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Noise-processing by signaling 
networks
Styliani Kontogeorgaki1, Rubén J. Sánchez-García   1,5, Rob M. Ewing2,5, Konstantinos C. 
Zygalakis3 & Ben D. MacArthur   1,4,5

Signaling networks mediate environmental information to the cell nucleus. To perform this task 
effectively they must be able to integrate multiple stimuli and distinguish persistent signals from 
transient environmental fluctuations. However, the ways in which signaling networks process 
environmental noise are not well understood. Here we outline a mathematical framework that relates 
a network’s structure to its capacity to process noise, and use this framework to dissect the noise-
processing ability of signaling networks. We find that complex networks that are dense in directed paths 
are poor noise processors, while those that are sparse and strongly directional process noise well. These 
results suggest that while cross-talk between signaling pathways may increase the ability of signaling 
networks to integrate multiple stimuli, too much cross-talk may compromise the ability of the network 
to distinguish signal from noise. To illustrate these general results we consider the structure of the 
signalling network that maintains pluripotency in mouse embryonic stem cells, and find an incoherent 
feedforward loop structure involving Stat3, Tfcp2l1, Esrrb, Klf2 and Klf4 is particularly important for 
noise-processing. Taken together these results suggest that noise-processing is an important function 
of signaling networks and they may be structured in part to optimize this task.

Cellular identities are regulated by a variety of complex, interconnected, molecular regulatory networks, includ-
ing signaling networks, metabolic networks and core transcriptional regulatory networks1–9. Signaling networks 
are of particular importance in maintaining robust cellular identities since they mediate noisy environmental 
information from the local cellular micro-environment to the cell nucleus7, 10–14. In order to perform this task 
effectively they must be able to transmit complex environmental information robustly, and failure to do this has 
been linked to cancer initiation and progression, as well as defects in embryonic development15–17. Much of what 
is known about signaling networks comes from the detailed reductionist analysis of their constituent signaling 
pathways. Several of these have been studied in great detail, and the core components and biochemical mecha-
nisms of signal transduction in pathways such as Wnt, TGF-β and MAP Kinase signaling are now well-defined. 
These signaling pathways function in a wide diversity of different biological processes and systems, and they 
are known to have a central role in maintaining pluripotency and specifying cell identities, for example18, 19. A 
long-standing question of interest is why, despite the myriad of biological processes and systems that involve sig-
naling, there are only a few distinct, but widely conserved and re-used pathways20. An emerging feature that may 
in part explain this observation is that signaling pathway ‘modules’ are interconnected in many different ways 
and cross-talk between pathways has been shown for most signaling pathways, with mechanisms ranging from 
transcriptional activation of pathway components through to direct interactions between proteins in different 
pathways20. In addition to cross-talk between pathways, specific feedback mechanisms allow for the homeostatic 
control of signaling activity. A well-defined example in the Wnt signaling pathway is the transcriptional activation 
of the Dickkopf proteins which negatively regulate Wnt signaling by binding to Wnt receptors in response to Wnt 
activation21. However, while much is now known about the function of specific signaling pathways, very little 
known about how cross-talk between pathways affects information-processing. In the context of signal process-
ing it has been suggested that promiscuity in the protein-protein interactions is a major source of intrinsic noise, 
and that signaling pathways have evolved features (for example receptor clustering) to better distinguish signal 
from noise22. Although some studies have considered the ways in which noise propagates through regulatory 
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networks23–27, the general mechanisms by which signaling networks distinguish persistent environmental signals 
from the noise that is inherent to the cellular micro-environment are still not well understood. To address this 
problem, here we outline a general mathematical framework which relates a network’s structure to its capacity to 
process noise, and use this framework to dissect the noise-processing ability of signaling networks. As an illus-
trative example we examine the noise-processing ability of the network that maintains pluripotency in mouse 
embryonic stem cells.

Embryonic stem (ES) cells are found naturally in the pre-implantation embryo and are able to give rise to all 
embryonic lineages, a property known as pluripotency. The molecular basis of pluripotency has been extensively 
studied, and it is now known that activation of a small number of core transcription factors – including Oct3/4, 
Sox2, and Nanog along with other secondary factors such as Myc, Klf4 and Lin28 – is sufficient to maintain the 
pluripotent state5, 6, 28–35. Indeed, forced expression of combinations of these factors in somatic cells is sufficient to 
induce pluripotency de novo28, 30, 36. Although this central transcriptional circuit is self-sustaining when shielded 
from external stimulation37, it is known that a network of signaling pathways which process extra-cellular 
environmental information are also essential both to maintenance of, and exit from, the pluripotent state38. 
Importantly, while the core transcriptional circuity is broadly similar in mouse and human pluripotent cells33, 
their dependency on external signaling is markedly different: mouse ES cells are dependent on Lif/Stat signaling39, 

40, Bmp41 and canonical Wnt37 to promote self-renewal, while Fgf/Erk signaling disrupts pluripotency37, 42–44; by 
contrast human ES cell self-renewal is independent of Lif45, yet requires Activin and Fgf46, 47 signaling and human 
ES cells undergo differentiation when exposed to Bmp47.

The remainder of the paper is organized as follows: we begin by outlining our general mathematical the-
ory, as well as setting our assumptions, before establishing a mathematical formula that makes the connection 
between network structure and noise-processing explicit. To illustrate these results we then use this expression 
to investigate the structure of the regulatory network for pluripotency in mouse ES cells. This network is chosen 
since it is particularly well characterized34 and so constitutes a good test model. We find that certain elements in 
this network, particularly incoherent feedforward structures, are particularly important for its noise-processing 
ability. Interestingly, these elements are distinct from the core feedback structures that are known to maintain the 
pluripotent ground state48, suggesting that different portions of this network perform different regulatory tasks.

Results
Our concern is with how a network G processes noise from an external source. In the context of signaling net-
works the nodes in the network are molecules in the signaling cascades, and edges are regulatory interactions (e.g. 
phosphorylation etc.) between molecules. Since signaling networks pass information from the cell exterior to the 
nucleus, we assume that the network G is inherently directed: the presence of an edge (i, j) indicates that node i 
exerts a regulatory effect on node j but not necessarily vice versa. Since regulatory interactions may be activatory 
or inhibitory we also allow each edge to have positive or negative weight representing the strength of activation or 
inhibition respectively. We denote the weight of edge (i, j) by Aij. Assuming that there are n nodes in G the n × n 
adjacency matrix A then describes the strength of all interactions in the system.

In general the regulatory interactions between nodes may be highly nonlinear. However, to better understand 
the relationship between network structure and function we will assume here that the dynamics are linear. By 
doing so we are effectively considering the linearization near to a fixed point in the nonlinear dynamics; this 
rationale for studying the linear case has been taken elsewhere49. In the absence of external fluctuations, the 
dynamics of the system are described by the following system of ordinary differential equations (ODEs):

= − = −
x Mx M I Ad

dt
d, , (1)

where x is the vector of node states (for example, protein concentrations), I is the n × n identity matrix, and we 
have assumed that all nodes decay at the same rate d, which then sets a timescale for the dynamics. Without loss 
of generality we may take d = 1 since this may always be achieved by suitable re-scaling. Given the linearity of 
this system there are only two possible types of long-term behavior: convergence toward a stable fixed point or 
divergence to infinity. We will assume that only the first behavior can happen, i.e. convergence to a stable fixed 
point is the only physically realistic scenario. This occurs whenever the real parts of the eigenvalues of M are all 
strictly positive. Properties of the network G for which Eq. (1) admits a stable solution have been discussed at 
length, and it is known that sparse modular networks confer stability, for example49, 50. However, our concern 
here is not with stability per se but rather with the effect that external noise has on the magnitude of fluctuations 
around a stable equilibrium. To investigate this we will consider the following stochastic differential equation 
associated with Eq. (1)

Σ= − +
x Mx Wd

dt
d
dt

, (2)

where W(t) is a standard n-dimensional Brownian motion (and dW/dt is therefore n-dimensional Gaussian white 
noise). Equation (2) describes a multivariate Ornstein-Uhlenbeck process. Whenever Eq. (1) admits a stable 
solution, Eq. (2) is ergodic and therefore admits a unique invariant measure51. Furthermore, by the linearity of 
Eq. (2) we know that x(t) is distributed according to a multivariate normal with mean e−Mtx(0) and covariance 
matrix K(t) given by,

∫ ΣΣ= − − = .− − − −K x x x xt t t t t e e ds( ) ( ) ( ) , ( ( ) ( ) ) (3)
M MT t t s T t s

0

( ) ( )T
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If Eq. (2) describes an ergodic process then

=
→∞

K Ktlim ( ) , (4)t

where K satisfies the Liapunov equation51

ΣΣ+ = .MK KM (5)T T

Although this is the standard formulation51, instead of working with Eq. (5) we will work directly with the 
Eq. (3) as it ultimately allows a more transparent assessment the effects of network structure on the stationary 
covariance of the system.

Since our purpose is to determine the way in which input noise is processed by the network G it is natural to 
consider a single noisy input to the system, which represents the fluctuating extra-cellular environment, and a 
single output, representing the computational core of the network. To do so we may, without loss of generality, 
chose a labeling of the nodes such that the first node is the noisy input and the n-th node is the output. Thus, we 
set σΣ = ( , 0, , 0)T and we are interested in calculating the variance of the n-th node in the network, which is 
given by Knn, relative to the magnitude of the input noise. If the input fluctuations carry no information, then this 
is a measure of the extent to which the network suppresses or amplifies random environmental fluctuations. If the 
fluctuations contain important environmental information, then this is a measure of the extent to which the target 
node can ‘sense’ this extra-cellular information. From Eq. (3) the limiting covariance, in index notation and using 
Einstein summation notation, is

∫= ΣΣ .
∞ − − − −K e e ds( ) ( ) ( ) (6)ij

M t s
il

T
lm

M t s
mj

0

( ) ( )T

Now, since (ΣΣT)lm = σ2 when l = m = 1 and zero otherwise, we have

∫σ= .
∞ − − − −K e e e ds( ) ( ) (7)ij

t s A t s
i

A t s
j

2

0

2( ) ( )
1
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1

T

Although it is not immediately transparent, this expression connects strongly to the structure of the network 
via the fact that (i, j)-th entry of the k-th power of the adjacency matrix is the total weight of all walks from node 
i to node j with length k (the weight w(P) of a walk P from node i to node j is the product of its edge weights, 
∏(i,j)∈PAij). Thus, the exponential of the adjacency matrix of a network is a weighted sum of all walks between 
nodes i and j, and so is a simple measure of network ‘communicability’52. Using the notation β = = ∑A w P( )ijk ij

k
P kk

, 
we may re-write the exponential terms in Eq. (7) as

∑
β

= − .−

=

∞
e

k
t s( )

!
( )

(8)
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0

Making use of this connection and using the shorthand βik = βi1k we then obtain,

∫∑∑σ
β β

= −
=

∞

=

∞ ∞ + − −K
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where βij0 = Iij (the n × n identity matrix). Since

∫ − =
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we may furthermore simplify Eq. (9) to
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Since the variance of the noisy input is given by K11 = σ2/2, we may investigate the noise-processing ability of 
the network by considering the ratio

∑∑ β β= =
+

=

∞

=

∞

+ ( )R K
K

k l
l

1
2

,
(12)

nn

k l
k l k l

11 0 0

where we have further simplified notation by setting βnk = βk. When R > 1 noise is amplified by the network; 
when R < 1 noise is suppressed by the network. Importantly, if the process described by Eq. (2) is ergodic then R is 
finite and depends only on the structure of the network G. This formula therefore provides an explicit connection 
between network architecture and noise-processing; our interest is to determine how R is affected by different 
network architectures. To do so we note that Eq. (12) has a natural interpretation in terms of random walks on 
G, as follows.

Since each walk P from the input to the target has an associated weight w(P), a pair of (possibly intersecting) 
walks P, Q from the input to the target also has an associated weight w(P, Q) = w(P)w(Q), the product of the edge 
weights involved. If we write Pk and Pl for arbitrary walks from the input to the target of length k, and l respec-
tively, then the product βkβl can be written as
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∑ ∑ ∑β β = = .w P w P w P P( ) ( ) ( , )
(13)

k l
P

k
P

l
P P

k l
,k l k l

Substituting this into Eq. (12) and rewriting the second sum in terms of m = k + l gives,

∑ ∑ ∑=
=

∞

=
−

−

( )R m
k

w P P1
2

( , ),
(14)m k

m

P P
m k m k

0 0 ,k m k

from which it can be seen that R is a weighted sum of all pairs of walks through G from the source node to the 
target, with the relative importance of each walk-pair determined by a coefficient drawn from a binomial distri-
bution B(m, 1/2), where m is the length of the walk-pair. The appearance of binomial probabilities arises as the 
natural probability measure for pairs of random walkers on the network G. To see this consider two independent 
random walkers starting at the same time at the input node. At each time step, one walker is chosen with proba-
bility 1/2, and that walker moves through G choosing available edges with equal probability (i.e. if the walker is at 
node i then each outgoing edge from node i is chosen with probability d1/ i

out where di
out is the out-degree of node 

i). The probability that after precisely m = k + l steps both walkers are at the target node is −( )2m
k

m. Thus, the 
inner sum in Eq. (14) is the expected weight of a pair of walks from input to target, with respect to the probability 
measure generated by two independent random walkers [the presence of two random walkers rather than one, as 
might be expected, arises from the fact that K depends upon two exponential terms, eA(t−s) and −eA t s( )T

, in Eq. (7)]. 
If G is a directed acyclic graph (in which there are no feedback loops), then all random walks have finite length 
and the first sum in Eq. (14) has finitely many terms. However, if cycles are present in the network then random 
walks may be arbitrarily long and the first sum will correspondingly have infinitely many terms. Positive feedback 
loops add infinitely many positive terms to the sum, and therefore always serve to amplify noise with respect to 
similarly structured acyclic networks; negative feedback loops add both positive and negative terms to the sum 
and may amplify or reduce noise with respect to similarly structured acyclic networks, depending on the particu-
lar arrangement of inhibitory edges in the network. This observation is consistent with previous studies on the 
effect of positive and negative feedback loops in noise propagation, particularly in biological regulatory net-
works25, 26, 53, 54. As the random walks are independent of the edge weights, the importance of each edge to the 
noise-processing ability of the network has 2 contributions: (1) the probability that either of the random walkers 
traverses that edge (which depends solely on its position within the network relative to the source and target); and 
(2) the, extent to which it contributes to any walk it participates in (which depends solely on its weight).

It is worth noting here that although random walkers are a natural way to explore directed networks55, 56, if the 
matrix A is normal (that is, if it commutes with its transpose AT; a strong condition that is not typically satisfied by 
directed networks but does occur if the network G is undirected, for example), then a much simpler related result 
for the trace of the covariance matrix Tr(K) may be obtained. In the rest of this section we will study the particular 
case that A is normal. Although not directly relevant to signaling networks, this case does nevertheless provide 
insight into Eq. (12) by relating noise-processing to well-known network-theoretic notions.

First, let us take the sum of the ratios Kjj/K11 in Eq. (12) for all output nodes j,

∑=
=
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,
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1 11
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In general this sum cannot be simplified and we resort to interpreting in terms of random walkers, as above. 
However, if the matrices A and AT commute then we can use the binomial formula to expand the m-th power of 
the symmetric part of A as,

∑=
+

= .
=

−
−( ) ( )A A A A A m

k2
( ) 1

2
1

2 (18)s
m

T m

k

m
k T m k

k m k
0

The (1, 1)-entry of the matrix above is precisely the double inner sum in Eq. (17), so we may write

∑= 







+ 







.
=

∞
¯ A AR

2 (19)m

T m

0 11

If <A 1s  [a condition which implies stability in Eq. (1)], then the geometric series in Eq. (19) converges to
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∑ +
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where Ms = (M + MT)/2 is the symmetric part of M. By taking into account all possible walks through the net-
work, this is a simple variation on the exponential of the adjacency matrix as a measure of network communi-
cability, although in this case the communicability of G is taken with respect to the analytic function (1 − x)−1, 
rather than exp(x)52. Using this result we finally obtain,

= .−MR [ ] (21)s
1

11

Thus, in order to determine the noise-processing ability of the network using this measure, we need only cal-
culate the matrix inverse of the symmetric part of M, and take the (1, 1)-entry (where without loss of generality 
the first node is the input node). This is result is strongly related to the Laplacian matrix of the network G: if A is 
symmetric and normalized so that each row (or column) sums to 1 then Ms is precisely the normalized Laplacian 
of G, which is well-known to be closely related to network connectivity57, 58.

To illustrate how Eq. (12) works in practice, we now consider a couple of examples.

Signaling cascade.  The simplest example network is a signaling cascade, consisting of a chain of m = n − 1 
interactions between n nodes. To facilitate a transparent illustration we shall assume that all the weights in the 
network are the same. In this case, we may index the nodes such that Aij = a for edges (i, i + 1), where i = 1, 2, …, 
n − 1, and is zero otherwise. Equation (12) then gives

= .( )R m
m

a(2 )!
! 2 (22)

m

2

2

This result coincides with the expression derived in ref. 59. For large m we may use Stirling’s approximation 
to obtain

π
∼R a

m
,

(23)

m2

from which it can be seen that the signaling pathway suppresses noise if

π< .a m( ) (24)m1/4

Three conclusions are apparent from this result: (1) since the variance of the target node depends upon the 
magnitude of the interaction strength squared, the sign of the interactions (i.e. whether they are activating or 
inhibiting) does not affect the ability of the cascade to process noise; (2) since R is monotonic decreasing with 
m, the effect of input noise diminishes with longer cascades (for fixed a); (3) if |a| < 1 then R < 1 for any m and 
noise is diminished by the cascade; while if |a| > 1 noise may be amplified by the cascade depending on the 
magnitude of a relative to m. In general since R decreases with a and m, this analysis suggests that long signaling 
cascades with weak interactions process noise better than short cascades with stronger interactions. This result is 
in accordance with previous studies on noise-processing by transcriptional cascades60.

Feedforward loop.  In reality signaling cascades do not operate in isolation; rather cross-talk between path-
ways means that many different paths from the input to the output may exist, and each may process different 
aspects of the extra-cellular signal. The simplest example of such a network is the feedforward loop motif, a 
commonly occurring structure in biological regulatory networks which is known to be involved with in a range 
of biological functions, including distinguishing persistent signals from noise61. The simplest feedforward loop 
consists of three nodes with two paths from the source (node 1) to the target (node 3): one direct and one indirect, 
via an intermediary (node 2). In this case, assuming that all interactions are of equal weight we obtain

β β β β= + + .R 1
2

3
2

3
2 (25)1

2
1 2 2 2

2
3

By contrast to the simple signaling cascade, the sign of the edges in the feedforward loop do affect its 
noise-processing ability. If all edges are positive then β1, β2 > 0 (all paths in the network are positive) and the 
target receives a consistent signal from the source. In this case the feedforward loop is said to be coherent61. 
However, if β1 < 0 or β2 < 0 (which occurs if either one or three of the edges is negative) then the target receives 
a inconsistent signal from the source. In this case, the feedforward loop is said to be incoherent61. Denoting the 
noise-processing ratios in the coherent and incoherent cases by R+ and R− respectively, it follows from Eq. (25) 
that R+ > R−, and therefore that the incoherent feedback loop is better at processing noise. This general conclu-
sion also holds when the paths from the source to the target are of arbitrary length: incoherence of pairs of paths 
through the network tends to lead to better noise-processing. These results are consistent with previous studies on 
the effect of positive and negative paths in feedforward loops on noise propagation25, 62–65.

Noise-processing by stem cells.  In order to apply these general results we now consider signal transduc-
tion in the regulatory network for pluripotency. The skeleton of this network has recently been inferred from 
analysis of correlations between expression patters of important regulatory factors34 and is illustrated in Fig. 1. 
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The behavior of this network is determined by input from three extra-cellular factors commonly added to ES 
cell culture media preparations: the cytokine leukemia inhibitory factor (Lif), and selective inhibitors of glyco-
gen synthase kinase 3 (TGF-β) (Chiron99021, denoted CH) and mitogen-activated protein kinase kinase (Mek) 
(PD0325901, denoted PD). Since it is known that stimulation of Lif signaling is sufficient to maintain pluripo-
tency in vitro, we will choose Lif as the noisy source in our analysis. When Lif is present in the extra-cellular 
environment it binds to the Stat3 receptor66, 67, and activates signaling pathways that stimulate the core transcrip-
tional regulatory network for pluripotency in mouse ES cells35, 68. At the heart of this core network are the trio of 
transcription factors, Oct4, Sox2 and Nanog29, 69, 70. Since Oct4 is well-established as the most central factor in 
this core, we will consider the propagation of a noisy signal from (the input) Lif through the network to (the out-
put) Oct4. Although the sign of the interactions (i.e. whether they are activatory or inhibitory) is known34 their 
strength is unknown. In the absence of this information we assume that all interactions are of equal unit strength 
since this represents the most economic model. To investigate how network structure affects noise-processing, we 
sought to determine how the ratio R changes upon targeted removal of different interactions from this network by 
comparing the R-values of perturbed networks with that of the unperturbed network (denoted Rfull). To uncover 
some of the structural determinants of noise-processing we also calculated two simple network measures based 
upon our interpretation of Eq. (12): (1) c = p+/(p+ + p−), where p+ and p− are the number of positive and negative 

Figure 1.  (Left) The regulatory network for pluripotency derived by Dunn and co-workers in ref. 34. (Right) 
The reduced network that we study here in which Lif is taken as a noisy input and Oct4 is taken as the target. 
Since CH and PD cannot be reached from Lif via a walk on this network, we can exclude these nodes, along with 
Tcf3 and ERK, from our analysis. Edges that participate in feedback loops in the network are shown in red.

Interaction removed

Noise-
processing 
(R/Rfull)

Coherence 
(c/cfull)

Feedback 
(f/ffull)

Tfcp2l1 → Sall4 0.02 0.68 0.64

Sox2 → Oct4 0.12 0.60 0.37

Sall4 → Klf2 0.18 0.98 0.45

Sall4 → Sox2 0.18 0.86 0.18

Stat3 → Gbx2 0.32 0.98 0

Gbx2 → Klf4 0.32 0.98 0

Nanog → Sox2 0.83 0.94 0.18

Klf2 → Nanog 1 1.10 0.27

Esrrb → Tfcp2l1 1.12 0.95 0.36

Nanog → Esrrb 1.19 1.25 0.45

Klf4 → Tfcp2l1 1.99 1.06 0

Stat3 → Klf4 4.70 0.98 0

Klf4 → Klf2 8.68 0.92 0

Klf2 → Oct4 12.10 0.86 0.18

Stat3 → Tfcp2l1 12.18 1.03 0

Tfcp2l1 → Esrrb 24.62 1.23 0.18

Esrrb ⊣ Oct4 25.68 1.53 0.27

Table 1.  The effect that targeted removal of interactions on network noise-processing. The first column 
identifies the edge removed from the network; the second column shows the effect of targeted removal of the 
given edge on the ratio R by comparison with that of the unperturbed network; the third column shows the 
effect of targeted removal of the given edge has on network coherence; the fourth column shows the effect of 
targeted removal of the given edge has on network feedback. Edges that emanate from Oct4 do not contribute to 
the noise processing capacity of the network and their removal does not affect R so they are excluded from this 
table. Since all paths from Lif to Oct4 pass through the edge Lif → Stat3 its removal disconnects the network; 
this edge is also accordingly excluded from the table. Interactions are ordered by column 1.
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paths from Lif to Oct4 respectively. This is a simple measure of structural coherence; and (2) f, the total number 
of feedback loops in the network, as a measure of network complexity. To determine how network properties 
varied with removal of specific edges, we also determined how these measures changed upon targeted removal of 
different interactions from the network by comparing values with those of the unperturbed network (denoted cfull 
and ffull respectively). The results of this analysis are summarized in Table 1.

The shortest paths from Lif to Oct4 in this network have length 4; there are two such paths: (1) Lif → Stat3 
→ Tfcp2l1 → Esrrb ⊣ Oct4; and (2) Lif → Stat3 → Klf4 → Klf2 → Oct4. The first of these paths is negative (due 
to the inhibitory interaction Esrrb ⊣ Oct4) while the second is positive. Thus, when taken together this pair of 
paths forms an incoherent feedforward loop; since these are the shortest paths in the network, we anticipate from 
Eq. (12) that this incoherent feedforward loop will have an important role in noise-processing in this network. 
Indeed, this is what is observed: if any of the elements of this structure are removed, then the noise-processing 
capacity of this network is severely inhibited and the ratio R increases substantially (see Table 1). By contrast, 
we also anticipate that since feedback loops introduce arbitrarily long walks in the network [and therefore con-
tribute infinitely many terms to the sum in Eq. (12)] removal of edges which participate strongly in the feedback 
structure of the network will result in a substantial reduction in its noise-processing capacity. Again, this is what 
is observed: when edges which participate in large numbers of feedback loops are removed, the ratio R decreases 
substantially (see Table 1). Although we have focused on the effect of edge removal on two particular properties 
(coherence and feedback) each edge in the network is likely to have multiple functional roles, and an individual 
edge may be important for both coherence and feedback (for example, since Esrrb has an important role both in 
mediating environmental signals to the computational core and maintaining the feedback structure of the core, 
edges such as Tfcp2l1 → Esrrb and Esrrb ⊣ Oct4 naturally have a dual role). For this reason, while we observe 
general trends between noise-processing and coherence/feedback, we do not, as expected, see strong correlations 
(see Fig. 1). However, when taken together, these results indicate that those interactions in the feedback rich core 
transcriptional circuitry (shown in red in Fig. 2) that are needed to maintain a self-perpetuating pluripotent iden-
tity5, 48 have a tendency to amplify extrinsic noise. To compensate, a distinct set of interactions between auxiliary 
factors structured into a set of incoherent feedforward loops tend to suppress environmental noise, and thereby 
ensure that environmental signals are robustly mediated to this core circuit.

Discussion
In this paper we have investigated the noise-processing by networks. To do so we have combined a stochastic 
approach (similar to that taken by Anderson and co-workers in ref. 59) with graph-theoretic notions to derive a 
simple expression that relates a network’s structure to its noise-processing ability. This expression is easily calcu-
lated even for large networks [particularly if the network is undirected, see Eq. (21)], so provides an economic 
measure that may be used to examine the structure of naturally occurring networks, and guide the design of 
man-made networks. In practical applications it is often desirable to maintain signal intensity while noise is 
simultaneously controlled. In such cases some noise-minimizing strategies, such as introducing long or inco-
herent paths through the network, may not be desirable or feasible. It would be interesting to investigate further 
how the interplay between noise-processing and signal maintenance shapes the structure of biological regulatory 
networks, for example using recent methods from the theory of adaptive networks71. Similarly, it would also be 
interesting to examine how network structures affect noise-processing more generally, taking into account more 
complex network dynamics such as limit cycles. To illustrate our results we have considered the structure of the 
network that maintains pluripotency in mouse ES cells, and found that important network structures, distinct 
from those that maintain the core pluripotent state, are responsible for noise processing in this system, suggesting 
that different features of this network are responsible for different regulatory tasks. Accordingly, we anticipate 
that the structure of many natural networks may be determined, in part, to optimally process noise. It will be 
interesting to elucidate the extent to which cross-talk between pathways in natural networks, which typically have 
to process multiple complex signals, is shaped by the trade-off between signal integration and noise-processing.

Figure 2.  Plots of the data from Table 1. Removal of edges that result in an increase of coherence in the network 
tend to diminish the system’s noise-processing ability, while removal of edges which reduce the overall feedback 
structure of the network tend to improve the system’s noise-processing ability. Red lines show linear regression.



www.nature.com/scientificreports/

8Scientific Reports | 7: 532  | DOI:10.1038/s41598-017-00659-x

References
	 1.	 Barabási, A. L. & Oltvai, Z. N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet 5, 101–113 (2004).
	 2.	 Tkačik, G. & Bialek, W. Cell biology: Networks, regulation, pathways. In Encyclopedia of complexity and systems science 719–741 

(Berlin: Springer, 2009).
	 3.	 Newman, M. E. J. Networks. An introduction (OUP, 2010).
	 4.	 Estrada, E. The structure of complex networks (OUP, 2011).
	 5.	 Macarthur, B. D., Ma’ayan, A. & Lemischka, I. R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell 

Biol. 10, 672–681 (2009).
	 6.	 Martello, G. & Smith, A. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol. 30, 647–675 (2014).
	 7.	 Jeong, H., Mason, S. P., Barabási, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).
	 8.	 Blais, A. & Dynlacht, B. D. Constructing transcriptional regulatory networks. Genes Dev. 19, 1499–1511 (2005).
	 9.	 Alberts, B. et al. Molecular biology of the cell (Garland science, Taylor and Francis Group, LLC, 2002).
	10.	 Adler, E. M., Gough, N. R. & Ray, L. B. 2015: Signaling breakthroughs of the year. Sci. Signal 9, eg1 (2016).
	11.	 Irish, J. M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2015).
	12.	 Verkaar, F., Cadigan, K. M. & Amerongen, V. R. Celebrating 30 years of wnt signaling. Sci. Signal 5, mr2 (2012).
	13.	 Levine, E. & Hwa, T. Stochastic fluctuations in metabolic pathways. Proc. Natl. Acad. Sci. USA 104, 9224–9229 (2007).
	14.	 Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771–778 (2015).
	15.	 Song, J. et al. A protein interaction between β-catenin and dnmt 1 regulates wnt signaling and dna methylation in colorectal cancer 

cells. Mol. Cancer Res. 13, 969–981 (2015).
	16.	 Valenta, T., Hausmann, G. & Basler, K. The many faces and functions of β-catenin. EMBO J 31, 2714–36 (2012).
	17.	 Clevers, H., Loh, K. M. & Nusse, R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. 

Science 346, 1248012 (2014).
	18.	 Niwa, H. Wnt: What’s needed to maintain pluripotency? Nat. Cell Biol. 13, 1024–1026 (2011).
	19.	 Kim, H. et al. Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. 

Nat. Commun. 4, 2403 (2013).
	20.	 Attisano, L. & Wrana, J. L. Signal integration in tgf-β, wnt, and hippo pathways. F1000Prime Rep. 5 (2013).
	21.	 Niida, A. et al. Dkk1, a negative regulator of wnt signaling, is a target of the beta-catenin/tcf pathway. Oncogene 23, 8520–8526 

(2004).
	22.	 Ladbury, J. E. & Arold, S. T. Noise in cellular signaling pathways: causes and effects. Trends Biochem. Sci. 37, 173–178 (2012).
	23.	 Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).
	24.	 Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).
	25.	 Hornung, G. & Barkai, N. Noise propagation and signaling sensitivity in biological networks: A role for positive feedback. PLoS 

Comput. Biol. 4, e8 (2008).
	26.	 Hooshangi, S. & Weiss, R. The effect of negative feedback on noise propagation in transcriptional gene networks. Chaos 16, 026108 

(2006).
	27.	 Rué, P., Domedel-Puig, N., Garcia-Ojalvo, J. & Pons, A. Integration of cellular signals in chattering environments. Prog. Biophys. Mol. 

Biol. 110, 106–112 (2012).
	28.	 Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined 

factors. Cell 126, 663–676 (2006).
	29.	 Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).
	30.	 Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).
	31.	 Dahéron, L. et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770–778 (2004).
	32.	 Ye, S., Li, P., Tong, C. & Ying, Q. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J. 

32, 2548–60 (2013).
	33.	 Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 

132, 1049–1061 (2008).
	34.	 Dunn, S. J., Martello, G., Yordanov, B., Emmott, S. & Smith, A. G. Defining an essential transcription factor program for nave 

pluripotency. Science 344, 1156–60 (2014).
	35.	 Huang, G., Ye, S., Zhou, X., Liu, D. & Ying, Q. L. Molecular basis of embryonic stem cell self-renewal: From signaling pathways to 

pluripotency network. Cell. Mol. Life Sci. 72, 1741–1757 (2015).
	36.	 Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
	37.	 Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).
	38.	 Stumpf, P. S., Ewing, R. & MacArthur, B. D. Single-cell pluripotency regulatory networks. Proteomics 16, 2303–2312 (2016).
	39.	 Williams, R. L., Hilton, D. J. & Nicolai, N. A. Myeloid leukaemia inhibitory factor maintains the developmental potential of 

embryonic stem cells. Nature 336, 15 (1988).
	40.	 Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 

(1988).
	41.	 Ying, Q.-L., Nichols, J., Chambers, I. & Smith, A. Bmp induction of id proteins suppresses differentiation and sustains embryonic 

stem cell self-renewal in collaboration with stat3. Cell 115, 281–292 (2003).
	42.	 Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of shp-2 and erk signalling promotes self-renewal of mouse 

embryonic stem cells. Dev. Biol. 210, 30–43 (1999).
	43.	 Stavridis, M. P., Lunn, J. S., Collins, B. J. & Storey, K. G. A discrete period of fgf-induced erk1/2 signalling is required for vertebrate 

neural specification. Development 134, 2889–2894 (2007).
	44.	 Kunath, T. et al. Fgf stimulation of the erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-

renewal to lineage commitment. Development 134, 2895–2902 (2007).
	45.	 Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic 

stem cells through activation of wnt signaling by a pharmacological gsk-3-specific inhibitor. Nat. Med 10, 55–63 (2004).
	46.	 Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged 

periods of culture. Dev. Biol. 227, 271–278 (2000).
	47.	 Xu, R.-H. et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human es cells. Nat. Methods 

2, 185–190 (2005).
	48.	 MacArthur, B. D. et al. Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat. Cell Biol. 14, 

1139–1147 (2012).
	49.	 May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).
	50.	 Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
	51.	 Gardiner, C. W. Stochastic methods: a handbook for the natural and social sciences (Berlin: Springer, 2009).
	52.	 Estrada, E. & Higham, D. J. Network properties revealed through matrix functions. SIAM Rev. 52, 696–714 (2010).
	53.	 Pedraza, J. M. Noise propagation in gene networks. Science 307, 1965–1969 (2005).
	54.	 Zhang, H., Chen, Y. & Chen, Y. Noise propagation in gene regulation networks involving interlinked positive and negative feedback 

loops. PLOS ONE 7, 1–8 (2012).



www.nature.com/scientificreports/

9Scientific Reports | 7: 532  | DOI:10.1038/s41598-017-00659-x

	55.	 Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 
105, 1118–1123 (2008).

	56.	 Chung, F. Laplacians and the Cheeger inequality for directed graphs. Ann. Comb. 9, 1–19 (2005).
	57.	 Mohar, B. The Laplacian spectrum of graphs. In Graph theory, combinatorics, and applications., Wiley-Intersci. Publ., 871–898 

(Wiley: New York, 1991).
	58.	 Luxburg, U. V. A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2006).
	59.	 Anderson, D. F., Mattingly, J. C., Nijhout, H. F. & Reed, M. C. Propagation of fluctuations in biochemical systems, i: Linear ssc 

networks. Bull. Math. Biol. 69, 1791–1813 (2007).
	60.	 Pilkiewicz, K. R. & Mayo, M. L. Fluctuation sensitivity of a transcriptional signaling cascade. Phys. Rev. E 94, 032412 (2016).
	61.	 Alon, U. An introduction to systems biology: design principles of biological circuits (Chapman Hall, 2007).
	62.	 Shahrezaei, V., Ollivier, J. F. & Swain, P. S. Colored extrinsic fluctuations and stochastic gene expression. Mol. Syst. Biol. 1–9 (2008).
	63.	 Osella, M., Bosia, C., CorÃ!, D. & Caselle, M. The role of incoherent microRNA-mediated feedforward loops in noise buffering. 

PLOS Comput. Biol. 7 (2011).
	64.	 Wang, P., LÃŒ, J. & Ogorzalek, M. J. Global relative parameter sensitivities of the feed-forward loops in genetic networks. 

Neurocomputing 78, 155–165 (2012). Selected papers from the 8th International Symposium on Neural Networks (ISNN 2011).
	65.	 Ghosh, B., Karmakar, R. & Bose, I. Noise characteristics of feed forward loops. Physical biology 2, 36 (2005).
	66.	 Matsuda, T. et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 18, 

4261–4269 (1999).
	67.	 Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of 

STAT3. Genes Dev. 12, 2048–2060 (1998).
	68.	 Yu, J. & Thomson, J. Pluripotent stem cell lines. Genes Dev. 22, 1987–1997 (2008).
	69.	 Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of 

ES cells. Nat. Genet. 24, 372–376 (2000).
	70.	 Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo dependes on the POU transcription factor Oct4. Cell 

95, 379–391 (1998).
	71.	 Gross, T. & Blasius, B. Adaptive coevolutionary networks: a review. Journal of the Royal Society Interface 5, 259–271 (2008).

Acknowledgements
This work was funded by BBSRC Grant No. BB/L000512/1 and by PhD funding from the Institute for Life 
Sciences, University of Southampton. K. C. Zygalakis was supported by a grant from the Simons Foundation and 
by the Alan Turing Institute under EPSRC grant EP/ N510129/1. Part of this work was done during the authors’ 
stay at the Newton Institute for the program Stochastic Dynamical Systems in Biology: Numerical Methods and 
Applications. The authors would like to thank Enrico Mossotto, Rosanna Smith and Patrick Stumpf for useful 
feedback on the manuscript.

Author Contributions
S.K., R.S.G., K.C.Z. and B.D.M. conducted the mathematical modeling and network analysis. S.K., R.S.G., R.E., 
K.C.Z. and B.D.M. interpreted the results. All authors wrote the paper.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Noise-processing by signaling networks

	Results

	Signaling cascade. 
	Feedforward loop. 
	Noise-processing by stem cells. 

	Discussion

	Acknowledgements

	Figure 1 (Left) The regulatory network for pluripotency derived by Dunn and co-workers in ref.
	Figure 2 Plots of the data from Table 1.
	Table 1 The effect that targeted removal of interactions on network noise-processing.




