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The aim of our study was to investigate the differential effects of dexamethasone (DXM)
and hydrocortisone (HCS) on somatic growth and postnatal lung development in a rat
model of bronchopulmonary dysplasia (BPD). A rat model of BPD was induced by
administering intra-amniotic lipopolysaccharide (LPS) and postnatal hyperoxia. The rats
were treated with a 6-day (D1-D6) tapering course of DXM (starting dose 0.5 mg/kg/day),
HCS (starting dose 2 mg/kg/day), or an equivalent volume of normal saline. DXM
treatment in a rat model of BPD induced by LPS and hyperoxia was also associated with a
more profound weight loss compared to control and LPS + O, groups not exposed to
corticosteroid, whereas HCS treatment affected body weight only slightly. Examination of
lung morphology showed worse mean cord length in both LPS + O, + DXM and LPS + O, +
HCS groups as compared to the LPS + O alone group, and the LPS + O, + DXM group had
thicker alveolar walls than the LPS + O, group at day 14. The HCS treatment was not
significantly associated with aberrant alveolar wall thickening and retarded somatic
growth. The use of postnatal DXM or HCS in a rat model of BPD induced by intra-amniotic
LPS and postnatal hyperoxia appeared detrimental to lung growth, but there was less
effect in the case of HCS. These findings suggest that effect of HCS on somatic growth and
pulmonary outcome may be better tolerated in neonates for preventing and/or treating
BPD.

no. 02-2009-008), a grant from the Korea Healthcare
Technology RED Project, Ministry of Health & Welfare, Republic
of Korea (grant no. A080588-25 and A090780).

Development

INTRODUCTION

Postnatal systemic corticosteroid therapy has been widely used
to prevent or decrease the severity of bronchopulmonary dys-
plasia (BPD) in preterm infants (1, 2), but adverse effects on neu-
rodevelopmental outcomes and lung structure have limited its
routine use. Although the use of postnatal systemic corticoste-
roid therapy for preterm infants at risk of BPD is highly contro-
versial, clinicians continue to use it because it works. Meta-anal-
yses have identified short-term pulmonary benefits of postnatal
systemic corticosteroids (3, 4). However work is needed to re-
fine postnatal systemic corticosteroid regimens for preterm in-
fants at risk of developing BPD, in order to enhance pulmonary
and neurodevelopmental outcomes while reducing their ad-
verse effects on neurodevelopmental outcome and lung growth.
In an attempt to minimize adverse effects, several centers have
reduced the cumulative dexamethasone (DXM) dose in infants
at greatest risk of BPD.

Recently, it has been suggested that corticosteroids other than
DXM, such as hydrocortisone (HCS), might provide compara-
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ble benefits with less toxicity (5). Watterberg et al. (6) reported
that HCS treatment in preterm infants at corrected age 18-22
month was not associated with growth impairment. Further-
more, low-dose HCS treatment seemed to decrease the inci-
dence of BPD in a pilot trial (7). However, despite the use of
lower doses of DXM and adoption of the gentler choice of HCS,
serious concerns remain as to their effects on alveolar growth
and neurodevelopment (8). This study was designed to evalu-
ate the differential effects of DXM and HCS on somatic growth
and alveolar development in a rat model of BPD induced by in-
tra-amniotic lipopolysaccharide (LPS) and postnatal hyperoxia
exposure.

MATERIALS AND METHODS

Animals

The animal experiments were performed at the Clinical Research
Institute in Seoul National University Bundang Hospital, Korea,
and the protocol was approved by the institutional animal care
and use committee (approval number: BA0912-053/048-01).
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Timed pregnancy Sprague-Dawley rats (term, 22.5 day) weigh-
ing 300-360 g were used. The rats were housed in individual
cages in the animal unit, and were provided with food and water.
Lighting was provided from 6 am to 6 pm. The male:female ra-
tio in the study groups ranged from 0.8 to 1.2, but the differences
were not statistically significant. We used a rat model of BPD
induced by intra-amniotic LPS and postnatal hyperoxia (9).
Pups were divided into 4 groups according to whether or not
they received systemic DXM or HCS, as shown in Fig. 1. The
study groups were as follows: Control group, no LPS adminis-
tration and 2 weeks in normal air (n = 18); LPS + O group, In-
tra-amniotic LPS (0.75 pg) administration and 1 week of expo-
sure to 85% oxygen (n = 18); LPS + O, + DXM group, intra-am-
niotic LPS (0.75 pg) administration and 1 week of exposure to
85% oxygen plus DXM for 6 day (n = 14); LPS + O. + HCS group,
Intra-amniotic LPS (0.75 pg) administration and 1 week of ex-
posure to 85% oxygen plus HCS for 6 day (n = 12).

Intra-amniotic LPS administration

On gestation day 20, pregnant rats were anesthetized by isoflu-
rane inhalation. After a midline abdominal incision, 0.75 ug LPS
(Escherichia coli 0111:B4; Chemicon International, Temecula,
CA, USA) solubilized in 0.05 mL normal saline was injected into
the amniotic sacs of the pregnant rats with direct visualization
in the LPS + O, LPS + O, + DXM, and LPS + O, + HCS groups.
The same volume of normal saline without LPS was injected
into the amniotic sacs of pregnant rats in the control group. Rat
pups were delivered spontaneously, 24-48 hr after these injec-
tions. They were weighed and given to foster rats, 10-12 hr after
birth; 5-8 pups were given to each foster rats and the foster rats
only reared pups allocated to a single group. The number of pups
given to foster mothers was controled to equalize litter size.

Exposure to hyperoxia

In the LPS + O, LPS + O + DXM, and LPS + O. + HCS groups,
the rat pups were placed in cages within 40 L Plexiglas chambers
containing 85% oxygen, for 1 week. Oxygen levels were moni-
tored daily using an oxygen sensor (Extech 407510; Extech In-
struments Corp., Waltham, MA, USA). After 1 week of hyperox-
ia, the pups were kept in room air for a second week. The foster
rats were switched every 24 hr between the hyperoxic and nor-
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1st week 2nd week
Control group N/S Room air Rom air
LPS + 0 group L(0.75) 85% 0, Rom air Fig. 1. Schematic outline of the experi-
mental protocol. LPS, lipopolysaccharide;
¢ ¢ ¢ ¢ ¢ ¢ L (0.75), lipopolysaccharide administered
0 - at 0.75 pg at gestation day 20; O, expo-
LPS + 0. + DXM group L (0.75) 85% 02 Rom air sure 10 85% oxygen for 1 week: DXM,
dexamethasone administered with a 6-
v v v v v : day tapered course; HCS, hydrocortisone
LPS + 02 + HCS group L(0.75) 85% 02 Rom air administered at a 6-day tapered course.

moxic chambers to prevent damage to their lungs and provide
equal nutrition to each litter. The body weights of the pups were
measured on days 1, 7, and 14 after birth.

Drug administration

The day of birth was designated as postnatal day 1. Dexametha-
sone sodium phosphate (Yuhan Corp., Seoul, Korea) or hydro-
cortisone succinate (Yuhan Corp.) solubilized in 0.05 mL nor-
mal saline was injected intraperitoneally once daily. The DXM-
treated rats received a 6-day (D1-D6) tapered course of DMX
(0.5 mg/kg/day for 2 day, followed by 0.25 mg/kg/day for 2 day,
and 0.125 mg/kg/day for 2 day). The HCS-treated rats also re-
ceived a 6-day (D1-D6) tapered course (2 mg/kg/day for 2 day,
followed by 1 mg/kg/day for 2 day, and 0.5 mg/kg/day for 2 day).
Rat pups in the control and LPS + O, groups received a similar
volume of normal saline.

Tissue preparation

Rat pups were anesthetized by an intraperitoneal injection of
ketamine (50 mg/kg; Yuhan Corp) and xylazine (50 mg/kg; Bayer
AG, Leverkusen, Germany) on day 14. Their lungs were exposed
by thoracotomy and, after exsanguination by transecting the
aortas and inferior vena cavas, the right ventricles were punc-
tured and the lungs perfused with 3 mL of phosphate-buffered
saline at 25 cm H.O. After removing the lungs, the right lower
bronchi were ligated, and the right lower lobes were resected
and stored at -80°C for biochemical analysis. For histological
analysis, the trachea were cannulated after removal of the lungs,
and buffered formaldehyde (4% paraformaldehyde solubilized
in phosphate-buffered saline, pH 7.4) was instilled at 25 cmH.O
for 5 min. The tracheas were then closed with sutures and the
lungs fixed in buffered formaldehyde for 24 hr at 4°C. Paraffin
sections (4 pm) were cut from the right upper and left lobes and
mounted onto Super Frost Plus slides (VWR Scientific, West
Chester, PA, USA). Slides were then deparaffinized and stained
with hematoxylin and eosin (H&E).

Lung morphometry

Six random non-overlapping fields per pup in two distal lung
sections were used for the morphometric examinations. Sec-
tions were photographed using a digital camera (Axioskop MRc5;
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Carl Zeiss, Oberkochen, Germany) attached to an Axioskop 40
microscope (Carl Zeiss) at x 100 magnification and saved as
JPEG files. The photographs were analyzed by the morphomet-
ric methods designed by Weibel (10). All measurements were
made by a single observer unaware of group identities. Tissue
volume density (VDr) was determined using a 10 x 10 grid (grid
element side length ~29 pm). Mean cord length (Lm) is an esti-
mate of the distance from one airspace wall to another, and was
determined by counting intersections of airspace walls, includ-
ing alveoli, alveolar sacs, and alveolar ducts, with an array of 84
lines, each ~24 pm long. Lung volume was determined by mea-
suring the displacement of water by the lungs after fixation. Al-
veolar wall thickness (WT) was calculated from Wy = VD1 x Lm.
No corrections were made for perfusion or tissue shrinkage.

Bronchoalveolar lavage (BAL)

Pups were anesthetized by an intraperitoneal injection of ket-
amine (50 mg/kg, i.p., Yuhan Corp) and xylazine (50 mg/kg, i.p.,
Bayer AG). The trachea was exposed through a midline incision
and, without opening the thorax. BAL fluid was collected by in-
stilling and retrieving a 0.3-mL aliquot of normal saline contain-
ing 1 mM EDTA slowly three times on day 14. Total cells were
stained with trypan blue and counted. The rat pups from which
BAL fluid was obtained were not used for histological analysis
in case the BAL procedure had altered the morphology of the
lung tissue.

Statistical analysis

For comparison of survival curves, we performed Kaplan-Meier
analyses followed by a log-rank tests. Postnatal changes in body
weight, mean cord length, and alveolar wall thickness were ex-
pressed as means + SD. Differences between groups were ana-
lyzed by one-way ANOVA followed by post hoc analysis. P val-
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g P=0.03
% —4&— Control
ol O Ps+0:
—4&A— LPS+ 0.+ DXM
<o LPS+0,+ HCS
4 O B Yy Y S B
01 2 3 45 6 7 8 9 10 11 12 13 14

Postnatal day
Fig. 2. Postnatal survival rates in the experimental groups. LPS, lipopolysaccharide;

02, exposure to 85% oxygen for 1 week; DXM, dexamethasone; HCS, hydrocortisone.
*Significantly higher or lower than the control group.
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ues < 0.05were considered statistically significant.
RESULTS

Survival and weight gain

The overall survival rates of the LPS + O, and LPS + O, + HCS
groups were not significantly different from that of the control
group (74% and 72% vs 90%, P = 0.23 and P = 0.11, respective-
ly). However, the overall survival rate of the LPS + O, + DXM group
was lower than that of the control group (64% vs 90%, P = 0.03).
Fig. 2 shows survival data for the four groups, and Fig. 3 displays
the body weight gains of the surviving rats on D1, D7, and D14.
No significant difference between group body weights was ob-
served immediately after birth, and the mean body weights on
D7 and D14 of the LPS + O, group were not different from those
of the control group (D7, 16.8 2.7 gvs 17.2+2.9 g, P=0.72;
D14, 32.7 + 5.6 gvs 36.0 + 4.3 g, P = 0.12). The mean body weight
on D14 of the LPS + O + HCS group was lower than that of the
control group, but not different from that of the LPS + O, group
(29.0+49gvs36.0+43g P=0.03;29.0+49gvs327£56g,
P =0.21). However, the mean body weight of the LPS + O, + DXM
group was significantly lower than those of the control and LPS +
O, groups (D7,11.9+1.7gvs 17.2+29gand 168 +2.7¢g P=

0.03and P =0.02;D14,27.0+4.1gvs36.0 £ 4.3gand 32.7+56g,
P =0.02and P = 0.03, respectively).

Light microscopy

Rats in the control group showed normal alveolarization. How-
ever the rats in the LPS + O, LPS + O: + DXM, and LPS + O, +
HCS groups, all of which were exposed to hyperoxia, showed re-
duced alveolarization. Marked inhibition of alveolarization
characterized by fewer and larger alveoli was observed in the
LPS + O + DXM and LPS + O. + HCS groups compared to the

40
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Fig. 3. Postnatal weight gain in the experimental groups. Black, gray, and white bars
indicate body weights on days 1, 7, and 14, respectively. Data are based on survival
to day 14. LPS, lipopolysaccharide; O, exposure to 85% oxygen for 1 week; DXM,
dexamethasone; HCS, hydrocortisone. *Significantly higher or lower than the control
group; Significantly higher or lower than the LPS + Oz group.
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LPS + O group. Inflammatory changes, such as inflammatory ~ compared to the control group (51.2 + 8.4 pm, 55.9 + 4.9 pm,
cell infiltration, intra-alveolar edema, and alveolar destruction, and 59.9 + 7.1 pm vs 45.9 + 5.3 um, P=0.02, P =0.02, and P =

were not observed in any of the experimental groups (Fig. 4). 0.01, respectively), and the LPS + O, + DXM and LPS + O. + HCS
groups had significantly larger L values, than the LPS + O, group
Lung morphometry (55.9 + 4.9 um and 59.9 * 7.1 pmvs 51.2 * 8.4 um, P = 0.03 and

Lm values, which indicate average alveolar size, were elevated P = 0.02, respectively). There was no significant difference in
in the LPS + Oy, LPS + O; + DXM, and LPS + O + HCS groups = Lm between the LPS + O, + DXM and LPS + O, + HCS groups

LPS +0;

v ol -
LPS + 0, + HCS "
C LA
‘ . -

Fig. 4. Representative photomicrographs of rat lungs on day 14. H&E stained. Magnification x 100. Scale bars indicate 200 pm. LPS, lipopolysaccharide; 0., exposure to 85%
oxygen for 1 week; DXM, dexamethasone; HCS, hydrocortisone.
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Fig. 5. Morphometric data. Mean cord length (Lm) (A) and alveolar wall thickness (WT) (B). LPS, lipopolysaccharide; 0., exposure to 85% oxygen for 1 week; DXM, dexametha-
sone; HCS, hydrocortisone. *Significantly higher or lower than the control group; Significantly higher or lower than the LPS + 0. group; *Significantly higher or lower than the
LPS + O, + HCS group.
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Fig. 6. Total cell count in bronchoalveolar lavage fluid (TCC in BALF) on D7 (open bars)
and D14 (solid bars). LPS, lipopolysaccharide; Oz, exposure to 85% oxygen for
1 week; DXM, dexamethasone; HCS, hydrocortisone.

(Fig. 5A). WT values, defined by the product of tissue volume
density and Lm, were greater in the LPS + O, LPS + O, + DXV,
and LPS + O, + HCS groups than the control group (16.6 + 3.4
pm, 21.4 + 3.6 pm and 18.4 £ 2.7 um vs 14.3 £ 2.2 um, P = 0.03,
P =0.01, and P = 0.03, respectively), and the LPS + O, + DXM
group had larger Wr than the LPS + O, and LPS + O, + HCS groups
(214 +3.6 pmvs 16.6 = 3.4 ym and 18.4 + 2.7 ym, P = 0.01 and
P =0.02, respectively). There was no significant difference in
Wi between the LPS + Oz and LPS + Oz + HCS groups (Fig. 5B).

Cell counts in bronchoalveolar lavage fluid

Cell counts in BAL fluid were significantly higher in the LPS + O.
group than in the control group both on D7 and D14 (D7, x 10°
cells/mL vs 47 x 10° cells/mL, P < 0.001; D14, 6 x 10° cells/mL
vs 51 x 10° cells/mL, P < 0.001). On D7, the cell counts in BAL
fluid in the LPS + O; + DXM and LPS + O. + HCS groups were
somewhat lower than in the LPS + O, group, but the differences
were not statistically significant. On D14, the LPS + O, + DXM
and LPS + O, + HCS groups had lower cell counts than the LPS
+ O group (20 x 10° cells/mL and 34 x 10° cells/mLvs 51 x 10°
cells/mL, P = 0.02 and P = 0.04, respectively) (Fig. 6).

DISCUSSION

In this study, DXM treatment in a rat model of BPD induced by
LPS and hyperoxia was also associated with a more profound
weight loss compared to control and LPS + O, groups not exposed
to corticosteroid, whereas HCS affected body weight only slight-
ly. Examination of lung morphology showed worse mean cord
length in both corticosteroid-treated groups as compared to the
LPS + O, group, and especially the DXM-treated group had aber-
rant alveolar walls thickness than the LPS + O group. Total cell
count in the BAL was decreased with corticosteroid treatment.
Early systemic treatment with DXM appears to be effective at
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reducing the risk of BPD in ventilated very low-birth-weight in-
fants (3, 4). Proposed explanations for this improvement include
stimulation of surfactant synthesis, increased antioxidant pro-
duction, decreased lung water, and suppression of lung inflam-
mation (11, 12). However, there is increasing evidence that ad-
ministration of corticosteroids in preterm infants affects lung
development adversely (13-15). Tschanz et al. (16, 17) observed
that DXM treatment of rat lungs reduced the interstitial tissue
and suppressed the outgrowth of new inter-alveolar septa. Sahe-
bjami and Domino (18) also found that glucocorticoid treatment
during the critical period (postnatal D4 to D14) reduced lung
growth and development in the long term. Similarly, we found
that administration of DXM resulted in fewer and larger airspaces
and impaired alveolarization in our rat model of BPD. Taken
together, these observations show that neonatal glucocorticoid
therapy in the early postnatal period is potentially toxic with re-
spect to lung growth not only of control neonates but also of
BPD neonates. Therefore, the pros and cons of glucocorticoid
therapy should be carefully weighed before its use in preterm
infants at greatest risk of BPD.

In the present study, the significant increase of alveolar wall
thickness in DXM-treated group as compared to LPS + O, group
raises the possibility that the glucocorticoids induce abnormal
remodeling with increased elastin and collagen in the connec-
tive matrix of the alveolar walls. Increased alveolar wall thickness
is known to reduce the efficiency of gas exchange. Whether or
not the thick connective tissue represents a disordered, nonfunc-
tional regional response needs to be determined. These find-
ings were not in agreement with those reported in rats with no
other risk factors for altered lung growth. Thus, Fayon et al. (19)
found that in rat pups with no risk factors for BPD, both HCS
and DXM increased alveolar diameter, and decreased the thick-
ness of the inter-airspace walls. This thinning of the inter-airspace
walls due to precocious maturation prior to alveolarization was
more marked with DXM than HCS. Since HCS gave no influence
to alveolar septation in the study, they suggested that the lowest
effective dose of HCS might replace DXM in premature infants.
HCS is the natural hormone, which may be safer to use than the
dexamethasone, but randomized trials of lung responses or com-
plications are not available. Watterberg et al. (20) showed that
low-dose HCS for 12 day, begun before 48 hr of life in extremely
low-birth-weight infants, decreased BPD in a pilot trial. How-
ever, the multicenter trial of HCS was discontinued because of
an increased incidence of gastrointestinal perforation in the ex-
tremely low-birth-weight infants in the HCS group. Additional
trials are warranted to identify the lowest effective dose of post-
natal HCS and the optimal period of its administration without
complication (6, 21).

In our preliminary study, DXM or HCS alone did not affect
the significant reduction in somatic growth compared to con-
trol group (data not shown). However, postnatal DXM treatment
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in arat model of antenatal LPS and neonatal hyperoxia exposure
decreased somatic growth of the rat pups in the present study,
whereas HCS did not influence body weight. It is well known
that decrease in somatic growth is associated with decreased
alveolarization (as with starvation) (22). In the murine model,
Ohtsu et al. (23) reported that higher doses of DXM (1 and 5 mg/
kg/day) are required to affect survival and protect lung from
hyperoxia in neonatal rats. We adopted an initial DXM dose of
0.5 mg/kg/day, because it was common initial dose used in the
neonatal rat under hyperoxic conditions (24, 25). In published
studies (7, 26), the postnatal HCS therapy in preterm infants,
administered to prevent or treat BPD, consisted of a starting dose
of 1-5 mg/kg/day. In our study, a starting HCS dose of 2 mg/kg/
day was relatively low compared to equivalent dose of DXM,
but equivalent to dose used in clinical practice. Although data
on the pharmacokinetics of HCS in neonatal animals are even
more limited than that of DXV, it may still be higher than what
is needed to achieve the desired effect without long-term ad-
verse effects. Further extensive studies are needed to determine
the lowest effective dose of HCS for lung development before
HCS can be considered an alternative to DXM for preventing
and/or treating BPD. We believe that our rat pup model of BPD
could be used to examine several doses of interventions to de-
termine the effects on alveolarization in the absence of effect
on mortality and somatic growth.

In the present study, both DXM and HCS significantly de-
creased cell counts in BAL fluid on D14 compared to the LPS +
O: group. There is a possibility that total cells in BAL fluid, in-
cluding alveolar macrophages, polymorphonuclear leukocytes,
lymphocytes are correlated with pulmonary inflammation. It is
known that bronchial and alveolar epithelial cells, together with
inflammatory cells, secrete several proinflammatory cytokines
into the BAL fluid of infants who subsequently develop BPD (27).
The increased cell count in the BAL fluid may consist mainly of
neutrophils, and to a lesser degree, epithelial cells, alveolar mac-
rophages, and lymphocytes (28). Glucocorticoids seem to be
effective in regulating inflammatory factors by inhibiting bind-
ing of specific transcription factors such as nuclear factor ¥B and
activated protein 1 (11). Indeed, inflammatory cells and levels
of chemokines and cytokines in bronchoalveolar fluid decrease
after DXM treatment (29).

Yoder et al. (1) reported that pulmonary inflammation was
suppressed by DXM in ventilator-dependent preterm infants.
They suggested that short-term treatment with DXM improved
pulmonary function, suppressed pulmonary inflammation, and
reduced the need for respiratory support in ventilator-depen-
dent preterm infants. However, even though DXM or HCS re-
duced pulmonary inflammation in our study, that did not pro-
tect the lungs from their negative effects in terms of alveolar
growth. Fayon et al. (19) compared the effect of DXM and HCS
on lung growth with a lower DXM dose than we used, and they
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also found that alveolarization was more markedly impaired by
DXM than HCS. Dik et al. (30) demonstrated that DXM treat-
ment increased fibroblast proliferation despite apparent down-
regulation of inflammation in preterm infants at risk of BPD. In
the present study, there was a difference between DXM and HCS
in terms of adverse effect on alveolar development. The use of
postnatal DXM or HCS in a rat model of BPD induced by intra-
amniotic LPS and postnatal hyperoxia led to interrupted alveo-
larization, but HCS showed less aberrant thickening of the alve-
olar wall than DXM.

In summary, unlike the DXM-treated group, the HCS-treated
group in a rat model of antenatal LPS and postnatal hyperoxia
was not associated with aberrant alveolar wall thickening and
retarded somatic growth. The effect of HCS on alveolarization
in the absence of effect on somatic growth needs to be better
defined under several doses of interventions. The lowest possi-
ble effective dose in the shortest time may reduce pulmonary
inflammation without inhibiting normal lung growth.
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