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Dendritic cells (DCs) are professional antigen presenting cells (APCs) that originate

in the bone marrow and are continuously replenished from hematopoietic progenitor

cells. Conventional DCs (cDCs) and plasmacytoid DCs (pDCs) are distinguished by

morphology and function, and can be easily discriminated by surface marker expression,

both in mouse and man. Classification of DCs based on their ontology takes into account

their origin as well as their requirements for transcription factor (TF) expression. cDCs

and pDCs of myeloid origin differentiate from a common DC progenitor (CDP) through

committed pre-DC stages. pDCs have also been shown to originate from a lymphoid

progenitor derived IL-7R+ FLT3+ precursor population containing cells with pDC or B

cell potential. Technological advancements in recent years have allowed unprecedented

resolution in the analysis of cell states, down to the single cell level, providing valuable

information on the commitment, and dynamics of differentiation of all DC subsets.

However, the heterogeneity and functional diversification of pDCs still raises the question

whether different ontogenies generate restricted pDC subsets, or fully differentiated pDCs

retain plasticity in response to challenges. The emergence of novel techniques for the

integration of high-resolution data in individual cells promises interesting discoveries

regarding DC development and plasticity in the near future.

Keywords: plasmacytoid dendritic cells, hematopoiesis, dendritic cell development, DC progenitor, plasticity,

heterogeneity

INTRODUCTION

Plasmacytoid dendritic cells (pDCs) and two major subsets of conventional dendritic cells (cDC1
and cDC2) have been identified in mice and humans as well as other mammalian species including
non-human primates and pigs, with high similarities between species (1–3). cDC subsets recognize
both extracellular and intracellular pathogens, efficiently process and present exogenous antigens to
naive CD4+ and CD8+ T cells and elicit effective adaptive immunity. pDCs are highly effective in
sensing intracellular viral or self DNA and RNA mainly via Toll-like receptors (TLRs) and rapidly
producing large amounts of type I and III interferons (IFNs) (4). Thus, they play an important role
in antiviral immunity and systemic autoimmunity (5–8). pDCs are distinguished from cDC subsets
by expression of surface markers CD45R (B220), CD45RA, Ly-6C, Siglec-H, and BST2 (CD317) in
the mouse and CD303 (BDCA2), CD304 (BDCA4), CD123 (IL-3R), and CD45RA in humans.
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DC subpopulations originate from proliferating progenitor
cells in the bone marrow (BM) and require fms-like tyrosine
kinase 3 ligand (FLT3L)–FLT3 interaction for their development.
Lin− FLT3+ c-Kitlow/int M-CSFR+ murine BM cells, so called
common DC progenitors (CDP), which are derived from the
myeloid macrophage DC progenitors (MDP) or lymphoid
primed multipotent progenitors (LMPP), were shown to be DC-
committed and to generate pDCs, cDC1 and cDC2 [Figure 1,
(9, 10)]. Clonal assays and subsequent single cell transcriptome
and imaging analyses demonstrated that the majority of CDPs
are already pre-committed to pDC or cDC subsets (9–13).
This is also the case for the pre-cDCs, which already contain
pre-cDC1, and pre-cDC2 (13, 14). In contrast, pDCs are also
produced from a lymphoid progenitor (LP) (15) in the steady
state whereas this happens for cDCs only in situation of cDC
ablation (16).

DC subpopulations can be defined by their ontogeny and by
the requirement of specific transcription factors (TF) for their
development. pDCs require high-level expression of IRF-8, TCF-
4 (also known as E2-2) and BCL-11A for their development,
functional specification and maintenance (17–21). Expression
of DNA-binding protein inhibitor ID-2, which prevents the
activity of the major pDC TF E2-2, needs to be suppressed
to allow the generation of pDCs from CDPs (22, 23). On
the other hand, the major cDC branches can be distinguished
by distinct requirements for IRF-8 (for cDC1) and IRF-4
(for cDC2) (14, 24–27).

DC subpopulations are also distinguished by a high degree
of functional specialization (28). While cDC1 efficiently cross-
present antigens to CD8+ T cells (27, 29, 30) and produce
high levels of IL-12p70, thus promoting cytotoxic T cells and
Th1 cells (31, 32), cDC2 are superior in presenting antigens
on MHC class II, supporting Th1, Th2, and Th17 polarization
(26, 27, 33). pDCs participate in the first line of defense against
viral infections by acting as innate effector cells, which initiate
IFN-induced antiviral responses in adjacent cells and recruit
cytotoxic NK cells (5). Resting pDCs are weak antigen presenting
cells and in contrast to cDCs do not prime naïve T cells. After
activation, pDCs can acquire the capacity to present antigens
and activate T cells directly. Their ability to prime T cells,
thus performing truly like DCs, is debated and complicated
by the finding that pDC-like cells, which were shown to be
related to cDCs (13, 15, 34, 35) have been included in the pDC
population in many functional studies, as discussed below. By
producing cytokines and chemokines activated pDCs modulate
T cell responses elicited by cDCs (5). During viral infection
pDCs were shown to cooperate with cDC1 in lymph nodes,
promoting their maturation and cross-presentation activity to
induce antiviral CD8+ T cells (36). But there is also evidence for a
role of pDCs in the induction of immune tolerance by generation
of hyporesponsive and regulatory T cells (37–39).

Recent technological developments have allowed
unprecedented resolution, down to the single cell level, in the
analysis of cell transcriptomes as well as in in vivo lineage tracing,
overcoming the limitations of discrimination based solely on
surface markers (40–44). The characterization of transcriptional
profiles of individual cells (13, 42, 45) and more recently the

integrated analysis of single cell transcriptome and chromatin
accessibility (46) has revealed unexpected heterogeneity and
signs of very early lineage priming of individual hematopoietic
BM progenitor cells, which were previously considered multi-
or oligopotent. For example, single cell barcoding and tracing
showed that DC and even pDC commitment can already be
imprinted in early LMPP and at the HSPC stage (12, 41, 47).
cDC subtype specification was detected already at the CDP and
pre-cDC stage of development (12–14). In some instances, these
analyses led to the definition of more stringent surface marker
combinations that allow the discrimination of largely committed
progenitor cells within the “oligopotent” population (13, 15).

Combining CRISPR/Cas9-based genomic perturbation with
transcriptome profiling in the same cells revealed differentiation
trajectories and regulatory networks during hematopoiesis
(40, 48). Integration of clonal labeling and lineage tracing
experiments and single cell time-lapse imaging experiments may
lead to a better understanding of immune cell differentiation
dynamics and regulation in the future (11, 40, 43, 49).

PLASMACYTOID DENDRITIC CELL
DEVELOPMENT FROM MYELOID AND
LYMPHOID PROGENITORS

Early works indicated that DCs can be derived from both
FLT3+ CMP and CLP (50, 51). Competitive in vivo transfer
experiments with CMPs and CLPs showed that pDCs can also
be generated from both, but are mainly of “myeloid” origin
(52). Subsequent studies indicated that CMP and CLP-derived
pDCs differ in their ability to produce type I IFN and to
stimulate T cells (53, 54). Interestingly, a significant proportion of
pDCs expresses recombination activation genes (Rag1/Rag2) and
undergoes immunoglobulin DH-JH rearrangement indicating a
“lymphoid” past. But the expression of Rag genes and detection
of Ig rearrangements in pDCs derived from both CMP and
CLP suggested that these are by-products of a “lymphoid”
transcriptional program expressed only transiently in the pDC
lineage (55, 56). However, the issue was revisited by Sathe et al.
who found that RAG1 expression and Ig rearrangement are
mainly found in CLP-derived pDCs (54). pDC generation from
CLPs but not CDPs required constitutive type I IFN signals
for upregulation of FLT3, suggesting differential requirements
for instructive cytokines for the two developmental pathways
(57). After the discovery that myeloid progenitor derived CDPs
generate both cDCs and pDCs, research mostly focused on the
branching of pDC and cDC development.

We found that CCR9low pDC-like precursor cells (CD11c+
Siglec H+ BST2+ B220lo/hi), which express lower levels of
E2-2 and higher levels of Id2 than pDCs, can be generated
from murine CDPs and these can give rise to CCR9high pDCs
as well as cDCs [Figure 1, (11, 58, 59)]. The CCR9low pDC-
like precursor population in the BM contains only a small
fraction of proliferating cells indicating heterogeneity within this
population regarding differentiation stage (58). It remains to be
determined if this population, which can also be detected in
lymphoid organs at low frequency contains differentiated cells
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FIGURE 1 | Converging plasmacytoid dendritic cell differentiation pathways. Plasmacytoid dendritic cells (pDCs) can be derived from both myeloid and lymphoid

progenitors. Common DC progenitors (CDPs) arise from lymphoid primed multipotent progenitors (LMPPs) either directly or via macrophage-DC progenitors (MDPs).

CDPs contain precursor cells committed to conventional DC (cDC) and plasmacytoid DC fates, and M-CSFR− CDPs have higher pDC potential than M-CSFR+

CDPs. A fraction of CDPs can give rise to CCR9low pDC-like precursor cells and then CCR9high pDCs in an E2-2 dependent manner. pDC-like cells retain the

potential to differentiate into cDCs as well as CCR9high mature pDCs. Inhibitor of DNA binding 2 (Id2), which inhibits E2-2 activity, needs to be suppressed to allow

pDC differentiation. pDCs are also generated via the lymphoid pathway, from IL-7R+ lymphoid progenitors (LPs) which give rise to Ly-6D single positive (SP) LP and

subsequently to Ly-6D Siglec-H double positive (DP) pre-pDC, terminally committed to the pDC fate.

with plasticity to develop into pDCs and cDCs or precursors with
dual potential or both. Interestingly, pDC-like cells with a similar
phenotype accumulated in the BM of Mtg16-deficient mice,
which failed to downregulate Id2 expression, thereby blocking
the activity of E2-2 and further pDC differentiation (60). In
addition, Zeb2 has been identified as an important regulator of
Id2 expression, which allows pDC development from CDPs by
suppressing the alternative cDC1 fate at a common precursor
stage (22, 23). More recently Etv6 was shown to cooperate with
IRF8 to refine cDC1-specific gene expression and repress the
pDC gene expression signature indicating the close relationship
between cDC1 and pDCs (61). Siglec-H, a canonical marker
distinguishing mature pDCs from cDCs, is expressed at very
early stages of differentiation, but does not denote a plasmacytoid
commitment. Within the CDP and the pre-DC fraction in
the BM, Siglec-H+ cells expressing TF Zbtb46 are exclusively
committed to cDCs (62) and were shown to contain precursors
committed to cDC1 and cDC2 (13, 14). Similarly, Siglec-H+ Ly-
6C+ cells in the pre-DC compartment (defined as Lin− CD135+

CD11c+ MHCII− CD172α−) were shown to give rise to both
subsets of cDCs, whereas Siglec-H+ Ly-6C− pre-DCs gave rise
to cDC subsets and pDCs (13). Using the single cell imaging
and tracking method we could show that CDP progeny transit
through a CD11c+ CCR9low Siglec-H+ pDC-like stage during
their development into CCR9high pDCs (11). The CDP-derived
pDC-committed precursor, which must be present within this

population, is still a missing link. M-CSFR+ CDPs give rise to
pDCs, however their output is rather low. Interestingly, Onai
et al. found that the pDC potential was higher in the M-CSFR−

E2-2+ fraction of CDPs in murine BM (12, 63). They also
demonstrated that E2-2high cells within M-CSFR− IL-7R− CDPs
gave rise exclusively to pDCs in spleen and lymph nodes, but
also to cDCs in the small intestine, showing the plasticity of
this pDC-primed CDP subset or its progeny in the local tissue
environment (63).

More recently Rodrigues et al. found that FLT3+ IL-7R
(CD127)+ CD117lo/int lymphoid progenitor (LP) cells in murine
BM, which differ from CDPs only by expression of IL-7R and
lack of M-CSFR expression, have a 5-fold higher output of
pDCs compared to CDPs (15). Within this LP pool, three
subpopulations were distinguished by diverse expression of
Siglec-H and Ly-6D. Of these, only the Siglec-H Ly-6D double
positive (DP) population had exclusive pDC potential, while the
Ly-6D single positive (SP) population generated both B cells
and pDCs, congruent with the results of a recently published
computational fate mapping analysis of single cell RNAseq data
(64). Further analysis showed the SP population to contain cells
committed either to B cell or to pDC differentiation. The model
proposed by Rodrigues et al. suggests that IL-7R+ Siglec-H and
Ly-6D DN LPs proceed to upregulate Ly-6D (SP) and, under
the influence of lineage defining TFs IRF8 and EBF1 induced by
FLT3L and IL-7 respectively, proceed either to the pDC lineage
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or towards B cells (Figure 1). Interestingly, mice lacking Zeb2
in CD11c+ cells were shown to have a severe defect in pDC
numbers, which was attributed to failed repression of Id2 leading
to diversion of precursors to cDC1 (22, 23). Since a substantial
proportion of pDCs was shown to be derived from the LP which
lacks cDC potential in the steady state (65), it remains to be
investigated if the transcriptional repressor Zeb2 is also involved
in suppressing alternative cell fates in the LP.

Functionally, the IL-7R+ DP cells described by Rodriguez
et al. as pDC precursors can be considered immature progenitors,
as they do not yet express genes important for pDC function
(such as Irf7 and Spib) and require further cell divisions to
generate mature pDCs (15). In contrast to the CDP-derived
CD11c+ Siglec-H+ CCR9low pDC-like precursors, the IL-7R+

DP cells lack CD11c and B220 expression and fail to produce type
I IFNs in response to TLR9 stimulation by CpG-A, a hallmark
of the pDC-lineage, but acquire this capacity after culture with
FLT3L (15).

IL-7R+ Siglec-H+ Ly-6D+ pDC-committed precursors make
a substantial contribution to the pool of differentiated pDCs.
Thus, pDC generation seems to be regulated by the cell fate
decision between pDC and cDC1, but also by the pDC versus B
cell dichotomy. The contribution of the two pathways to pDC
generation under conditions of inflammation or infection and
the functional consequences of the distinct ontogeny of pDCs
remain to be investigated.

HETEROGENEITY OF pDCs AND pDC-LIKE
CELLS IN MURINE LYMPHOID ORGANS

Different subsets of pDCs have been identified in the BM, mostly
differing in their degree of differentiation and their capacity
to produce type I IFNs or pro-inflammatory cytokines (4, 66).
Markers such as CCR9, SCA-1, CD9, and Ly-49Q, which are
expressed by the majority of peripheral mouse pDCs, can be
used to discriminate these subsets (59, 67, 68). More recently,
single cell RNAseq analysis confirmed the presence of two subsets
within Lin− CD11c+ BST2+ Siglec-H+ cells in spleen and BM
(15). The “pDC-like cells” described in this paper express several
genes characteristic of cDCs and other myeloid cells (including
Zbtb46) but lack or express low levels of Ccr9, Ly6d, and Dntt.
By gene expression profile and surface phenotype (lower levels
of Siglec-H, BST2, MHCII, higher levels of CD11c, Ly-6C, and
CX3CR1 compared to pDCs) they greatly resemble the CCR9low

MHCIIlow CX3CR1+ pDC-like precursors described previously
in BM (58, 59) and are a subset of those. Interestingly, Rodrigues
et al. also found that the minor subset of pDC-like cells (defined
as Zbtb46-eGFP+ Siglec-Hint BST2+), responded with IFN-α
production to CpG-A and showed better antigen processing and
presenting ability than “regular” pDCs. It was also previously
shown that IFN-β production in the spleen is limited to a small
subset of CD9− cells within the CCR9+ mature pDC population
in murine spleen (69).

These works suggest the existence of minor subsets of pDCs in
peripheral organs, differing in the extent of IFN-I production and
the capacity of antigen processing and presentation. Considering

that these subsets identified by differential expression of surface
markers are largely overlapping and often very rare, it remains
unclear whether the functional differences observed are due to
functional specialization or are the result of lineage imprinting, or
whether they are simply sequential stages of pDC differentiation
leading to the mature pDC.

REVISITING THE DEFINITION OF HUMAN
pDCs

The pDC-like cells described in the mouse which express pDC
markers and TFs, but rapidly give rise to cDCs and behave like
cDCs in antigen presentation assays greatly resemble the subset
of CD123+ CD45RA+ CD33+ CX3CR1+ pre-DCs recently
identified in human blood (35) and the AXL+ SIGLEC6+ human
blood DC subset (AS-DC) described by Villani et al. (34). These
“pDC-like cells,” which are hidden in the pDC population as
defined by surface marker expression (Lin− HLA-DR+ CD123+

CD45RA+ CD303+), are functionally distinct from pDC in
that they do not produce type I IFN in response to TLR7
and 9 stimulation. In that respect they are different from the
Zbtb46+ Siglec-H+ pDC-like cells found in murine spleen. As
to their classification as precursors of cDCs, it is based mainly
on the observation that the pre-DCs acquire cDC phenotype
and function in culture (35). The human pre-DC population
contains pre-cDC1 and pre-cDC2 (35, 70). However, these
cells are not proliferating in the steady state and appear to be
functionally mature and could therefore actively participate in
immune responses (34, 35). Cells in human blood, BM and tonsil
defined as a CD2+ CD5+ (and CD81+) subpopulation of human
pDCs were studied previously and were found to produce IL-
12 but not IFN-α and to stimulate naïve CD4+ T cells (71–74).
This population is largely overlapping with the recently described
pre-DC and AS-DC (34, 35). It is currently not resolved to
which extent cytokine responses and T cell activation capacity
attributed to human pDCs in earlier studies were influenced
by contamination by cDC precursors, especially because most
studies were performed with pDCs that had been stimulated
e.g., with IL-3, CD40L or viruses (75–77). It was shown recently
that human blood pDCs diversify into functionally distinct and
stable subsets after activation by influenza virus or CpG even
after prior exclusion of contaminating pre-DCs demonstrating
great functional plasticity of this cell type (78). In the light
of these recent findings the functional properties of bona
fide pDCs in innate and adaptive immune responses need to
be reexamined.

FUTURE PERSPECTIVES

Technological advances including single cell transcriptome,
epigenome, and mass cytometry analyses as well as single cell
tracking methods have revealed that development and functional
specification of DC subpopulations is much more complex than
anticipated. Several questions regarding pDC development and
functional plasticity remain unanswered. It would be important
to address the contribution of the CDP and LP to pDCs during
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infections or inflammation and to clarify if the developmental
history of pDCs is really relevant for their function. Furthermore,
it is unclear at this point, which functions ascribed to human
pDCs are mediated by bona fide pDCs and which are mediated
by the contaminating pre-DCs. This is especially important
for developing pDC-targeted or adoptive transfer therapies for
induction of immunity or tolerance. Similarly, the functional
diversification of pDCs after activation and also the phenomenon
of pDC exhaustion during chronic infection (79) are important
topics for further study. An exciting area of research is the
correlation of gene expression with chromatin accessibility
and epigenetic modifications on the single cell level and
the integration of all this data (80), which will allow to
unravel the transcriptional regulation of cell fate decisions
leading to pDC development and functional diversification.
Combined with CRISPR/Cas9-based genetic screening and

functional assays these new single cell analysis methods will

lead to a thorough understanding of development, plasticity
and function of DC subpopulations with implications for DC
targeted therapy.
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