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Abstract: Strain-induced internal electric fields present a significant path to boosting the separation
of photoinduced electrons and holes. In addition, piezo-induced positive/negative pairs could
be released smoothly, taking advantage of the excellent electroconductibility of some conductors.
Herein, the hybrid piezo-photocatalysis is constructed by combining debut piezoelectric nanosheets
(Bi4O5I2) and typical conductor multiwalled carbon nanotubes (CNT). The photocatalytic degradation
efficiency that the hybrid CNT/Bi4O5I2 exhibits was remarkably increased by more than 2.3 times
under ultrasonic vibration, due to the piezo-generated internal electric field. In addition, the transient
photocurrent spectroscopy and electrochemical impedance measurement reveal that the CNT coating
on Bi4O5I2 enhances the piezo-induced positive/negative migration. Therefore, the piezocatalytic
activity of CNT/Bi4O5I2 could be improved by three times, compared with pure Bi4O5I2 nanosheets.
Our results may offer promising approaches to sketching efficient piezo-photocatalysis for the full
utilization of solar energy or mechanical vibration.

Keywords: piezocatalysis; CNT/Bi4O5I2; mechanical vibration; charge transfer

1. Introduction

In recent years, piezoelectricity has been paid increasing attention, owing to its great
potential in addressing environmental pollution and the energy crisis [1–5]. Piezoelec-
tric crystals have the capacity to install an electric charge in reply to applied mechanical
strain [6]. From the viewpoint of utilizing this mechanical stress, several kinds of promis-
ing piezocatalysts have been explored, including BaTiO3 [7,8], KNbO3 [9], PbTiO3 [10],
ZnO [11], BiOBr [12], MoS2 [13], WSe2 [14], Bi4NbO8X (X = Cl, Br) [15], Bi2WO6 [16]. In
particular, Wu et al. reported that the few-layers MoS2 displays high piezoelectric poten-
tial and ultrahigh catalytic performance [17]. Moreover, the piezo-induced electric field
causes the edge of the conduction band of BiFeO3 to be higher than the H+/H2 potential,
to efficiently generate H2 under ultrasonic vibration [18]. Nevertheless, the conversion
efficiency of mechanical strain to an electric charge has often been limited by the low
piezoelectric coefficient, poor electroconductibility, and unsatisfactory morphology [19–22].
Therefore, exploring efficient piezocatalysts and how to create modification strategies
(e.g., heterostructure design, ion doping, noble metal deposition, defect engineering) have
become significant solutions [8,23,24]. On the other hand, because of the resistance on
the interaction between the liquid and solid phase, the release of piezo-induced posi-
tive/negative charges is limited to a certain extent, and still lacks the basic realization in
practice of the positive/negative pairs [25].

Currently, photocatalytic technology is also a very promising route to controlling
environmental pollution and satisfying the growing requirements for fossil fuel [26]. Still,
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photocatalytic efficiency has often been restricted by a poor solar response, ineffective
carrier diffusion, and low stability [27–29]. Now, the catalytic activities of photocatalytic
semiconductors can be efficiently tuned by piezo-induced internal electric fields, namely,
the piezo-photocatalyst [30,31]. The piezo-photocatalyst is the multifield coupling between
piezoelectricity and photoexcitation in semiconductors [9]. Primarily, the transfer of the
photoinduced e-/h+ pairs could be boosted by the strain-induced internal electric fields. De-
spite that, it is still necessary to enhance the coupling efficiency of piezo-/photo-electricity.

In this work, novel piezo-photocatalyst Bi4O5I2 nanosheets are created. Bi4O5I2
nanosheets exhibit effective piezo-degradation ability, which was further improved with
the addition of CNT for degrading Rhodamine B (RhB), due to the piezo-generated posi-
tive/negative pairs under ultrasonic vibration. In addition, hybrid CNT/Bi4O5I2, as a new
piezo-photocatalyst, shows dramatically efficient degradation activity under the ultrasonic
wave and simulated solar light, owing to the strain-induced internal electric field via the
piezoelectric effect, which can boost the separation of photoinduced electron/hole pairs.

2. Experimental
2.1. Preparation of Catalysts

Pure Bi4O5I2 nanosheets were prepared by a solvothermal method, based on the
previous report [32]. Typically, 5 mmol Bi(NO3)3·5H2O and 10 mmol KI powders were
dissolved into 80-mL ethylene glycol under continuous stirring for 30 min. Subsequently,
the pH of the above suspension was adjusted to 10 by adding NaOH solution. Then the
mixture was placed in a 100-mL Teflon-lined autoclave and kept at 150 ◦C for 12 h. After
cooling to ambient temperature, the prepared products were separated using centrifugation,
followed by washing with deionized water and ethanol three times, finally being kept at
60 ◦C for 10 h.

CNT/Bi4O5I2 was prepared by a solvothermal method similar to that of Bi4O5I2.
Typically, a certain amount of pristine CNT (5%, 10%, 15%, 20%), 5 mmol Bi(NO3)3·5H2O,
and 10 mmol KI powders were dissolved into 80 mL of ethylene glycol under continuous
stirring for 30 min. Subsequently, the pH of the above suspension was adjusted to 10 by
adding NaOH solution. Then the mixture was placed in a 100-mL Teflon-lined autoclave
and kept at 150 ◦C for 12 h. After cooling to ambient temperature, the prepared products
were separated using centrifugation, followed by washing with deionized water and
ethanol three times, finally being kept at 60 ◦C for 10 h.

2.2. Characterization

A powder X-ray diffractometer (MiniFlex 600, Rigaku, Japan) was used to ensure
the crystal structure of synthesized samples, with Cu Kα radiation (λ = 0.15418 nm). The
XRD patterns were determined at 5◦/min from 10◦ to 80◦ (2θ). The morphology and
structures of the catalysts were characterized by transmission electron microscope (TEM)
and high-resolution transmission electron microscopy (HRTEM), using an FEI Talos F200X
electron microscope (Thermo Fisher Scientific, Waltham, MA, USA) with an acceleration
voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were used to
analyze the chemical compositions of different elements. All the binding energies were
adjusted to the C1s peak at 284.8 eV. The UV-vis diffused reflectance spectrum (DRS) of
the samples was determined with a UV-3600 plus spectrophotometer (Shimadzu, Kyoto,
Japan) from 200 to 800 nm, with the BaSO4 as a reflectance standard.

2.3. Evaluation of Piezo-/Piezophoto-Catalytic Activities

The piezo-/piezophoto-catalytic performances of Bi4O5I2 based catalysts were probed
by Rhodamine B (RhB). An optical fiber (300 W Xe lamp, BBZM-I) was used as the solar
light source. An ultrasonic bath (80 W, AK-009A) with a frequency of 40 kHz was used to
apply periodic local mechanical strain to the catalysts. At this point, 50 mg of samples were
put into a 50-mL RhB aqueous solution (5 ppm). The mixture was stirred for 1 h to reach
the equilibrium of adsorption-desorption in the dark. Then, the suspension was degraded
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by simulated solar light or mechanical strain. Afterward, 4 mL of the RhB solution was
taken and centrifuged at intervals during the degradation process. Subsequently, the
concentration of the supernatant was determined with a UV-visible spectrophotometer
(721, Shanghai Jinghua, Shanghai, China).

In the trapping test, isopropyl alcohol (IPA), EDTA-2Na, and benzoquinone (BQ)
dissolved by distilled water were used as scavengers to trap •OH, holes, and •O2

−,
respectively. When the catalyst was put into the pollutant solution, a certain amount
of capture agent is added for the subsequent photocatalytic degradation process. The
concentration of the capture agent IPA and EDTA-2Na is 1 mM, and that of the capture
agent BQ is 0.1 mM. Finally, by comparing the effects of different capture agents on the
degradation efficiency of pollutants, the main active substances that may exist in the
degradation process were speculated.

The kinetics rates (k) were calculated by the following equation:

ln
(

C0

Ct

)
= kt (1)

Ct and C0 are the concentrations of pollutants when the illumination time is t, and the
initial degradation concentrations after adsorption equilibrium, respectively.

2.4. Carrier Migration Measurement

The carrier migration measurements were taken using the standard three-electrode
system, with a CS310H electrochemical workstation. First, the 10 mg samples were mixed
ultrasonically with 30 µL of 5% Nafion and 5 mL ethanol. Next, 150 µL of ink was
coated onto ITO glass with a size of 1 cm × 1 cm as the working electrode. The Pt plate
and saturated calomel electrode were used as counter electrode and reference electrode,
respectively. The photocurrent performance and Mott–Schottky were measured in 0.1 M
Na2SO4 electrolyte. The photocurrent was measured under 300W Xe light. Electrochemical
impedance spectroscopy (EIS) was measured in the 0.1 M KCl solution containing 1 mM
Fe(CN)6

3−/Fe(CN))6
4−. The EIS was taken with an amplitude of 10 mV, ranging from

0.01 to 100 MHz.

3. Results and discussion
3.1. Characterizations of the As-Synthesized Samples

Powder X-ray diffraction (PXRD) was used to investigate the phase composition of
Bi4O5I2 and CNT/Bi4O5I2 catalysts. Figure 1a shows that the diffraction pattern of the as-
synthesized sample was well indexed to Bi4O5I2 (JCPDS No. 10-0445). No peaks indicating
impurities were detected, demonstrating the high purity of the as-obtained catalysts. The
diffraction peaks are in reference to the (-4-11), (402), (-404), (-323), (422), (006), (811),
(133), (191), and (262) planes, corresponding to the standard diffraction 2θ of the Bi4O5I2
pattern above. After coating with CNT, the diffraction peaks at 32.5◦ appeared in the
composite, suggesting the CNT phase (Figure 1b) [33]. Nevertheless, the typical diffraction
peaks of CNT were weak in the CNT/Bi4O5I2 composites (5%, 10%, 15%, 20%), which
can be attributed to the low content and high dispersion of CNT in the composites [34].
Fourier transform-infrared spectrometry (FT-IR) was used to analyze the structure of the
as-synthesized sample, with or without pristine CNT (Figure 1c). Generally, the stretching
vibration of pristine CNT often shows low peak intensity. Hence, the main infrared features
of CNT show no obvious or enhanced vibrations. The broad peaks of 500–900 cm−1 are
ascribed to Bi–O and I–O stretching vibration of Bi4O5I2, decorated onto CNT.
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The chemical states of the as-prepared pure Bi4O5I2 and 15% CNT/Bi4O5I2 were further 
probed by X-ray photoelectron spectroscopy (XPS) (Figure 3). The low-resolution spectra 
of pure Bi4O5I2 show obvious Bi, O, I core level and C elements arising from extra carbon-
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indicating the combination of Bi4O5I2 and CNT. As shown in Figure 3b, the Bi 4f displays 

Figure 1. (a) XRD patterns, (b) the magnification of the region between (402) and (404), and (c) FT-IR spectra of the Bi4O5I2

and 15% CNT/Bi4O5I2 composites.

Typical TEM images of the Bi4O5I2 and 15% CNT/Bi4O5I2 samples are shown in
Figure 2. As shown in Figure 2(a1), the Bi4O5I2 displays flower-like hierarchical nanostruc-
tures with a diameter of about 1 µm, constructed with plenty of nanosheets. As shown in
Figure 2(a2), the lattice spacing of 0.305 nm matches well with the (-4-11) plane correspond-
ing to Bi4O5I2. Figure 2(b1,b2) show the low- and high-resolution TEM images of 15%
CNT/Bi4O5I2. They clearly show that Bi4O5I2 nanosheets are distributed on the framework
of CNT, with about a 7-nm width in CNT/Bi4O5I2 (Figure 2(b1)). As shown in Figure 2(b2),
the CNT interacts with Bi4O5I2, and the lattice spacing of 0.305 nm is consistent with that
of pure Bi4O5I2.
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Figure 2. HRTEM images of (a1,a2) Bi4O5I2 and (b1,b2) 15% CNT/Bi4O5I2 composite.

The chemical states of the as-prepared pure Bi4O5I2 and 15% CNT/Bi4O5I2 were
further probed by X-ray photoelectron spectroscopy (XPS) (Figure 3). The low-resolution
spectra of pure Bi4O5I2 show obvious Bi, O, I core level and C elements arising from extra
carbon-based pollution. In addition, the hybrid catalysis exhibits distinct Bi, O, I, and
C core levels, indicating the combination of Bi4O5I2 and CNT. As shown in Figure 3b,
the Bi 4f displays Bi 4f7/2 (159.1 eV) and Bi 4f5/2 (164.4 eV) peaks, which agrees with the
previous report [35]. Further deconvolution analysis demonstrates that the Bi0 region in
pure Bi4O5I2 consists of three peaks at 164.4, 162.9, and 161.5 eV, which are attributed to
Bi3+, Bi0, and a satellite peak, respectively. The presence of Bi0 is caused by oxygen vacancy.
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Moreover, due to the electron-withdrawing ability of CNT, the corresponding Bi peaks are
a slightly more positive shift of 0.2 eV in hybrid CNT/Bi4O5I2 than that of pure Bi4O5I2,
and the Bi0 peak area has become bigger [36]. The I 3d spectra can be deconvoluted into
two main peaks centered at 619.1 and 630.5 eV in pure Bi4O5I2 (Figure 3c), which can be
attributed to the I 3d2/3 and Mo 3d5/2, respectively, corresponding to the I- of Bi4O5I2. As
displayed in Figure 3d, the C 1s region includes the C-C of CNT and C-O between CNT
and Bi4O5I2 [37].
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3.2. Piezo-and Piezophoto-Catalytic Performances

The piezo-catalytic activities of Bi4O5I2 and CNT/Bi4O5I2 were probed by the rep-
resentative organic dye RhB under ultrasonic waves. As shown in Figure S1, the 15%
CNT/Bi4O5I2 shows the highest piezocatalytic activity among the as-prepared CNT/Bi4O5I2
composites. There is no significant degradation of RhB under ultrasonic vibration without
catalysts (Figure 4a). Remarkably, the destruction rate of RhB in pure Bi4O5I2 nanosheets
achieves 62% within 3 h, which should be attributed to the piezo-induced positive/negative
charges. It is noteworthy that the piezocatalytic performance of Bi4O5I2 nanosheets is still
weak, and there is great scope to upgrade this for optimizing the release of strain-induced
charges. Therefore, CNT/Bi4O5I2 was designed and evaluated by RhB. As shown in
Figure 4a, the removal performance of Bi4O5I2 can be improved coated a typical conductor
with CNT, with a 96% degradation rate within 3 h, suggesting that the piezo-generated
positive/negative carriers could be promoted to release and play a key role in the degra-
dation efficiency of organic dyes. Moreover, the corresponding kinetics rates reached
0.0003, 0.005, and 0.015 min−1. The k value of CNT/Bi4O5I2 is 3 times that of Bi4O5I2
under ultrasonic vibration (Figure 4b). In addition, the piezo-stability of CNT/Bi4O5I2 was
demonstrated by circulation experiments over 3 serial cycles. As displayed in Figure 4c, the
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piezo-catalytic activity of the CNT/Bi4O5I2 kept steady, signaling that the as-synthesized
hybrid piezo-catalyst is stable under mechanical stress.
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(d) scavenger trapping experiments of CNT/Bi4O5I2 on the degradation of RhB under ultrasonic
vibration.

To confirm the active species of the piezo-degradation process in 15% CNT/Bi4O5I2,
the trapping test was executed [38]. Isopropyl alcohol (IPA), EDTA-2Na, and benzoquinone
(BQ) were used as scavengers to trap •OH, holes, and •O2

−, respectively. As demonstrated
in Figure 4d, the piezo-degradation performance of RhB in CNT/Bi4O5I2 was slightly
restrained with EDTA-2Na scavenger. In contrast, it was significantly repressed with the
addition of IPA and BQ. The above results reveal that •OH and •O2

− are the main active
oxidative groups. Under ultrasonic waves, the CNT/Bi4O5I2 piezo-catalyst could produce
positive/negative pairs. The negative charges could consume dissolved O2 to generate
•O2

− species. Meanwhile, the positive charges could react with H2O to supply an •OH
group. Then, the active oxidative •OH and •O2

− species can remove the representative
organic dye RhB. For the piezo-degradation of RhB, the holes show the least contribution.

The piezo-photocatalytic activities of 15% CNT/Bi4O5I2 were also probed by RhB
aqueous solution, under an ultrasonic wave or simulated solar light. Firstly, the removal
rate of RhB in hybrid CNT/Bi4O5I2 achieved only 11% and 70% within 80 min under simu-
lated solar light and mechanical vibration, respectively, whereas it dramatically reaches
91% with both ultrasonic waves and simulated solar light (Figure 5a). Furthermore, the
corresponding kinetics rates reached 0.00014, 0.014, and 0.032 min−1. The k value under
mechanical stress is about 2.3 times that of solar light (Figure 5b), indicating that a strain-
induced internal electric field can improve the separation of photoinduced electrons and
holes, which is in accordance with the previous reports [23].



Materials 2021, 14, 4449 7 of 9

Materials 2021, 14, x FOR PEER REVIEW 7 of 10 
 

 

that a strain-induced internal electric field can improve the separation of photoinduced 
electrons and holes, which is in accordance with the previous reports [23]. 

 
Figure 5. (a) Piezo-photocatalytic performances of CNT/Bi4O5I2 composite on the degradation of 
RhB under different conditions; (b) the column chart of the corresponding k values of the 
CNT/Bi4O5I2 composite. 

3.3. Catalytic Mechanism 
In general, the band structure of as-prepared catalysts is a key factor for piezo-

catalytic activity. Thus, the optical band gaps of pure Bi4O5I2 and CNT/Bi4O5I2 were 
measured by the UV-vis diffuse reflectance absorption (DRS) spectra. As shown in Figure 
6a, the band gaps are 1.84 (Bi4O5I2) and 2.13 eV (CNT/Bi4O5I2), respectively, using Tauc’s 
equation of αhv = A(hv − Eg)n/2 [39]. The Mott–Schottky (M-S) measurements of Bi4O5I2 and 
CNT/Bi4O5I2 are displayed in Figure 6b. The flat-band potential of Bi4O5I2 and CNT/Bi4O5I2 
are both −0.24 V (0 V vs. SCE). Thus, the conduction band edge of Bi4O5I2 and CNT/Bi4O5I2 
are −0.34 eV (vs. NHE). In addition, the valence band edge of Bi4O5I2 and CNT/Bi4O5I2 are 
1.5 eV and 1.79 eV, respectively. Based on the above analysis, the band gaps of these 
catalysts show a minor effect on the piezocatalytic performance. To further probe the 
mechanism, the charge transfer processes in Bi4O5I2 and CNT/Bi4O5I2 were explored by 
transient photocurrent density (PC) and electrochemical impedance spectroscopy (EIS) 
(Figure 6c,d). Under simulated solar irradiation, the increase in photocurrent in 
CNT/Bi4O5I2 (1.63 μA∙cm−2) is much higher than that in Bi4O5I2 (0.32 μA∙cm−2), indicating 
efficient charge separation with CNT, used as the carriers sink. Moreover, the CNT/Bi4O5I2 
shows a smaller radius of the semicircular Nyquist plot than that of pure Bi4O5I2, which 
demonstrates more photoinduced charge transfer, due to the addition of CNT. 

Figure 5. (a) Piezo-photocatalytic performances of CNT/Bi4O5I2 composite on the degradation
of RhB under different conditions; (b) the column chart of the corresponding k values of the
CNT/Bi4O5I2 composite.

3.3. Catalytic Mechanism

In general, the band structure of as-prepared catalysts is a key factor for piezo-
catalytic activity. Thus, the optical band gaps of pure Bi4O5I2 and CNT/Bi4O5I2 were mea-
sured by the UV-vis diffuse reflectance absorption (DRS) spectra. As shown in Figure 6a,
the band gaps are 1.84 (Bi4O5I2) and 2.13 eV (CNT/Bi4O5I2), respectively, using Tauc’s
equation of αhv = A(hv − Eg)n/2 [39]. The Mott–Schottky (M-S) measurements of Bi4O5I2
and CNT/Bi4O5I2 are displayed in Figure 6b. The flat-band potential of Bi4O5I2 and
CNT/Bi4O5I2 are both −0.24 V (0 V vs. SCE). Thus, the conduction band edge of Bi4O5I2
and CNT/Bi4O5I2 are −0.34 eV (vs. NHE). In addition, the valence band edge of Bi4O5I2
and CNT/Bi4O5I2 are 1.5 eV and 1.79 eV, respectively. Based on the above analysis, the
band gaps of these catalysts show a minor effect on the piezocatalytic performance. To
further probe the mechanism, the charge transfer processes in Bi4O5I2 and CNT/Bi4O5I2
were explored by transient photocurrent density (PC) and electrochemical impedance spec-
troscopy (EIS) (Figure 6c,d). Under simulated solar irradiation, the increase in photocurrent
in CNT/Bi4O5I2 (1.63 µA·cm−2) is much higher than that in Bi4O5I2 (0.32 µA·cm−2), in-
dicating efficient charge separation with CNT, used as the carriers sink. Moreover, the
CNT/Bi4O5I2 shows a smaller radius of the semicircular Nyquist plot than that of pure
Bi4O5I2, which demonstrates more photoinduced charge transfer, due to the addition
of CNT.
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4. Conclusions

In summary, the organic dye (RhB) has been removed by Bi4O5I2 piezocatalysis, and
subsequently enhanced by hybrid CNT/Bi4O5I2 under ultrasonic vibration or simulated
solar light. In addition, the cycling test revealed that CNT/Bi4O5I2 maintains good stability.
Importantly, we found that the strain-induced internal electric field via the piezoelectric
effect can boost the separation of photoinduced electron/hole pairs. In addition, the
piezo-induced positive/negative charge of Bi4O5I2 could be released more easily, making
good use of the excellent electroconductibility of CNT. Our results may offer promising
approaches to sketching efficient piezo-photocatalysis for the full utilization of solar energy
or mechanical vibration.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14164449/s1, Figure S1: Piezocatalytic performances of CNT/Bi4O5I2 composites (5%, 10%,
15%, 20%) on the degradation of RhB.
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