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Abstract

Purpose: The outbreak of COVID-19 or coronavirus was first reported in 2019. It has widely
and rapidly spread around the world. The detection of COVID-19 cases is one of the important
factors to stop the epidemic, because the infected individuals must be quarantined. One reliable
way to detect COVID-19 cases is using chest x-ray images, where signals of the infection are
located in lung areas. We propose a solution to automatically classify COVID-19 cases in chest
x-ray images.

Approach: The ResNet-101 architecture is adopted as the main network with more than 44
millions parameters. The whole net is trained using the large size of 1500 × 1500 x-ray images.
The heatmap under the region of interest of segmented lung is constructed to visualize and
emphasize signals of COVID-19 in each input x-ray image. Lungs are segmented using the
pretrained U-Net. The confidence score of being COVID-19 is also calculated for each classi-
fication result.

Results: The proposed solution is evaluated based on COVID-19 and normal cases. It is also
tested on unseen classes to validate a regularization of the constructed model. They include other
normal cases where chest x-ray images are normal without any disease but with some small
remarks, and other abnormal cases where chest x-ray images are abnormal with some other
diseases containing remarks similar to COVID-19. The proposed method can achieve the
sensitivity, specificity, and accuracy of 97%, 98%, and 98%, respectively.

Conclusions: It can be concluded that the proposed solution can detect COVID-19 in a chest
x-ray image. The heatmap and confidence score of the detection are also demonstrated, such that
users or human experts can use them for a final diagnosis in practical usages.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JMI.8.S1.014001]

Keywords: COVID-19; chest x-ray; heatmap; lung detection; ResNet.

Paper 20131SSRRR received May 19, 2020; accepted for publication Dec. 11, 2020; published
online Jan. 9, 2021.

1 Introduction

Chest x-ray images could be used in an automatic image analysis for detecting and classifying
abnormalities, including diseases of atelectasis, consolidation, infiltration, pneumothorax,
edema, emphysema, fibrosis, effusion, pneumonia, pleural thickening, cardiomegaly, nodule
mass, and hernia, as mentioned in the NIH chest x-ray dataset.1 On top of these diseases, which
are commonly diagnosed using chest x-ray images, this paper focuses on the new disease of
COVID-19 which causes lung damage and can also be detected in chest x-ray images.2

Several methods were proposed recently to address this research domain. Existing methods are
reviewed below. All of them were developed based on the convolutional neural network (CNN).
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Zhang et al.3 adopted 18 layers of a residual CNN that was pretrained with ImageNet dataset.
The sigmoid was used as an activation function, with the binary cross-entropy loss function.
Differently, Wang et al.4 trained the model to classify a chest x-ray image into three classes
including normal, COVID-19, and other viral and bacterial diseases. Its model was constructed
using five convolutional layers of first-stage projection, expansion, depthwise representation,
second-stage projection, and extension. Narin et al.5 attempted using three different types of
CNN architectures, including ResNet50, InceptionV3, and Inception-ResNetV2. It was found
that the pretrained ResNet50 using ImageNet provided the highest classification performance.
While, Apostolopoulos and Mpesiana6 attempted using five different types of CNN architec-
tures, including VGG19, MobileNet v2, Inception, Xception, and Inception ResNet v2.
However, their research reported the best performance on using MobileNet v2 with the transfer
learning of ImageNet.

Hemdan et al.7 tried seven different types of CNN architectures, including VGG19,
DenseNet121, InceptionV3, ResNetV2, Inception-ResNet-V2, Xception, and MobileNetV2.
They recommended two models, VGG19 and DenseNet201, which achieved the best classifi-
cation accuracy. Afshar et al.8 proposed a CNN architecture containing four convolutional layers
and three capsule layers, by taking three-dimensional x-ray images as the input. The model could
classify four labels of normal, bacterial, non-COVID viral, and COVID-19. Abbas et al.9 used a
CNN model of DeTraC transformation pretrained using ImageNet as the backbone architecture.
Principal component analysis was used to reduce the dimension of the extracted feature, and the
nearest centroid based on the squared Euclidean distance was applied as the main classification.
Li et al.10 attempted using three lightweight CNN architectures of MobileNetV2, ShuffleNetV2,
and SqueezeNet. Karim et al.11 reported the best performance by combining VGG-19 and
DenseNet-161.

Similarly, Minaee et al.12 trained their model by trying four CNN architectures, including
ResNet18, ResNet50, SqueezeNet, and DenseNet-121. The SqueezeNet provided the best per-
formance. Mangal et al.13 used the CheXNet based on 121-layer DenseNet which was trained on
ChestX-ray14.14 In addition, Khan et al.15 also developed a COVID-19 classification model
using CNN with the inception pretrained based on ImageNet dataset. Similarly, Hall et al.16

and Bukhari et al.17 both adopted Resnet50 pretrained using ImageNet dataset.
As can be seen from existing methods in the literature, they were developed using CNN-

based approaches with various well-known architectures. Their results are reported and com-
pared in Sec. 3. They used pretrained networks that were trained on either the popular ImageNet
dataset or the related chest x-ray images dataset, such as ChestX-ray14. Therefore, they had to
limit the size of input images to be the same size as that used in the pretrained models, which was
usually small. Another important reason for using a small size of input image is a limited com-
putational resource of RAM and GPU. This may not be able to cope with a small-sized signal of
COVID-19 in a chest x-ray image.

This paper proposes a solution using ResNet-101, 101 layers deep.18 Although it has a version
with pretrained weights on ImageNet database,19 the proposed method adopts ResNet-101 as a
backbone architecture but is trained from scratch. This is mainly because the pretrained model
was learned on a small size input image of 224 × 224 pixels, which may fail to detect some small
signals of the COVID-19 in a chest x-ray image. This paper develops a solution model by taking a
large-sized input image of 1500 × 1500 pixels.

Importantly, in our experiments, the proposed method is evaluated using four subdatasets
of D1: COVID-19, D2: normal (without any diseases and remarks), D3: other normal (without
any diseases but with some remarks), and D4: other abnormal (with other diseases). Our models
are trained for two versions of (1) classifying into two classes of COVID-19 and non-COVID-19
and (2) classifying into three classes of COVID-19, normal, and other normal together with other
abnormal.

In this paper, the experimental results are reported in terms of confusion matrix, accuracy,
sensitivity, and specificity, under different cut-off thresholds of the confidence value in the out-
put layer of the model. Heatmaps emphasizing signals of COVID-19 in chest x-ray images are
computed from filtering kernels of the model. They are visualized in the region of segmented
lungs using U-Net, since COVID-19 is supposed to be within the lung region in chest x-ray
images.
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The rest of this paper is organized as follows. Section 2 explains the proposed method of
classifying COVID-19 in chest x-ray images. Section 3 illustrates the experimental results in
various scenarios. Then, results are discussed in Sec. 4, and conclusions are summarized
in Sec. 5.

2 Materials and Methods

Figure 1 shows an overview framework of the proposed solution. The training, validating, and
testing chest x-ray images are resized into 1500 × 1500 pixels.20 Then, the real-time data aug-
mentation is applied on the original training images. Both original and augmented training
images are fed to train the classification model based on the backbone architecture as explained
below. The trained model is then validated with the original validating images. If the validating
result is converged or the maximum number of epochs is reached, then the training and validat-
ing processes are stopped and the final model is concluded. Otherwise, it goes back to the data
augmentation process and repeats to the next epoch.

In the testing phase, the trained model is applied on each resized chest x-ray image, to com-
pute predicted class, its confidence score, and heatmap. The details are explained in the follow-
ing sections.

2.1 Backbone Architecture

The ResNet-10121,22 is adopted in our proposed method as the backbone architecture of the
COVID-19 classification model. It is a very deep network containing deep layers as shown
in Table 1,23 with more than 44 millions parameters.

As shown in Table 1, each square bracket represents each building block of convolutional
layers which are parametrized by kernel size and filter. For example, the kernel size of 7 × 7

means the height and width of the two-dimensional convolution window are both 7. While, the

Fig. 1 Overview framework of the proposed method.
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filter refers to the dimensionality of the output space or the number of output filters in each
convolutional layer.24 The third column represents a number of defined building blocks used
in each convolutional layer. For example, in the layer named “conv5,” each building block con-
tains three convolutional layers connected in sequence as shown in Fig. 2.

The input to the network is a chest x-ray image, as shown in Fig. 1. The ResNet-101 has a
version with pretrained weights using ImageNet dataset which is a large-scale classification data-
set containing 1.2 million training images from 1000 classes of objects.22 However, the input
image’s size must be limited to the pretrained requirement of 224 × 224 pixels. This may not
cope well in the case of differentiating normal class from other-normal classes.

In this paper, the ResNet-101 is trained from scratch using the input images of the large size
1500 × 1500 pixels. The top part (i.e., classification part) of ResNet-101 is replaced with the
global average pooling, softmax, and output layers. Five types of data augmentations are added
on the training dataset, including zoom, rotate, shear, flip, and shift.25

The proposed solution develops two types of models which are different in the output layer.
The first model is developed to classify COVID-19 class from any non-COVID-19 class, having
two nodes in the output layer. While, the second model is developed to classify a chest x-ray

Fig. 2 A building block in conv5 of ResNet-101.

Table 1 The convolutional layers in ResNet-101 used in the
proposed solution.

Layer name
Building block of
(kernel size, filter)

Number of
building blocks

conv1 ½7 × 7; 64� 1

conv2

2
64

1 × 1; 64

3 × 3; 64

1 × 1; 256

3
75 3

conv3

2
64
1 × 1; 128

3 × 3; 128

1 × 1; 512

3
75 4

conv4

2
64

1 × 1; 256

3 × 3; 256

1 × 1;1024

3
75 23

conv5

2
64

1 × 1; 512

3 × 3; 512

1 × 1;2048

3
75 3
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image into three classes having three nodes in the output layer of COVID-19, normal without any
diseases, and norther normal with some other diseases or remarks.

2.2 Lung Segmentation

In this paper, the lung segmentation is required in the step of heatmap visualization, where the
color maps are shown in the area of segmented lungs only. The pretrained U-Net-based model26

is adopted in the proposed solution of lung segmentation, since it has been successfully used for
the medical image segmentation. The U-Net contains two main activities of convolution and
transposed convolution. The transposed convolution is a process to increase the spatial resolution
of the input by upsampling the kernel.

It is called U-Net because its architecture looks like a U shape, where a front side of the U-
shape contains convolution layers for downsampling and a back side of the U-shape contains
transposed convolution layers for upsampling. The convolution and transposed convolution
layers of the U-shape are summarized in Table 2.

The input layer is connected to the first building block of the front side of U-shape. While, the
output layer of two nodes (i.e., lung and non-lung nodes) is connected to the last building block
of the back side of U-shape. The pretrained U-Net is adopted for the lung segmentation.27 It
reported the Dice similarity coefficients of 0.985 and 0.972 on the datasets of Montgomery and
JSRT,28 respectively. In addition, the average size of segmented lungs is about 29.8% of the
original size of input images.

2.3 Heatmap Generation

As shown in Fig. 1, the heatmap is generated for each test x-ray image. Since there are many
layers and a large number of filters, the average of the filters’ weights of the last convolutional
layer is calculated and visualized. This is because they could represent the feature maps directly.
The key steps are listed below.

• A test chest x-ray image is fed into the trained ResNet-101 model. The predicted filters’
weights are also computed at this stage.

• All the filters’ weights in the last convolutional layer are extracted.

• The average weight from all filters’ weights is calculated.
• The average weight is used as a mask on the test chest x-ray image to generate the heatmap.

• The heatmap is visualized only on the lung areas segmented by the pretrained U-Net.

Table 2 The convolution and transposed convolution layers
of the U-shape used in the proposed solution.

Front side of the U-shape Back side of the U-shape�
3 × 3;64
3 × 3;64

� �
3 × 3;64
3 × 3;64

�

↓ (max pool 2 × 2) ↑ (up-conv 2 × 2)�
3 × 3;128
3 × 3;128

� �
3 × 3; 128
3 × 3; 128

�

↓ (max pool 2 × 2) ↑ (up-conv 2 × 2)�
3 × 3;256
3 × 3;256

� �
3 × 3; 256
3 × 3; 256

�

↓ (max pool 2 × 2) ↑ (up-conv 2 × 2)�
3 × 3;512
3 × 3;512

� �
3 × 3; 512
3 × 3; 512

�

↓ (max pool 2 × 2) ↑ (up-conv 2 × 2)�
3 × 3;1024
3 × 3;1024

�
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3 Results

This section explains and discusses our experimental results on different scenarios. Both our own
dataset and published dataset4 are used in the experiments, as shown in Table 3. For the pub-
lished dataset, only chest x-ray images with COVID-19 are used in our experiments, because
they are used to validate the cross-datasets scenario of COVID-19 detection.

In addition, in our D1 dataset, the 142 images of COVID-19 cases were obtained from three
levels of the severity as: (1) 22 images of the severe level, (2) 13 images of the moderate level,
and (3) 107 images of the mild level. Each patient case has only one image taken in each in-
stance. In the training and testing processes, each individual image is fed as the input into the
CNN-based model at a time.

Five datasets, as listed in Table 3, are used in our four scenarios of experiments as below. The
results are reported in terms of confusion matrix, accuracy, sensitivity, and specificity.

• Scenario 1. Two classes prediction: COVID-19 (class 1) and non-COVID-19 (class 2);
train and validate: 100 images from D1 (class 1) and 100 images from D2 (class 2); test:
42 images from D1 (class 1), 5118 images from D2 (class 2), 100 images from D3 (class
2), 100 images from D4 (class 2).

• Scenario 2. Two classes prediction: COVID-19 (class 1) and non-COVID-19 (class 2);
train and validate: 100 images from D1 (class 1), 40 images from D2 (class 2), 30 images
from D3 (class 2), 30 images from D4 (class 2); test: 42 images from D1 (class 1), 5178
images from D2 (class 2), 70 images from D3 (class 2), 70 images from D4 (class 2).

• Scenario 3. Two classes prediction: COVID-19 (class 1) and non-COVID-19 (class 2);
train and validate: 100 images from D1 (class 1) and 100 images from D2 (class 2); test:
183 images from D5 (class 1).

• Scenario 4. Three classes prediction: COVID-19 (class 1), normal (class 2), and other nor-
mal (class 3); train and validate: 100 images from D1 (class 1), 100 images from D2 (class
2), 50 images from D3 (class 3), and 50 images from D4 (class 3); test: 42 images from D1
(class 1), 5118 images from D2 (class 2), 50 images from D3 (class 3), 50 images from D4
(class 3).

Images from the five datasets (D1 to D5) are independently split into two subsets of (1) train-
ing and validating set and (2) testing set, as mentioned in each scenario. Later, the training and
validating set is further randomly split into the training set and validating set with proportions of
90% and 10%, respectively, in each epoch of the CNN training phase. So, in all cases, images in
training, validating, and testing sets are independent and nonoverlapped. The numbers of inde-
pendent images in training, validation, and testing arrangements of each scenario are summa-
rized in Table 4.

In this paper, the positive class is drawn when the confidence value predicted by the trained
CNN-based model is higher than the cut-off score. The descriptive statistical analysis is used to

Table 3 Datasets used in the experiments to validate the proposed solution.

Dataset
symbol Description

Number of
images Reference

D1 COVID-19 142 Newly collected dataset

D2 Normal without any diseases or remarks 5218 Newly collected dataset

D3 Other normal in elderly patients with minimal fibrosis and
spondylosis of spine

100 Newly collected dataset

D4 Other abnormal including tuberculosis, pneumonia, and
pulmonary edema

100 Newly collected dataset

D5 Taking only chest x-ray images of COVID-19 from Ref. 4 183 Wang et al.4
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determine the results in terms of sensitively, specificity, and accuracy. These performances are
also compared with other existing methods in the literature.

3.1 Scenario 1

This scenario is designed to validate the constructed model on two classes of COVID-19 and
non-COVID-19. It is trained, validated, and tested on chest x-ray images of COVID-19 cases and
normal cases without any diseases or remarks. Also, it is tested on unseen/untrained datasets of
D3 and D4, which have other diseases or remarks similar to COVID-19. The confusion matrix is
shown in Table 5.

As shown in Table 5, considering only trained datasets (i.e., D1 and D2), the sensitivity and
specificity are 97% and 98%, respectively. However, if taking both seen and unseen datasets into
consideration (i.e., D1, D2, D3, and D4), the specificity is dropped, especially the unseen data-
sets of D3 and D4. Rather than using the predictions directly from the output layer (as shown in
Table 5), the predictions of COVID-19 are calculated using the cut-off of 90% confidence scores.
Its confusion matrix is shown in Table 6.

Table 4 The numbers of independent images from the five datasets (D1 to D5) used in training,
validation, and testing arrangements of each scenario.

Scenario

Train Validate Test

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

1 90 90 — — — 10 10 — — — 42 5118 100 100 —

2 90 36 27 27 — 10 4 3 3 — 42 5178 70 70 —

3 90 90 — — — 10 10 — — — — — — — 183

4 90 90 45 45 — 10 10 5 5 — 42 5118 50 50 —

Table 5 Experimental results of scenario 1.

True labels

Predicted classes

COVID-19
(class 1)

Non-COVID-19
(class 2)

COVID-19 (class 1, D1) 97% 3%

Non-COVID-19 (class 2, D2) 2% 98%

Non-COVID-19 (class 2, D3+D4) 85% 15%

Table 6 Experimental results of scenario 1, using the cut-off
of 90% confidence scores.

True labels

Predicted classes

COVID-19
(class 1)

Non-COVID-19
(class 2)

COVID-19 (class 1, D1) 83% 17%

Non-COVID-19 (class 2, D2) 0% 100%

Non-COVID-19 (class 2, D3+ D4) 56% 44%
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Since the cut-off score of COVID-19 is increased, the specificity is also increased on both
seen and unseen datasets. However, the specificity on unseen datasets is still not promising.
Another side-effect is that the sensitivity is getting lower. It is not sensible to lower the sensitivity
for the medical diagnosis. Even the unseen datasets contain non-COVID-19 images, but they
could be confused with COVID-19 class because they contain diseases or remarks on lungs
similar to COVID-19 cases. Therefore, in the scenario 2, the datasets D3 and D4 will be included
in the non-COVID-19 class for training.

3.2 Scenario 2

The scenario 2 is designed to extend the scenario 1 by adding the datasets D3 and D4 into the
training process. So, the model could also learn the non-COVID-19 cases that have remarks on
lungs of other diseases. The confusion matrix is shown in Table 7. The specificity on the datasets
D3 and D4 is now significantly higher, when compared with the result shown in the scenario 1.
This is because they are now also used in the learning process. However, the sensitivity is lower,
when compared with the result in the scenario 1. It could be because the COVID-19 images are
confused with the images of other diseases. This can be solved by splitting the problem into three
classes instead of two classes, which will be discussed in the scenario 4.

The additional experiments are conducted in this scenario, to see the tradeoff between the
accuracy and the training time when increasing the size of input images. The results are reported
as: (1) using 1500 × 1500 pixels, the accuracy of predicting COVID-19 class is 73%, the accuracy
of predicting non-COVID-19 class is 93%, and the training time is 2 h and 27 min; (2) using
1000 × 1000 pixels, the accuracy of predicting COVID-19 class is 40%, the accuracy of predicting
non-COVID-19 class is 100%, and the training time is 1 h and 13 min; (3) using 500 × 500 pixels,
the accuracy of predicting COVID-19 class is 0%, the accuracy of predicting non-COVID-19 class
is 100%, and the training time is 34 min. The models are trained using NVIDIA-V100 Tensor
Core. However, the testing time is very fast and not significantly different among these three differ-
ent sizes of input images. Therefore, in this paper, the size of 1500 × 1500 pixels is used as it is the
maximum size in which our machine’s memory can handle in the training process.

3.3 Scenario 3

The scenario 3 is designed to test the trained model from the scenario 1, with the COVID chest
x-ray images of unseen dataset (i.e., D5). The classification results are calculated based on two
different cut-off values of 50% and 90% on the confidence scores, as shown in Table 8.

Table 7 Experimental results of scenario 2.

True labels

Predicted classes

COVID-19
(class 1)

Non-COVID-19
(class 2)

COVID-19 (class1, D1) 73% 27%

Non-COVID-19 (class 2, D3 +D4) 7% 93%

Table 8 Experimental results of scenario 3 on chest x-ray
images of COVID-19, using the cut-off of 50% or 90%
confidence scores.

Cut-off value Predicted classes

50% 93% 7%

90% 84% 16%
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The proposed solution could achieve the high sensitivity score of 93% on the cross-data-
set scenarios, where D1 and D2 are used for training and validating, but unseen D5 is used
for testing. This shows the regularization of the constructed model of COVID-19
classification.

3.4 Scenario 4

The scenario 4 is designed for the experiment of classifying chest x-ray images into three classes
including COVID-19 (class 1), normal (class 2), and other normal (class 3). The confusion
matrix is shown in Table 9.

As shown in Table 9, the class 1 of COVID-19 and the class 3 of other normal are confused
with each other in some extent. This is because the class 3 contains chest x-ray images having
remarks similar to COVID-19. They were recorded from elderly patients with minimal fibrosis
and spondylosis of spine, and patients with other diseases including tuberculosis, pneumonia,
and pulmonary edema. In addition, the class 2 is confused with the class 3 because they share the
common features of non-COVID-19.

3.5 Comparisons

Table 10 shows the experimental results of the proposed method and other existing methods
in the literature. This is considered to be the indirect comparison since they are tested on
different datasets. The performances of all methods are comparable. However, the proposed
method achieves the best average score (97.7%) of three values of sensitivity, specificity, and
accuracy.

Using a large size of input images in this paper, our proposed method could achieve a better
performance when compared with using a smaller size of input images. This is because of two
main reasons. First, signals of COVID-19 in each image contain a larger number of pixels. This
is useful in the training process especially when the proportion of COVID-19’s signals is small.
Second, the distortion from reducing size of the original image appears to be less because the
reduction ratio is smaller.

3.6 Heatmaps and Confidence Scores

As shown in Fig. 1, the heatmap is computed for each test chest x-ray image to emphasize high-
weight signals of COVID-19. The filters’weights on the final convolutional layer are extracted to
compute the final heatmap. Sample filters’ weights of one test chest x-ray image are shown in
Fig. 3. In this example, the high-weights (i.e., yellow color) are located around lungs’ regions,
because COVID-19 could damage lungs.

Then, the final heatmap is generated by averaging these filters’ weights. It is computed for
individual test chest x-ray image. Sample final heatmaps are shown in Fig. 4. The first three
heatmaps are computed from chest x-ray images with COVID-19. It can be seen that the
high-weights of yellow patches are regions detected by the trained model to be signals of
COVID-19. The medical experts can concentrate on these regions to final check the disease,

Table 9 Experimental results of scenario 4.

True labels

Predicted classes

COVID-19
(class 1)

Normal
(class 2)

Other
normal
(class 3)

COVID-19 (class 1, D1) 80% 0% 20%

Normal (class 2, D2) 0% 83% 17%

Other normal (class 3, D3 + D4) 3% 0% 97 %
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while the final heatmap is computed from a chest x-ray image with the normal label. There are
thus no yellow patches to represent any COVID-19 damage.

Our solution also generates a confidence score of being COVID-19 for each test chest x-ray
image. Four examples of chest x-ray images with COVID-19 and four examples of chest x-ray

Fig. 3 Sample filters’ weights of a test chest x-ray image.

Table 10 Experimental comparisons.

Method Dataset
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)

Zhang et al.3 100 images of COVID-19, 1431 images of pneumonia 96 71 95

Wang et al.4 183 images of COVID-19, 8066 patient cases with
no pneumonia, 5538 patient cases with non-COVID19
pneumonia

87 99 93

Narin et al.5 50 images of COVID-19, 50 images of normal 100 — 98

Apostolopoulos
and Mpesiana6

224 images of COVID-19, 700 images of common
bacterial pneumonia, 504 images of normal

99 97 93

Hemdan et al.7 25 images of COVID-19, 25 images of normal — — 90

Abbas et al.9 105 images of COVID-19, 80 images of normal,
11 images of SARS

98 92 95

Khan et al.15 284 images of COVID-19, 310 images of normal,
330 images of pneumonia bacterial, 327 images of
pneumonia viral

— — 90

Hall et al.16 135 images of COVID-19, 320 images of viral and
bacterial pneumonia

83 98 94

Minaee et al.12 40 images of COVID-19, 3000 images of normal 97 98 —

Mangal et al.13 165 images of COVID-19, 1583 images of normal 100 — 91

Bukhari et al.17 89 images of COVID-19, 93 images of lungs without
any radiological abnormality, 96 images with pneumonia
caused by other pathogens

— — 98

Proposed
method

See Table 3 97 98 98
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images with non-COVID-19 are shown in Fig. 5. It is clearly seen that the test images with
COVID-19 could be classified correctly to be COVID-19 with very high confidence scores
of above 90%. Also, the test images with non-COVID-19 could be classified correctly with very
low confidence scores to be COVID-19 of below 30% or, in other words, with very high con-
fidence scores to be non-COVID-19 of above 70%.

4 Discussion

The original trained model using the proposed method can classify a chest x-ray image into two
classes of COVID-19 and non-COVID-19. The training and validating samples of the non-
COVID-19 class are normal chest x-ray images without any remarks or diseases. This model
is shown to achieve high performance on testing COVID-19 and normal chest x-ray images. This
is mainly because the patterns of COVID-19 and normal cases are seen in the training process.
However, its performance is significantly dropped when it is tested with chest x-ray images with
other remarks or diseases such as fibrosis, spondylosis of spine, tuberculosis, pneumonia, and
pulmonary edema.

This is as expected because patterns of other remarks or diseases are not seen and learned in
the training process. Also, they occur in lungs’ regions as similar to COVID-19. So, they could
be easily confused with COVID-19, using this developed model. It can result in many false
detection/positive cases, which could not be acceptable for practical usages.

(a)

(b)

Fig. 5 Sample final heatmaps with their confidence scores of being COVID-19. (a) Four examples
of chest x-ray images with COVID-19 and (b) four examples of chest x-ray images with non-
COVID-19.

Fig. 4 Sample final heatmaps of individual test chest x-ray images.
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Therefore, the model is further improved by adding sample chest x-ray images containing
other remarks and diseases in the training and validating processes. This makes the model to
learn differences between patterns of COVID-19 and patterns of other diseases. It results in
increasing the specificity score and reducing the false detection of COVID-19. However, the
sensitivity score is also lower, when compared with the original trained model.

Then, the next version of the developed model is trained to classify a chest x-ray image into
three classes of COVID-19, normal, and other diseases. This could maintain the sensitivity score
and increase the specificity score. This is because separating the other diseases class from the
non-COVID-19 class can reduce the confusion between COVID-19 and other diseases, and the
confusion between normal and other diseases. As shown in Fig. 5, the COVID-19 cases are
clearly separated from the non-COVID-19 cases (i.e., normal and other diseases), with very high
confidence scores.

As additionally reviewed by the expert, the generated heatmaps of the COVID-19 cases could
identify areas of COVID-19 correctly. However, some heatmaps of the false-positive cases are
reported incorrectly as shown in Fig. 6. The first two images are normal cases and the last image
contains another abnormality. The confidence scores of being COVID-19 of the three images are
all higher than 50%. However, to be classified as COVID-19 with the cut-off of 90%, only the
second image is wrongly classified. In addition for these three cases, the heatmaps incorrectly
highlight the non-COVID-19 cases as COVID-19 (i.e., yellow areas).

However, none of the developed models can achieve a perfect performance of 100% accu-
racy. Thus, they should be adopted for the prefiltering of normal cases, by cutting off chest x-ray
images that are classified to be COVID-19 with very low scores—that is, they have high con-
fidence to be non-COVID-19. In this way, it can be used to reduce a number of chest x-ray
images that must be manually diagnosed by human experts.

In addition, the heatmap is generated to emphasize possible areas of being COVID-19 in each
chest x-ray image. This can be an assistive tool for human experts to be used together with the
computed confidence score, to conclude the final diagnosis.

5 Conclusions

This paper presents a solution for COVID-19 classification in chest x-ray images. Its backbone
CNN architecture is developed using ResNet-101. The model is trained from scratch with a
large size of the network’s input of 1500 × 1500 pixels. Data augmentation is also applied on
the original training images to enhance the regularization of the model. It is developed in two
versions of classification: two-classes-based and three-classes-based. The two-classes-based
version is used to classify chest x-ray images into COVID-19 and non-COVID-19. The three-
classes-based version is used to classify chest x-ray images into COVID-19, normal, and other
abnormal. The proposed solution achieves very promising sensitivity, specificity, and accuracy
of 97%, 98%, and 98%, respectively. The developed solution can also generate the heatmap with
a confidence score of being COVID-19, to emphasize the result on each test image. The heatmap
is visualized on only lung regions segmented using U-Net.

Fig. 6 Sample final heatmaps with their confidence scores of the false-positive cases. The first two
images are normal cases and the last image contains another abnormality.
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