure for obtaining p-values of maxH and maxV
tests. For simplicity, we assume T is the test statistic of
interest, and T is either maxH or maxV here. Specific-
ally, we permute the transmission status (transmitted
and non-transmitted) B times to obtain Tb, b = 1, …,B.
These can be regarded as a sample of size B from the
distribution of T (as defined in Equation (7)) under the
null hypothesis. Then

p ¼ 1
B

XB
b¼1

I T 2≤T 2
b

� � ð8Þ

provides a permutated p-value for the maxH and
maxV tests. For a simulation study with R replicates,
the above procedure will be time-consuming. There-
fore, we propose the following steps to reduce the
computational burden by pooling permutation samples
from all replicates to form a joint sample from the null
distribution. More specifically, for the rth replicate
with observed test statistic Tr, we permuted the labels
B times as above to obtain Tr,b, b = 1, …,B. Then the
collection {Tr,b; r = 1, …,R, b = 1, …,B} can be regarded
as a random sample of size B × R from the common
null distribution, i.e., the distribution under the null
hypothesis H0. Consequently, for r = 1, …,R,

pr ¼
1

B� R

XR
r¼1

XB
b¼1

I T 2
r≤T

2
r;b

� �
ð9Þ

provides the permuted p-value for the rth replicate.
Since the permutation samples are pooled across all rep-
licates to form a sample from the null, B can be set to
be much smaller than the situation when only one
sample is analyzed. For example, if R = 1000 and the
desired number of permutations for estimating the p-
values is 10000, then we set B = 10 for each replicate.
In other words, we do not need to perform 10000
permutations for each replicate to obtain the p-value.
Instead, we only need to perform 10 permutations per
replicate to achieve the same precision level. This
pooling strategy is similar to what was proposed in
Becker and Knapp [24].

hPDT-t and vPDT-t
To adapt to the case of scenarios that both risk haplo-
types (increasing risks) and protective haplotypes
(decreasing risks) exist, one may benefit from estimat-
ing the direction of each haplotype before the weights
are defined using Equation (3). To accomplish this
task, the data set is randomly split into a testing set
and a training set. In our analysis, 30% of data is
selected as the training set and the other 70% of data is
remained as the testing set. In the first step, the single-
haplotype tests are carried on within the training set,
and then new weights are defined as:

wk ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqk 1−qkð Þ;p

0;
−1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqk 1−qkð Þ;p

if Z kð Þ > μ;
if Z kð Þ�� ��≤μ;
if Z kð Þ < −μ;

8<
: ð10Þ

where Z(k) is the PDT statistic for k-th haplotype in
the training set defined as Equation (7) and λ and qk
are identically defined as in Equation (7) using all
data. For example, μ = 1.04 (1.28 and 1.64) corre-
sponds to a type I error of 0.3 (0.2 and 0.1, respec-
tively). We set μ = 1.04 to preserve more nonzero
weights/haplotypes in the next step tests. In the
second step, the hPDT-t statistic is defined as Equa-
tion (6) within the test set.
The vPDT-t is similarly defined as the hPDT-t test by

replacing haplotypes by variants.

Infer haplotypes of pedigree members
For the unphased genotype data, haplotypes were
inferred by MERLIN [25] software, which is commonly
used to reconstruct putative haplotypes for families and
individuals using likelihood-based methods.
For any ambiguous loci that cannot be phased using

the available information, MERLIN software provides
output for all possible patterns of gene flow. To resolve
potential haplotyping ambiguity caused by incomplete
phasing and missing variants, an EM algorithm is
employed to estimate haplotype frequencies and family
weights for each gene flow simultaneously, where the
sum of family weights is one for a single pedigree. For
hPDT and hPDT-t, the statistics in Equation (1) were
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modified as Di ¼
X
f

Weight fð Þ � D fð Þ
i

� �
; where Weight(f ) is

the weight for the f th gene flow while D fð Þ
i is the normal

Di statistic defined by Equation (2).
Results and discussion
Simulation
For the purpose of simulation, the forward evolutio-
nary simulation tool ForSim [26] was used to simulate
genotypic data within pedigrees. Forsim can simulate
pedigrees and take evolutionary processes—such as
natural selection, mutation, and population demo-
graphics—into account. While running Forsim, the
mutation rate is assumed to be 2.5 × 10− 8, the total
number of generations is set at 500, the recombination
rate is 1 cM per Mb, the growth rate is 0.525, the ferti-
lity Poisson mean is 8, the maximal number of children
is 500, the initial size of the population is 1000, and the
carrying capacity is 20,000. The gene length can also
be fixed at 1 Mb and chromosome length at 5 Mb.
Because we re-simulated the phenotype values, other
parameters about the disease model did not matter in
Forsim and had no influence in this second simulation.
To evaluate the performance of the hPDT, we retained
only the pedigree structure and genotype data simu-
lated using Forsim, and re-simulated the affected status
for each individual using newly assumed disease
models (described in detail later). Two hundred
nuclear families were randomly selected, and each fa-
mily included two parents, two affected siblings, and
one unaffected sibling. The total numbers of indivi-
duals were 1000.
To assign affected status we followed a disease model

similar to that described by Li and colleagues [16]. Within
the 1 Mb gene region generated in a 5 Mb genome by
Forsim, we randomly picked 20 Kb regions as the causal
region; only rare variants were to be tested in our simula-
tion within this causal region. Here, rare variants were de-
fined as “rare” when its MAF was between 0.001 and 0.05.
To investigate type I error rates, we set the penetrance

at 30% in order to obtain a sufficient number of pedigrees
with affected members. Disease status was assigned
according to P(affected|{h1, h2}) = 30 % when simulating
phenotype data under the null hypothesis.
To evaluate the power, we randomly selected d% (d

%=50%, 40%, 30%, 20%, and 10%) of the rare variants
in the region of interest to be causal. Then, among these
rare variants, we further assumed that r% (r%=100%, 80%,
50%, 20%, and 5%) of them increased disease risk, whereas
the remaining (100 – r)% decreased disease risk. Following
methods outlined by Madsen and Browning [2], we as-
sumed that the less frequent variant made a greater contri-
bution to disease, and that the contribution of each causal
variant l to the overall genotype relative risk (GRR) was
defined as:

GRRl ¼
PAR

1−PARð Þ∙MAFl
þ 1; variant l increases disease risk

PAR
1−PARð Þ∙MAFl

þ 1

� 	−1
; variant l decreases disease risk

;

8>><
>>:

ð11Þ

where PAR is the population attributable risk set as
0.006 [16]. For an individual with a pair of haplotypes
{h1, h2}, the disease status was assigned according to:

Pðaffectedj h1; h2f gÞ ¼ f 0 �
Y2
k¼1

YMc

l¼1

GRR
I hk;l¼alð Þ
l ð12Þ

in which f0 was the baseline penetrance and was fixed at
10% in our simulations, Mc was the number of causal
SNPs among M SNPs in the region, hk,l was the l th causal
allele in haplotype hk, and al was the rare allele of SNP l.

Special haplotype setting for investigating effects of LD
In keeping with the method of Li and Leal [1], we also
investigated the effects of LD using simulation. The
following steps were taken: 10 variants were considered.
Fifteen haplotypes were constructed as follows:
1010000000, 0110000000, 1001000000, 0101000000,
1000000000, 0100000000, 0010000000, 0001000000,
0000100000, 0000010000, 0000001000, 0000000100,
0000000010, 0000000001, 0000000000, where 1 indicates
the minor allele and 0 indicates the major allele. While the
first fourteen rare haplotypes have equal frequencies of
0.01, the last common haplotype has frequency of 0.86.
The MAFs of the first four variants are 0.03, and the
MAFs of remain six variants are 0.01. Let R2

ij be the R2

values (R2 is a measurement of LD and defined as
squared correlation coefficient between pairs of loci)
between variant i and variant j, where i, j = 1, …, 10.
There were four pair-wise LD R2

13 ¼ R2
14 ¼ R2

23 ¼ R2
24

¼ 0:14 while other pair-wise LDs are close to zero
(<0.0005). To generate the data, parental haplotypes
were randomly assigned according to the assumed
haplotype frequency. The parental haplotypes were then
transmitted to offspring without recombination.
Finally, the affection status of an individual with hk1hk2

haplotype in the pedigree was assigned to be a random
variable according to the following trait model, logit{P(af-
fected|hk1hk2)} = βk1 + βk2, where the logit function is de-
fined as logit pð Þ ¼ log p

1−p, and k1 and k2 (k1, k2 = 1, …, 15)

indicate 15 haplotypes defined as above. βk (k = 1, …, 15)
indicate the effect sizes in trait model, and β s were speci-
fied as (1) β1 = β4 = 3, β5 = β6 = β7 = β8 = − 3; (2) β1 = β4 = 3,
β5 = β6 = 1, β7 = β8 = − 3; (3) β1 = β2 = β3 = β4 = 2, and
other βs were zero in each setting. Under this three β
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settings, the cumulative effect sizes (βs) on ten rare vari-
ants were (0,0,0,0,0,0,0,0,0,0), (4,3,0,0,0,0,0,0,0,0) and
(4,4,4,4,0,0,0,0,0,0), respectively.

Results
Type I error rates and analytical power associated with six
tests were assessed using the nuclear families simulated
both by forsim and by the direct simulation under the spe-
cial haplotype setting. Six tests investigated here were as
follows, hPDT: haplotype-based pedigree disequilibrium
test; hPDT-t: haplotype-based pedigree disequilibrium test
with 30% training data; maxV: maximal rare variant test;
vPDT: variant-based pedigree disequilibrium test; vPDT-t:
rare variant based pedigree disequilibrium test with 30%
training data. We evaluated the effects of the proportion
of causal variants (d%) and investigated the effects of the
proportion of variants that increase risks (r%), and also
investigated the effects of LD on power.

Type I error rates
As shown in Table 1, the type I error rates were accep-
table for all six tests at the nominal level of 0.05. The
hPDT-t and vPDT-t tests were slightly conservative at
type I error rates of 0.035 and 0.041, respectively. For
these two tests, the weight of a haplotype/variant was set
to be zero if it failed to get a significant value of test
statistic on training data set as shown in Equation (10).
Due to the rarity of variants/haplotypes and limited sam-
ple size, under the null hypothesis, many zero weights
were observed in our simulation though μ was set to be
1.04 not as strict as 1.28 used by [17,28]. Approximately
20 rare variants were tested using the simulated data
(Table 1).

Effect of the proportion of causal SNVs (d%)
We further evaluated the analytical power and the
effects of the proportion of causal variants (d%). The
proportion of variants that increased risks, r%, was fixed
at 100%, which means that all variants within the causal
variants increase disease risk. Table 1 shows that the
haplotype-based tests obtained similar power to the
Table 1 Type I errors and power on effect of the proportion o

# of variants maxH

Type I error d%=0 r%=0 21.82(sd=4.63) 0.053

Power r%=1 d%=0.5 23.02(sd=4.90) 0.456

d%=0.4 22.63(sd=4.64) 0.373

d%=0.3 22.65(sd=5.11) 0.316

d%=0.2 22.31(sd=4.56) 0.261

d%=0.1 21.89(sd=4.65) 0.148

Note: (1) “# of variants” indicates the mean and standard deviation (sd) values of the n
replicate); (2) d% is the proportion of rare variants in the causal region to be causal; (3)
Abbreviations: maxH: maximal haplotype test; hPDT: haplotype-based pedigree disequi
data; maxV: maximal rare variant test; vPDT: variant-based pedigree disequilibrium test
corresponding rare variant based tests. The hPDT and
vPDT provided more power than the other four tests, and
the hPDT-t and vPDT-t tests were least powerful, and the
performances of maxH and maxV tests fell in the middle.
Effect of the proportion of variants that increase risks (r%)
The effects of the proportion of variants that increase
risks (denoted by r%) were also investigated. The pro-
portion of causal variants, d%, was fixed at 50%, which
means that half of the rare variants in the causal region
were causal. Similar to results presented in Table 1, the
haplotype-based tests in Table 2 obtained similar power
to the corresponding rare variant based tests. When r%
=1 and 0.8, the hPDT and vPDT provided highest power
than the other four tests, and the hPDT-t and vPDT-t
were least powerful, and the maxH and maxV tests were
in the middle. However, when r%=0.5 and 0.2, the maxH
and maxV tests were most powerful when the joint
effects were masked by noise from either causal variants
with opposite direction (50% and 80%, respectively) or
non-causal variants (50%). When r%=0.05, except the
hPDT-t and vPDT-t tests obtained power of ~30%, all
other four tests have no power to detect association
under this condition.
Effects of LD under special haplotype setting
The effects of LD were investigated under the haplotype
setting with LD and the results were shown in Table 3.
Under the first β setting (β1 = β4 = 3, β5 = β6 = β7 = β8 = −
3), since the cumulative effect sizes βs on each single
rare variant were added to zero, the haplotype-based
tests outperformed the rare variants based tests. Spe-
cially, maxH obtained the highest power (0.589) due to
the gain from the first and fourth haplotype with signifi-
cant positive effect sizes. While the hPDT and hPDT-t
tests were less powerful due to the fact that the positive
and negative effects carried by different variants may
cancel each other out. The training data provided good
estimates on the direction of weights due to strong effect
of the first and fourth haplotypes, therefore, hPDT-t
f causal SNVs (d%) under significance level of 0.05

hPDT hPDT-t maxV vPDT vPDT-t

0.050 0.035 0.045 0.052 0.041

0.906 0.275 0.465 0.894 0.326

0.734 0.230 0.396 0.744 0.242

0.515 0.163 0.306 0.525 0.177

0.265 0.096 0.251 0.272 0.132

0.090 0.073 0.154 0.083 0.065

umber of SNVs in a 20Kb test region on 1000 replicates (10 permutations for each
r% is the proportion of causal variants increase risk.
librium test; hPDT-t: haplotype-based pedigree disequilibrium test with training
; vPDT-t: rare variant based pedigree disequilibrium test with training data.



Table 2 Power and effect of the proportion of positive causal SNVs (r%) under significance level of 0.05

Power # of variants maxH hPDT hPDT-t maxV vPDT vPDT-t

d%=0.5 r%=1 23.10(sd=5.04) 0.439 0.882 0.255 0.463 0.879 0.313

r%=0.8 22.21(sd=4.87) 0.390 0.617 0.229 0.390 0.598 0.238

r%=0.5 21.60(sd=4.84) 0.294 0.161 0.174 0.293 0.152 0.199

r%=0.2 20.93(sd=4.68) 0.167 0.089 0.087 0.158 0.095 0.090

r%=0.05 20.17(sd=4.72) 0.045 0.288 0.048 0.044 0.293 0.062

Note: (1) “# of variants” indicates the mean and standard deviation (sd) values of the number of SNVs in a 20Kb test region on 1000 replicates (10 permutations
for each replicate); (2) d% is the proportion of rare variants in the causal region to be causal; (3) r% is the proportion of causal variants increase risk.
Abbreviations: maxH: maximal haplotype test; hPDT: haplotype-based pedigree disequilibrium test; hPDT-t: haplotype-based pedigree disequilibrium test with training
data; maxV: maximal rare variant test; vPDT: variant-based pedigree disequilibrium test; vPDT-t: rare variant based pedigree disequilibrium test with training data.
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(power = 0.394) was more powerful than the hPDT
(power = 0.114) test.
Under the second β setting β1 = β4 = 3, β5 = β6 =

1, β7 = β8 = − 3), the cumulative effect sizes βs on the
first two variants were greater than 3, maxH remained
to be most powerful (0.541) though the maxV test
gained similar power (0.505). As same as under the first
β setting, the hPDT-t outperformed hPDT since the risk,
protective and natural haplotypes were well predicted
by the training data set (using Equation (10)) when hap-
lotypes have both positive and negative effects and these
effects were sufficiently strong (for example, the haplo-
types take the value of 3 and −3) to be detected under
the first and second β settings.
Under the third β setting (β1 = β2 = β3 = β4 = 2), the

cumulative effect sizes (βs) on the first four variants were
4, which were greater than the haplotype effect sizes.
Therefore, the rare variant based tests gained more power
than the haplotype-based approaches (in the order of
maxH < maxV, hPDT < vPDT and hPDT-t < vPDT-t on
power). Under this parameter setting, as all effect sizes
were in same direction on both haplotypes and rare vari-
ants, the methods based on training data had not gain any
power than the methods without training data (hPDT-t <
hPDT and vPDT-t < vPDT on power). The maxH test ob-
tained was similar power under three β settings.
Based upon the simulation results as shown in Table 3,

the power achieved using these two types of methods,
haplotype-based pedigree tests vs. rare variants based
pedigree tests, depending on which one had greater con-
tribution on disease between haplotypes and rare
Table 3 Power and effects of LD under special haplotype sett

β settings maxH hPDT

(1) β1 = β4 = 3, β5 = β6 = β7 = β8 = − 3 0.589 0.114

(2) β1 = β4 = 3, β5 = β6 = 1, β7 = β8 = − 3 0.541 0.088

(3) β1 = β2 = β3 = β4 = 2 0.488 0.412

Note: (1) Other βs are zero if not specified under each β setting; (2) For fifteen haplotype
0010000000, 0001000000, 0000100000, 0000010000, 0000001000, 0000000100, 0000000
frequencies of 0.01 and the last common haplotype has frequency of 0.86; (3) Simulation
Abbreviations: maxH maximal haplotype test, hPDT haplotype-based pedigree diseq
training data, maxV maximal rare variant test, vPDT variant-based pedigree disequil
training data.
variants. To detail, the haplotype-based pedigree tests
had enhanced statistical power when the disease of
interest was mainly contributed by rare haplotypes (with
multiple rare alleles), and the rare variants based tests
were more powerful when disease was independently
caused by rare variants. For other situations when
disease was caused both by haplotypes and rare variants
with similar effect sizes, these two approaches offered
similar power in testing for association.
When we used Forsim to simulate pedigrees that could

be considered to be close to the real human population.
In a real population, the haplotype frequencies were
small on those haplotypes with two or more than two
rare variants. For instance, the haplotype frequency was
less than 0.0004 for a haplotype with two rare variants
with equal to MAF of 0.02 when there is no LD between
these two rare variants (i.e. Hardy-Weinberg Equilib-
rium). Under this circumstance, both haplotypes and
rare variants had comparable contribution to disease
since the causal variants were selected randomly, there-
fore, the two approaches had similar power in testing
for association as shown in Tables 1 and 2.
Having demonstrated the power of the hPDT ap-

proach, we would like to note that the simulated genetic
models were conducted under a few optimistic assump-
tions, and these assumptions may inflate the estimated
power. In reality, hunting for rare and causal variants is
known as a difficult task. Multiple variants from diffe-
rent genes can contribute to the genetic etiology of com-
plex diseases, and looking at one gene at a time may
cause missingness of causal variants. This is viewed as a
ing

hPDT-t maxV vPDT vPDT-t

0.394 0.158 0.110 0.065

0.331 0.505 0.258 0.168

0.230 0.691 0.616 0.391

s, 1010000000, 0110000000, 1001000000, 0101000000, 1000000000, 0100000000,
010, 0000000001, 0000000000, the first fourteen rare haplotypes have equal
results are based on 1000 replicates (10 permutations for each replicate).
uilibrium test; hPDT-t haplotype-based pedigree disequilibrium test with
ibrium test, vPDT-t rare variant based pedigree disequilibrium test with
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limitation of our study. In future studies, we will broaden
the scope of our research efforts by applying gene enrich-
ment approaches to identify relevant molecular pathways
involved in the occurrence of human diseases in multiple
affected individuals in pedigrees. The extent of identity by
descent (IBD) sharing will direct us where to look for the
causal variants.
From a biological standpoint, several haplotype muta-

tions are more likely to alter amino acid coding and there-
fore lead to a greater joint effect influencing traits of
interest than a single amino acid change caused by a single
mutation [29]. The availability of WGS or whole exome
sequencing (WES) technology enables keen researchers to
explore the role of rare individual variants. It is important
to note that the idea of joint effects of a disease haplotype
could again be used in next generation sequencing. One
could argue that the haplotype-based approach may more
effectively identify disease-relevant haplotypes. Further-
more, this haplotype-based approach may provide some
information regarding un-genotyped causal variants
because of its potential to identify the interaction between
two or more rare variants.
Finally, we acknowledge that, ideally, the feasibility of a

newly developed test should be assessed using a real
sequencing dataset. However, due to the rarity of sizable
collections of family genomes in related individuals, we
were unable to compare the above six tests in a real data-
set. As an alternative, we applied those methods to a gene-
based data set which contains a good portion of rare
variants (10%) generated by the Illumina iSelect IBC Chip.

Application to Framingham heart study data
To prove the feasibility of the hPDT, we evaluated the
performance of our test using the Framingham Heart
Study (FHS) data set (downloaded from dbGAP study:
phs000007.v20.p8) and we also used the vPDT to con-
duct the analysis on the same data set. The FHS cohort
includes 6911 individuals (3726 females and 3185 males
in 1211 pedigrees) in three generations; their mean and
Table 4 The significant genes from FHS study with p-values <

gene Chromosome Nsnp maxH h

PLG chr6 10 0.02498 1.0

TFPI Chr2 18 0.00099 0.0

TNFRSF4 chr1 7 1 0.7

TGFB3 chr14 10 0.01998 0.0

IL1R2 chr2 21 0.00200 0.1

MMP16 chr8 9 0.09790 0.0

LRP2 chr2 21 0.00100 0.6

LEP chr7 18 0.05395 0.0

Abbreviations: maxH maximal haplotype test, hPDT haplotype-based pedigree diseq
training data, maxV maximal rare variant test, vPDT variant-based pedigree disequil
training data.
standard deviation (sd) age is 40.9 and 9.1, respectively.
Forty-seven thousand and thirty-seven SNPs were geno-
typed in the Illumina iSelect IBC Chip. After quality
control, there remained 4293 rare SNPs with MAFs≤0.05
in 780 genes in the FHS cohort, and we analyzed these
SNPs using gene-based methods. The qualitative trait of
hypertension was defined as systolic blood pressure
(SBP) ≥ 140 or diastolic blood pressure (DBP) ≥ 90 or
taking medicine for hypertension.
As noted in Table 4, for both hPDT-t and vPDT-t tests,

the p-values were taken as 1 when all single haplotype/
variant in training data set failed to pass the association
test and all weights are set to be zero. Based upon the p-
values shown in Table 4, the haplotype-based pedigree
tests achieved better statistical power than the rare vari-
ants based tests. In reality, both positive and negative
effects are expected to exist within the same gene and
these variants with the effects of opposite directions
might cancel each other out. When haplotypes show
greater effect size, the haplotype test is easier to be
detected. Therefore, it is worth to employ haplotype
based tests to detect association caused by rare variants
as well as variant based tests.
As shown in Table 4, the top ranked eight genes were

shown in FHS study with p-values < 0.001 on the
haplotype-based or variant-based test. Out of all genes
examined in the FHS study, PLG gave the most signifi-
cant p-value (1.05E-05) and remained significant under
Bonferroni correction significance level of 6.4E-05 (cal-
culated by 0.05/780). Although we did not find evidence
for direct association between SNPs in PLG and hyper-
tension, we found a record for a predictive role of PLG
for carotid artery disease risk [29]. LRP2 encodes the
low density lipoprotein receptors-related protein 2, and
has been implicated in regulation of signaling pathway,
which is involved in diverse biological processes inclu-
ding lipid metabolism. Therefore, LRP2 can be viewed as
a putative candidate for disorders related to lipid meta-
bolism [30]. Obesity is closely associated with increased
0.001 at any test

PDT hPDT-t maxV vPDT vPDT-t

5E-05 0.08819 0.43656 0.50666 1

0146 9.76E-05 0.45654 0.88330 1

1721 0.00056 0.64336 0.37994 1

0060 1 0.16284 0.62846 1

9275 0.00067 0.16783 0.91804 1

0090 1 1 0.31731 1

1149 0.00091 0.03197 0.14087 1

0093 0.06325 0.66533 0.35130 1

uilibrium test, hPDT-t haplotype-based pedigree disequilibrium test with
ibrium test, vPDT-t rare variant based pedigree disequilibrium test with
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morbidity and mortality caused by cardiovascular dis-
eases, diabetes, and hypertension [31], however, at the
time being, our software cannot accommodate quantita-
tive factors (such as height).
Conclusion
Here, we introduced a few novel haplotype-based PDT
approaches for detecting rare variants using a weighted
combination of rare haplotypes in pedigree data. As we
reviewed earlier, in genetic studies, the haplotype struc-
ture is expected to carry important information. It has
been found that the haplotype information gained from
family members may result in more reliable estimates of
the phase of haplotype. Moreover, as high-throughput
sequencing is becoming widely used, the haplotyping
methods can borrow some partial phase information in
sequence reads to increase the accuracy of haplotypes
estimated from genotype data [32].
In addition, we sought to develop a method that could

be used in family designs for following reasons: 1) family-
based haplotype methods are more robust than case–
control-based methods; and 2) if a rare haplotype is
observed in a family, the haplotype may be enriched more
frequently than in population-based designs. Therefore,
the family-based haplotype design would be expected to
be a more powerful of association between a collection of
multiple rare variants and disease-relevant phenotypes.
Both the hPDT/hPDT-t and vPDT/vPDT-t approaches—

drawn from the same PDT framework—were used in dif-
ferent sets if simulations. Further, maxH and maxV were
also proposed to detect the signal of a single haplotype/
variant. Such a comparison is the most intuitive way to as-
sess whether the power increase are caused by the strategy
used. Our simulations revealed that the haplotype-based
approaches may achieve more power when the disease
was more likely caused by causal haplotypes as shown in
Table 3. On the other hand, as shown in the simulation
using forward evolutionary process, the haplotype-based
methods and the rare variants based methods performed
similarly when the disease was caused by both causal hap-
lotypes and causal variants as shown in Tables 1, 2 and 3.
With the advent of increasingly reduced WGS costs,
future comprehensive comparison studies will be
conducted to compare all rare variant detection methods
on multiple sequencing data sets with pedigrees structure.
To benefit potential users, all six tests (maxH, hPDT,

hPDT-t, maxV, vPDT and vPDT-t) have been imple-
mented in the “rvHPDT” software coded by R language.
Web resources
MERLIN: http://www.sph.umich.edu/csg/abecasis/merlin/
tour/haplotyping.html
The rvHPDT package has been submitted to the
comprehensive R archive network (CRAN): http://cran.
r-project.org/.
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